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Thyroid nodule is one of the common life-threatening diseases, and it had an increasing trend over the last years. Ultrasound
imaging is a commonly used diagnostic method for detecting and characterizing thyroid nodules. However, assessing the entire
slide images is time-consuming and challenging for the experts. For assessing ultrasound images in a meaningful manner, there is
a need for automated, trustworthy, and objective approaches. The recent advancements in deep learning have revolutionized
many aspects of computer-aided diagnosis (CAD) and image analysis tools that address the problem of diagnosing thyroid
nodules. In this study, we explained the objectives of deep learning in thyroid cancer imaging and conducted a literature review on
its potential, limits, and current application in this area. We gave an overview of recent progress in thyroid cancer diagnosis using
deep learning methods and discussed various challenges and practical problems that might limit the growth of deep learning and

its integration into clinical workflow.

1. Introduction

Thyroid cancer has been more common during the last three
decades [1]. The most recent estimation for thyroid cancer
reported by the American Cancer Society for 2022 is ap-
proximately 43,800 new cases and about 2,230 deaths [2].
Thyroid cancer is a solid tumor that usually shows up as a
nodule or mass at the front base of the throat in the thyroid
gland [3]. Thyroid cancer happens when rogue cells re-
produce too rapidly for the immune system to control [4].
Generally, cancer results from gene mutation or changes to
genes are responsible for controlling the cell function.
Therefore, cells reproduce uncontrollably and spread into
surrounding tissues [5]. Several types of thyroid cancer exist,
but two types are by far the most common types that are
responsible for 95% of thyroid cancers. These types include
follicular and papillary thyroid cancer [6].

Treating early detected malignant thyroid nodules before
the thyroid gland’s cancerous cells spreading can result in
effective treatment and less harm [7]. Thyroid cancer
screening is a procedure for the early detection of malignant
thyroid nodules [8]. Thyroid cancer is detected using two
major methods: (1) palpation of the neck during a physical
examination and (2) ultrasonography, which can detect
palpable and nonpalpable nodules, especially those less than
1 cm in diameter [9]. Ultrasonography is used to identify the
characteristics of thyroid nodules as the primary diagnostic
tool. These identified characteristics help to classify nodules
into benign or malignant type [10-12].

Over the last decades, computer-aided diagnosis (CAD) is
employed as a new technique for automatic thyroid nodules
diagnosis. Implementing artificial intelligence in CAD tools
makes them smarter and increases the accuracy and con-
sistency of the ultrasonography features interpretation,
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ultimately decreasing the unnecessary biopsy. Machine
learning and deep learning are the underlying techniques of
Al-based CAD systems that greatly impact the medical field
[13]. These methods rely on experts” knowledge to choose the
essential features from a set of predefined specified charac-
teristics collected from the region of interest [14]. In thyroid
ultrasound images, features such as margin, shape, echoge-
nicity, calcifications, and composition and have been used in
many studies to develop CAD systems. The efficiency of these
systems has been indicated previously [15-17]. Previous re-
search has indicated how the traditional machine learning and
deep learning algorithms, such as the support vector ma-
chines [18], GoogLeNet [19], and convolutional neural net-
work (CNN) [20, 21], have changed the thyroid nodule
diagnosis. The development of machine learning and artificial
intelligence removed the constraints of employing CAD tools
in the everyday routine of physicians and experts have been
overcome significantly [22, 23].

This paper presents a comprehensive review of the deep
learning approaches used for diagnosis of thyroid cancer.
Most of the papers were published after 2018, indicating that
the deep learning algorithm had a good performance for
thyroid nodules classification; therefore, it gained much
attention over the last years. In the following part of this
paper, a review of the deep learning methods that previously
have been applied for thyroid nodule classification is pre-
sented in Section 2. A comprehensive explanation of deep
learning methods such as CNNs, generative adversarial
networks (GANs), autocondors, long short-term memory
(LSTM), deep belief network (DBN), and recurrent neural
networks (RNNs) was provided, and the investigations that
applied these approaches for thyroid cancer classification
were introduced. The rest of the paper provides discussion
and conclusion.

2. Deep Learning Methods Reviews

Deep learning is a part of artificial intelligence that uses
artificial neural networks. It is a machine learning technique
for extracting patterns and making predictions from large
datasets. The growing deep learning model application in
health care, combined with the availability of well-charac-
terized cancer datasets, has pushed research into deep
learning’s utility in analyzing cancer cells. In the following, a
comprehensive review of deep learning models that are used
for thyroid cancer classification is provided.

2.1. Convolutional Neural Networks. Convolutional neural
network (CNN) is a type of neural network that has one or
more convolutional layers. The use case of these layers is to
process images, classify data, segment data, etc [24]. CNN is
similar to traditional artificial neural networks and is made
up of neurons that learn to optimize themselves. Each
neuron receives data and performs an operation, forming
the foundation for many artificial neural networks. The
complete network expresses a single perceptual scoring
function from the input raw image vectors through the final
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output class score [25, 26]. CNN as a feed-forward neural
network uses a grid-like layout to evaluate visual images,
process data, and detect and categorize items in an image.
CNN does three steps to make image classification practical,
including the following:

(1) Reduce the number of input nodes

(2) Tolerate small shifts in where the pixels are in the
image

(3) Take advantage of the correlations observed in
complex images

Figure 1 indicates the simple architecture of CNN. The
CNN architecture is made up of several layers (known as
multibuilding blocks). In the following, the description of
each layer and its functions are provided in detail:

(1) Convolutional layer: Convolutional layers are the
fundamental component of a CNN structure. It is
made up of several convolutional filters. The output
feature map is generated by convolving the input
image (represented as N-dimensional matrices) with
these filters.

(2) Pooling layer: Pooling is a technique used in con-
volutional neural networks to enable the network to
recognize features regardless of their location in the
image by generalizing characteristics retrieved by
convolutional filters

(3) Fully connected layer: In a neural network, fully
connected layers are layers in which all of the inputs
from one layer are connected to each activation unit
of the next layer

CNN has been widely applied to ultrasound images to
classify thyroid cancer. CNN is proved to be efficient in
thyroid disease diagnosis based on medical imaging
[19, 27, 28]. CNN had the greatest accuracy rates among
other models for thyroid cancer diagnosis according to the
latest researchers. Table 1 lists the most recent 20 articles that
used CNN to diagnose thyroid cancer. The specificity,
sensitivity, and accuracy rates are used to measure the
method’s functionality.

In this paper, we chose 20 articles out of 170 initial
selected publications. These publications proved remarkable
growth in implementing CNNs in the thyroid nodules’
assessment in the past years (Table 1). CNNs are mainly
focused on identifying suspicious nodules and diagnosing
diseases like cancerous cells by the classification of nodules
into malignant and benign types. This characteristic led to
the growth of using CNNs over the last years. Lee et al.
introduced a CAD system that works based on a deep
learning approach for patients with thyroid cancer. Eight
different CNN models were used to compare the accuracy of
methods in classifying thyroid cancer tumors. As shown in
Table 1, the ResNet50 had a better performance with higher
accuracy, sensitivity, and specificity rate [29]. The other
method that was proved to have a good performance is
VGGI16. Lin et al. proposed a deep learning approach based
on VGG16 and used the whole slide images (WSIs) database
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FIGURe 1: Simple structure of CNN.

for this purpose. The result of the proposed approach in-
dicated 99% accuracy and 94% sensitivity [31]. Xception
neural network also demonstrated high accuracy in diag-
nosing brain tumors. Zhang et al. indicated the high ac-
curacy of this approach by applying Xception neural
network to CT images [38]. CascadeMaskR-CNN utilized
ultrasound images of thyroid cancer to diagnose benign
from malignant tumors [46]. The experimental results in-
dicated 94% of accuracy.

2.2. Generative Adversarial Networks. Generative adversarial
networks (GANs) were introduced as a type of generative
model and have gained much attention among artificial
intelligence researchers since their introduction. GANs are
inspired by the idea of two-player zero-sum games. These
models estimate the potential distribution of the given
dataset and then generate new samples from the estimated
distribution [48]. GANs techniques have been widely ap-
plied in various fields due to their exceptional capability for
dealing with a variety of types of problems, including image
processing, computer vision, speech processing, and lan-
guage processing [49]. Typically, GANs are made up of a
generator and a discriminator learning simultaneously. The
generator has the role of recording the probability distri-
bution of the given datasets and then generating new data
samples based on that distribution [50]. The discriminator is
responsible for distinguishing real data and fake data and
usually is a binary classifier. The generator and the dis-
criminator can use a deep neural network structure. GAN
utilizes minimax game optimization with the goal of
reaching Nash equilibrium, where the generator is to capture
the distribution of given datasets [51]. Figure 2 indicates the
GANs model and its simple structure.

GANSs generate fair data that are very close to the real
data [48]. This method is the second most used approach
that has been used for thyroid nodules classification. For
example, Zhang et al. proposed an adversarial learning-
based approach for tissue recognition from medical images
by synthesizing medical images. The synthetic model is
based on Wasserstein, deep convolutional GANs, and
boundary equilibrium GANs approaches. The researchers

reported a 98.83% accuracy for tissue recognition synthetic
images [52]. In another paper written by Yang and Qiangian,
a semisupervised learning model proposed integrated do-
main knowledge in training dual path conditional GANS.
Also, a semisupervised support vector machine is suggested
for classifying thyroid nodules. After putting the model to
the test, they found that it successfully avoids the mixed
outcomes that might arise when using a limited dataset [53].
Zhao et al. introduced a novel thyroid cancer classification
approach based on multimodal domain adaption. To deal
with visual discrepancies between modal data, the re-
searchers created semantic consistency GANs and used
adversarial learning between dual domains, which is based
on the self-attention mechanism. The rate of accuracy of this
research for classifying benign and malignant nodules was
94.30 percent [54]. Shi et al. presented an adversarial aug-
mentation technique that is knowledge-guided to synthesize
medical images. They designed term and image encoders for
extracting domain knowledge based on radiologists’ ideas.
Then, for high-quality thyroid nodule images and to con-
strain the auxiliary classifier GANs, domain knowledge is
used as a condition. The researchers tested the proposed
model on the classification of the ultrasonography thyroid
nodule. The accuracy of the model is reported to be 91.46%
[55]. The effectiveness of GANs for creating high-resolution
pathology images was investigated by Levine et al. The re-
searchers looked at ten different forms of cancer histolog-
ically, including five cancer types from the five primary
histological subtypes of ovarian carcinoma and the Cancer
Genome Atlas. They showed that histotype-classified actual
and synthetic images had similar accuracies [56].

2.3. Other Deep Learning Approaches. There are other deep
learning approaches that have been applied to ultrasound
images for thyroid cancer diagnosis. In the following, a
review of deep learning applications is presented.

2.3.1. Autoencodors. Autoencoders (AE) are a subtype of
neural networks. They are primarily meant to encode the
input, i.e., represent the input in a compressed and mean-
ingful manner, then decode it, i.e., reconstruct the encoded
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TaBLE 1: Top 20 papers used convolutional neural networks for thyroid cancer.

No Reference Method Data Sensitivity Specificity Accuracy
ResNet50 90% 90% 90%
Inception v3 88% 90% 89%
Xception 86% 92% 89%
VGG19 . 89% 94% 92%
! [29] InceptionResNetV2 CT images 69% 94% 81%
DenseNet121 69% 98% 84%
DenseNet169 81% 98% 89%
VGG16 86% 83% 85%
Xception 80.2% 83.0% 82.8%
Inception v3 87% 73% 74%
ResNet50 86% 69% 70%
VGGI19 . 85% 73% 74%
2 (301 InceptionResNetV2 CT images 76% 78% 78%
DenseNet121 84% 81% 81%
DenseNet169 79% 77% 77%
VGG16 84% 67% 68%
3 [31] VGG16 Whole slide imaging 94% — 99%
4 [32] Deep convolu(tll;) él?:ll\?)eural network Sonographic images 93% 86% 89%
5 3] MEDN Post-ablation Y}?;\l’s’;};ﬁy planar scans . 85% 93%
6 [34] Multiprong CNN (MPCNN) Sonographic images 88% 73% —
7 [35] Multi-input CNN MRI 69% 97% 87%
8 [36] Multi-input CNN MRI 82% — 88%
9 [37] Inception v3 Ultrasound images 93.3% 87.4% ~95%
10 [38] Xception neural network Ultraso“‘:i;gg’é?fya(n&c)omp uted 94% — 98%
11 [39] ThyNet Ultrasound images 94% 81% —
12 [40] R-CNN Ultrasound images 81% — —
13 [41] ThyNet Ultrasound images 94% 81% 89%
14 [20] SVM + CNN Ultrasound images 96.4% 83.1% 92.5%
15 [42] VGG16 Ultrasound images 63% 80% 74%
Inception v3 83.7% 83.7% 76.5%
16 [43] ResNet101 Ultrasound images 72.5% 81.4% 77.6%
VGGI19 66.2% 76.9% 76.1%
17 [44] VGG16 Ultrasound images 70% 92% —
18 [45] Mask R-CNN Ultrasound images 79% — —
19 [46] CascadeMaskR-CNN Ultrasound images 93% 95% 94%
20 [47] Google inception v3 Histopathology images — — 95%
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FIGURE 2: Simple structure of the GANS model.

Training

input with the maximum possible similarity to the original
input. Unsupervised learning and deep architectures rely
heavily on autoencoders for transfer learning and other
tasks. AE has been widely used in the medical field for tumor
classifications. However, this method has not been applied
widely for the classification of thyroid cancer. There are
several studies that applied this method for this purpose. For
example, Ferreira et al. applied six distinct AE types for
thyroid nodules classification, as well as two different
techniques to train the classification model. With an F1 score
of 99.61% + 0.54, they conclude that combining a deeper
classification network with the reconstruction of the input
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space outperformed previous studies [57]. In another study,
Ferreira et al. contributed to the literature by automatically
classifying tumor samples by analyzing their gene expres-
sions. The researchers tried to develop a methodology for
distinguishing five different cancer types from RNA-Seq
datasets, including thyroid, skin, stomach, breast, and lung
cancers. In this research, they adopted autoencoders for
initializing weights on deep neural networks and compared
the performance of three different autoencoders. The results
indicated an average F1 score of 99.03 for the RNA-Seq data
[58]. Also, to categorize thyroid nodules, Li et al. employed
the stacked denoising sparse autoencoder. This study used
immune-related genes to build a classifier with a stacked
denoising sparse autoencoder using data of gene expression
from thyroid nodule tissues. The experimental results on
distinguishing benign and malignant thyroid nodules
demonstrated an accuracy of 92.9% [59].

2.3.2. Long Short-Term Memory. Long short-term memory
(LSTM) is another deep learning approach that is able to
learn order dependency in sequence prediction issues and is
a kind of recurrent neural network (RNN). By default, these
algorithms are designed to avoid the problem of long-term
dependency and remember information for long periods of
time. In order to consider the application of LSTM, Chen
et al. proposed a new approach that divided the report into
two layers: a word vector layer and a sentence presentation
layer, with each layer employing the bidirectional long short-
term memory and attention mechanism. Finally, they
provided a model with good performance [60]. Wu et al.
applied ML algorithms such as Gradient Boosting trees,
k-nearest neighbor, decision trees, Naive Bayes, logistic
regression, random forest, and long short-term memory
model using time-series tumor marker data on two large
asymptomatic cohorts, including 163,174 records. Com-
pared to the other ML models, the LSTM model proved the
best at handling erratic data [61].

2.3.3. Deep Belief Network. The deep belief network or DBN
is a type of deep neural network but is not the same and it is
made up of multiple layers of restricted Boltzmann machines.
These algorithms provide solutions for the limitations of
training conventional neural networks in deep layered net-
works, including getting stuck in local minima due to poor
parameters, slow learning, and requiring big training datasets.
The only paper that applied the DBN method for thyroid
nodule diagnosis is the research done by Pavithra and Par-
thiban. They presented a new pigeon inspired optimization
(PIO) problem with the DBN model, named PIO-DBN, for the
classification and diagnosis of thyroid disease. The PIO-DBN
model reached the maximum accuracy of 98.91% and 96.28%
on the two thyroid datasets used to evaluate the model [62].

2.3.4. Recurrent Neural Networks. Recurrent neural net-
works (RNNs) are a kind of artificial neural network used for
dealing with sequential or time-series data. The dis-
tinguishing feature of these algorithms is their “memory.” In

RNNs, the information from prior inputs can influence the
current input and output. These deep learning algorithms
are commonly applied to ordinal or temporal problems. For
thyroid cancer nodule diagnosis, Begum et al. utilized
bBidirectional RNN to evaluate the risk of getting thyroid
illness in patients. The result of applying the proposed ap-
proach was a 98.72% rate of accuracy [63]. Also, Santillan
et al. studied distinguishing malignant from benign thyroid
lesions by applying five neural network approaches, and the
results indicated that the RNN model performed better than
the rest, having an accuracy of 98% [64].

3. Discussion

Ultrasound imaging has become one of the primary tech-
nologies for analyzing thyroid nodules due to its safety, cost-
effectiveness, being noninvasive, and easily accessible.
However, it is a challenging task to interpret ultrasound
images, and the interpretation can be altered based on ra-
diologists’ prior medical knowledge and observational skills.
Therefore, the need for automated, reliable, and objective
technologies for the interpretation of ultrasound images is
significant. Progress in deep learning in recent years has
revolutionized various areas of machine learning, such as
computer vision and image processing. Although CAD
systems that are based on artificial intelligence are evolving
rapidly, there is no widespread adoption of any of these
systems, and there are still conflicting issues. There is a
significant need for Al-based CAD systems with better
designs and practicality that provide consistent nodule
management solutions in practice [65, 66]. In this paper, we
reviewed the recent studies that deployed deep learning-
based algorithms for analyzing medical images of thyroid
nodules. The literature demonstrated that although CAD
systems provide similar sensitivity to experienced radiolo-
gists, they still cannot reach the level of specificity and ac-
curacy of experts [67]. Therefore, a probable option to
consider is to combine the specificity and accuracy of ra-
diologists with the sensitivity of CAD systems and use these
systems as assistants for operators with less experience at
primary care centers [7, 10-12]. Accordingly, it is necessary
to apply deep learning approaches and develop models with
high accuracy, specificity, and sensitivity [68, 69]. Future
research should scrutinize the effectiveness of these methods
and techniques. Moreover, developing more effective
techniques for preprocessing images is necessary as they can
alter the performance of deep learning models significantly.
Other challenges that need to be addressed in future research
include coping with data limitations, creating valid and
public datasets, and developing standard evaluation mea-
sures. Furthermore, all deep learning approaches, including
B-mode, Doppler, contrast-enhanced ultrasound, and SWE,
should be used on multimodal images to get a complete
picture of the lesions. Thyroid nodule diagnosis accuracy can
be improved by registering, training, and evaluating thyroid
nodules’ multimodal images. Besides, the lack of standard
metrics for evaluating the suggested methods’ performance
makes it difficult to compare their outcomes. Based on the
recent publication, it can be concluded that among all deep



learning techniques, CNNs have been widely applied in
order to diagnose thyroid cancer. The results yielded high
sensitivity, specificity, and accuracy. However, other deep
learning methods have not been applied widely, and there
are not enough papers to make the comparison between
methods reasonable. The second most used deep learning
method to diagnose thyroid nodules is GANs. The high rate
of sensitivity, specificity, and accuracy indicates that the
application of this method on multimodal images can result
in finding models with a better performance. The other
popular deep learning approaches like RNN, DBN, and
LSTM have not been used widely, and more research should
be done to find out the rate of accuracy.

4. Conclusion

As mentioned before, thyroid cancer begins when the cells
divide rapidly and spread uncontrollably into surrounding
tissues. Therefore, the early detection of cancerous nodules is
essential for effective management of the disease besides
reducing the number of deaths. The Al-based CAD systems
development for processing thyroid images was very fast
over the last decades. Thyroid nodule treatment will be
improved if these technologies are thoroughly verified. This
paper gives a comprehensive review of deep learning ap-
plications in assessing thyroid nodules. The overall con-
clusion of this study demonstrated that thyroid tumor
classification and analysis would considerably benefit from
the latest enhancements of deep learning approaches and
new systematic deep learning techniques with high speci-
ficity, sensitivity, and accuracy. Currently, in comparison
with the investigations that applied deep learning ap-
proaches for other cancer detection like breast cancer and
brain cancer, it can be concluded that it is essential to
conduct more investigations for developing systems with
high accuracy. Despite the empirical strengths and successes
of previous deep learning algorithms and methods in the
assessment of ultrasound thyroid images, there still exist
many deep learning methods that need to be applied to
ultrasound images to investigate their performance. Cur-
rently, the number of the public dataset for thyroid cancer
imaging is not enough. Therefore, the development of re-
liable and accessible datasets and the creation of uniform
assessment metrics are issues that need to be covered in next
researches. According to the results of specificity, sensitivity,
accuracy, and rate of previously proposed approaches, it can
be concluded that CNN is by far the most popular deep
learning method for thyroid cancer diagnosis. According to
Table 1, the VGG16 method is the technique that has been
widely used for thyroid nodule classification. Moreover,
GANs, RNNs, and LSTM methods have been utilized in
some research. However, the number of published papers is
not enough, and more investigations are required. Also,
developing better preprocessing approaches for improving
deep learning models’ performance is mandatory.
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