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+is paper proposes a robust international portfolio optimization model with the consideration of worst-case lower partial
moment (LPM) and worst-case mean return. In our model, we assume that the distributions and the first- and second-order
moments of distributions of returns of assets and exchange rates are all ambiguous. +e proposed model can be reformulated into
an equivalent semidefinite programming (SDP) problem, which is computationally tractable. For investigation of the performance
of our model, we also give two benchmark models. +e first benchmark model is a scenario-based model which uses historical
observations of returns to approximate the future distributions. +e second benchmark model only considers the ambiguity of
distributions but does not consider the ambiguity of the first- and second-order moments of distributions. We conduct empirical
experiments in a rolling forward way to evaluate the out-of-sample performances of our proposed model, the two benchmark
models, and an equally weighted model using the return measures and various risk-adjusted return measures. +e result shows
that our model has the best performance. It verifies that investors can obtain benefits when employing the robust model and
considering the ambiguity of the first- and second-order moments of distributions.

1. Introduction

In order to capture the diversification benefits of interna-
tional financial markets, institutional and individual in-
vestors tend to invest part of their money in the financial
markets of other countries or regions using different cur-
rencies. +e correlations of returns of assets in other
countries or regions are often lower than those in just one
country, so international asset allocation may reduce risk
[1–5]. Generally, the distribution of international portfolio
return is asymmetry. It is well known that variance is not an
appropriate measure to evaluate the risk of asymmetry
distributions, whereas downside risk measures can measure
the risk of asymmetry distributions effectively. Among
various downside risk measures, lower partial moments
(LPM) are comprehensive and sensible [6]. +e definition of
LPM is introduced by Bawa [7], Bawa and Lindenberg [8],
and Fishburn [9]. In order to compute LPM, we need to
know the distributions of future security returns beforehand.
However, for investors, the distributions of future security

returns are usually unknown or cannot be estimated ac-
curately. Even if they acquire the actual distributions of
future security returns, the computation of LPM is also a
difficult task. To deal with these problems, some researchers
employ robust optimization techniques to portfolio selection
models using LPM as the risk measure [10–14]. +eir re-
searches focus on the portfolio selection problems in one
country and do not consider the international portfolio
selection problems with the risk of exchange rates. Mean-
while, their researches only consider the worst-case LPM
and do not consider the worst-case mean return. Intuitively,
the worst-case mean return can also give investors helpful
instructions for making investment decisions.

In this paper, we build a robust international portfolio
optimization model with worst-case LPM as the risk mea-
sure and consider the worst-case mean return. We assume
that the distributions and the first- and second-order mo-
ments of distributions of future returns of assets and ex-
change rates are all ambiguous. Using robust optimization
techniques, we reformulate our model into an equivalent
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semidefinite programming (SDP) problem. In order to
evaluate the performance of our model, we also give two
benchmark models. In the first benchmark model, we use
historical return observations to form empirical distribu-
tions of future returns and build an international portfolio
optimization model based on these empirical distributions.
In the second benchmark model, we assume that the dis-
tributions of future returns are ambiguous, but the first- and
second-order moments are known. +en, we conduct em-
pirical experiments using the return measures and various
risk-adjusted return measures to assess the performances of
our model, the two benchmark models, and the equally
weighted model.

+is paper is organized as follows. In Section 2, we
propose the robust international portfolio optimization
model with worst-case LPM and mean return under a
distributional ambiguity set where the distributions and the
first- and second-order moments are ambiguous. We derive
an equivalent SDP reformulation of this model. In Section 3,
we present the two benchmark models. In Section 4, we
conduct empirical experiments to evaluate the performance
of our model in comparison with the two benchmark models
and the equally weighted model using the return measures
and various risk-adjusted return measures. Section 5 gives
the conclusions of this paper.

1.1. Notation. In this paper, vectors are denoted by lower-
case boldface letters, and matrices are denoted by uppercase
boldface letters. We use Rn to denote the space of vectors of
real numbers with dimension n and Sn to denote the space of
symmetric matrices with dimension n. For any two matrices
X,Y ∈ Sn, we use <X,Y> � trace(XY) to denote the trace
scalar product, and the relation X≽Y represents that X − Y
is positive semidefinite. Random variables are denoted by
symbols with tildes, whereas the realizations of them are
denoted by symbols without tildes.

2. Model Formulation

In the international financial markets, we assume that an
investor plans to invest in the stock markets of n foreign
countries or overseas regions where people use different
currencies to the investor’s domestic currency. We denote
that the return of the asset in the i-th country or region is 􏽥si,
and the return of the exchange rate of the i-th country or
region is 􏽥ci, where i � 1, 2, . . . , n. +en, the return of the i-th
asset in the investor’s domestic currency can be obtained as

1 + 􏽥si( 􏼁 1 + 􏽥ci( 􏼁 − 1 � 􏽥si + 􏽥ci + 􏽥si􏽥ci. (1)

We assume that the weight of money in the domestic
currency of the investor invested in the i-th asset is wi, and
the sum of wi, i � 1, 2, . . . , n, equals 1. +en, the total return
of the international portfolio w � (w1, w2, . . . , wn)T can be
written as

􏽘

n

i�1
􏽥si + 􏽥ci + 􏽥si􏽥ci( 􏼁wi. (2)

For convenience, we denote that
􏽥ξ � 􏽥s1,􏽥s2, . . . ,􏽥sn, 􏽥c1, 􏽥c2, . . . , 􏽥cn( 􏼁

T
, (3)

which combines the returns of assets and exchange rates
in one vector. We also denote that

W �

w1

w2

⋱

wn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H �

0n×n

1
2
W

1
2
W 0n×n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 �

In×n

0n×n

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B2 �

0n×n

In×n

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(4)

+en, (2) can be rewritten as

r(w, 􏽥ξ) � 􏽥ξ
T
B1w + 􏽥ξ

T
B2w + 􏽥ξ

T
H􏽥ξ. (5)

We employ first-order lower partial moment to measure
the risk of international portfolios. For a given benchmark
return a, the first-order LPM can be written as follows:

LPM(w, P) � EP (a − r(w, 􏽥ξ))+􏽨 􏽩, (6)

where P is the distribution of 􏽥ξ. In practice, investors usually
cannot know P accurately beforehand. +us, some re-
searchers use historical observations of returns to form an
empirical approximation of P. We assume that investors can
obtainm historical observations, which are denoted by 􏽢ξ1, 􏽢ξ2,
. . ., 􏽢ξm. +e empirical approximation 􏽢P of P is typically
formed as follows:

􏽢P 􏽥ξ � 􏽢ξi􏼐 􏼑 �
1
m

, i � 1, 2, . . . , m. (7)

Under 􏽢P, the LPM in (6) can be rewritten as

LPM(w, 􏽢P) � 􏽘
m

i�1

1
m

a − r w, 􏽢ξi􏼐 􏼑􏼐 􏼑
+

􏽨 􏽩. (8)

If m is relatively large, according to the law of large
numbers, the gap between (6) and its scenario-based version
(8) can be small. But the number of observations that in-
vestors can acquire is usually small and cannot satisfy the
requirement of the law of large numbers. Instead, some
researchers use historical observations of returns to form a
distributional ambiguity set of future returns. A popular
ambiguity set that considers the ambiguity of the
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distributions and the first- and second-order moments of
distributions is proposed by Delage and Ye [15]. +is am-
biguity set denoted by P1 can be described as follows:

P1 􏽢μ, 􏽢Σ, λ1, λ2􏼐 􏼑 � P ∈M|

P 􏽥ξ ∈ R2n
􏼐 􏼑 � 1

(E(􏽥ξ) − 􏽢μ)
T 􏽢Σ− 1

(E(􏽥ξ) − 􏽢μ)≤ λ1
E (􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)

T
􏽨 􏽩≼ λ2􏽢Σ

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(9)

where M is the set of all probability measures on the
measurable space (R2n,B), with B being the Borel σ-al-
gebra on R2n, 􏽢μ is the sample-based mean return, 􏽢Σ is the
sample-based covariance matrix, λ1 reflects the ambiguity
size of mean return, and λ2 reflects the ambiguity size of the
covariance matrix. +e worst-case LPM with respect to the
ambiguity setP1 denoted by WLPM(w,P1) can be defined
as

WLPM w,P1( 􏼁 � max
P∈P1

LPM w,P1( 􏼁. (10)

Since the mean return of the international portfolio can
also give investors useful instructions for decision-making,
we add the worst-case mean return in the objective function
of our model. We give the definition of worst-case mean

return with respect to P1 denoted by WReturn(w,P1) as
follows:

WReturn w,P1( 􏼁 � min
P∈P1

EP[r(w, 􏽥ξ)]. (11)

+e robust international portfolio optimization model
using worst-case LPM as the risk measure and considering
worst-case mean return under P1 can be built as follows:

(RIML)min
w

λ · WLPM w,P1( 􏼁 − (1 − λ) · WReturn w,P1( 􏼁.

(12a)

s.t.w ∈ Rn
,wTe � 1,w ≥ 0, (12b)

where λ is the risk aversion coefficient of investors and e
denotes the vector of 1 s with dimension n. Problem (12)
cannot be solved directly; thus, we need to derive its equivalent
reformulation, which is computationally tractable. In the fol-
lowing, we first give the equivalent SDP reformulation of
WLPM(w,P1) defined by (10); then, we give the equivalent
SDP reformulation of WReturn(w,P1) defined by (11).

Theorem 1. WLPM(w,P1) defined by (10) is equal to the
optimal objective function value of the following SDP
problem:

min
p1 ,U,V,v,s{ }

p1 + λ2〈U, 􏽢Σ〉, (13a)

s.t.U≽ 0, (13b)

V v
vT

s
􏼢 􏼣≽ 0, (13c)

U
1
2

(− 2U􏽢μ − 2v)

1
2
(− 2U􏽢μ − 2v)

T
p1 + 􏽢μTU􏽢μ − 〈V, 􏽢Σ〉 + 2vT

􏽢μ − λ1s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽ 0, (13d)

U + H
1
2

− 2U􏽢μ − 2v + B1w + B2w( 􏼁

1
2

− 2U􏽢μ − 2v + B1w + B2w( 􏼁
T

p1 + 􏽢μTU􏽢μ − 〈V, 􏽢Σ〉 + 2vT
􏽢μ − λ1s − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽ 0. (13e)

Proof: WLPM(w,P1) defined by (10) is equivalent to the
following problem:

− min
P∈P1

− EP (a − r(w, 􏽥ξ))+􏽨 􏽩. (14)

+en, we shall derive the equivalent SDP reformulation
of the following:

min
P∈P1

− EP (a − r(w, 􏽥ξ))+􏽨 􏽩, (15)

which can be written as

min
P

− 􏽚
R2n

(a − r(w, 􏽥ξ))+dP(􏽥ξ), (16a)

s.t.􏽚
R2n

dP(􏽥ξ) � 1, (16b)

􏽚
R2n

(􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)
T
dP(􏽥ξ)≺ λ2􏽢Σ, (16c)

􏽚
R2n

􏽢Σ (􏽥ξ − 􏽢μ)

(􏽥ξ − 􏽢μ)
T λ1

􏼢 􏼣dP(􏽥ξ)≽ 0, (16d)
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P ∈M. (16e)

We denote the dual variable of constraint (16b) by p1,
that of constraint (16c) by U, and that of constraint (16d) by

V v

vT
s

􏼢 􏼣, (17)

where p1 ∈ R; U ∈ S2n; U≽ 0; V ∈ S2n; v ∈ R2n; s ∈ R;
V v

vT
s

􏼢 􏼣≽ 0. (18)

+e dual reformulation of problem (16a) can be written
as follows:

max
p1,U,V,v,s{ }

− p1 − λ2〈U, 􏽢Σ〉, (19a)

s.t. p1 +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ) − 〈V, 􏽢Σ〉 − 2vT

(􏽥ξ − 􏽢μ)

− λ1s≥ (a − r(w, 􏽥ξ))+, ∀􏽥ξ ∈ R2n
.

(19b)

+e Dirac measure δ􏽢μ is the measure of mass one at the
point 􏽢μ. Obviously, δ􏽢μ lies in the relative interior of the

feasible set of problem (16). According to the weak version of
Proposition 3.4 in Shapiro [16], we can deduce that there is
no dual gap between problems (16) and (19). +us, the
optimal objective function value of problem (16) is equal to
that of problem (19). Constraint (19b) is equivalent to the
following two constraints:

p1 +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ) − 〈V, 􏽢Σ〉 − 2vT

(􏽥ξ − 􏽢μ)

− λ1s≥ 0, ∀􏽥ξ ∈ R2n
.

(20)

p1 +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ) − 〈V, 􏽢Σ〉 − 2vT

(􏽥ξ − 􏽢μ)

− λ1s≥ a − r(w, 􏽥ξ), ∀􏽥ξ ∈ R2n
.

(21)

Equation (20) is equivalent to the matrix inequality
(13d), and (21) is equivalent to the matrix inequality (13e).
+us, we complete the proof of this theorem. □

Theorem 2. WReturn(w,P1) defined in (11) is equal to the
optimal objective function value of the following SDP
problem:

max
q1 ,Q,M,h,z{ }

− q1 − λ2〈Q, 􏽢Σ〉, (22a)

s.t.Q≽ 0, (22b)

M h
hT

z
􏼢 􏼣≽ 0, (22c)

H + Q
1
2

B1w + B2w − 2Q􏽢μ − 2h( 􏼁

1
2
B1w + B2w − 2Q􏽢μ − 2h( 􏼁

T
q1 + 􏽢μTQ􏽢μ − 〈M, 􏽢Σ〉 + 2hT

􏽢μ − λ1z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽0. (22d)

Proof: . WReturn(w,P1) defined by (11) can be written in
the following formulation:

minP􏽚
R2n

􏽥ξ
T
B1w + 􏽥ξ

T
B2w + 􏽥ξ

T
H􏽥ξ􏼒 􏼓dP(􏽥ξ),

(23a)

s.t. 􏽚
R2n

dP(􏽥ξ) � 1, (23b)

􏽚
R2n

(􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)
T
dP(􏽥ξ)≺ λ2􏽢Σ, (23c)

􏽚
R2n

􏽢Σ (􏽥ξ − 􏽢μ)

(􏽥ξ − 􏽢μ)
T λ1

􏼢 􏼣dP(􏽥ξ)≽ 0, (23d)

P ∈M. (23e)

Similar to the proof of +eorem 1, we denote the dual
variable of constraint (23b) by q1, that of constraint (16c) by
Q, and that of constraint (16d) by

M h

hT
z

􏼢 􏼣, (24)

where q1 ∈ R; Q ∈ S2n; Q≽ 0; M ∈ S2n; h ∈ R2n; z ∈ R;

M h

hT
z

􏼢 􏼣≽ 0. (25)

+e dual reformulation of problem (16) can be written as

max
q1 ,Q,M,h,z{ }

− q1 − λ2〈Q, 􏽢Σ〉, (26a)

s.t. Q≽ 0, (26b)

M h
hT

z
􏼢 􏼣≽ 0, (26c)

􏽥ξ
T
B1w + 􏽥ξ

T
B2w + 􏽥ξ

T
H􏽥ξ + q1 +(􏽥ξ − 􏽢μ)

TQ(􏽥ξ − 􏽢μ)

− 〈M, 􏽢Σ〉 − 2hT
(􏽥ξ − 􏽢μ) − λ1z≥ 0, ∀􏽥ξ ∈ R2n

.
(26d)
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Similar to the proof of +eorem 1, there is no dual gap
between problems (23) and (26); thus, the optimal objective
function values of the two problems are the same. +e
equivalent matrix inequality of constraint (26d) is (22d);
thus, we complete the proof of this theorem.

With +eorems 1 and 2, we can easily obtain the
equivalent SDP reformulation of problem RIML (12), and
the final formulation is as follows:

min
p1,U,V, v, s,

q1,Q,M, h, z
􏼨 􏼩

λ · p1 + λ2〈U, 􏽢Σ〉􏼐 􏼑 +(1 − λ) · q1 + λ2〈Q, 􏽢Σ〉􏼐 􏼑,

(27a)

s.t.(12b), (13b), (13c), (13d), (13e), (22b), (22c), (22d). (27b)

□
3. Two Benchmark Models

In order to assess the performance of our model RIML, we
present two benchmark models in this section. +e first
benchmark model denoted by SIML is based on empirical
distributions approximated by historical samples of returns.
+e approximated distribution 􏽢P is described in (7), and
LPM under 􏽢P is shown in (8).+e return of the international
portfolio under 􏽢P can be written as

Return(w, 􏽢P) �
1
m

􏽘

m

i�1
r w, 􏽢ξi􏼐 􏼑. (28)

+e scenario-based international portfolio optimization
model with mean-LPM denoted by SIML is built as

(SIML)min
w

λ · LPM(w, 􏽢P) − (1 − λ) · Return(w, 􏽢P), (29a)

s.t.w ∈ Rn
, eTw � 1,w ≥ 0, (29b)

where LPM(w, 􏽢P) is defined by (8) and Return(w, 􏽢P) is
defined by (28). In the second benchmark model denoted by
RIML− , we assume that the distributions of returns of assets
and exchange rates are ambiguous, but the first- and second-
order moments of distributions are determined beforehand.
+e corresponding ambiguity setP2 is described as follows:

P2(􏽢μ, 􏽢Σ) � P ∈M |

P 􏽥ξ ∈ R2n
􏼐 􏼑 � 1

E(􏽥ξ) � 􏽢μ

E (􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)
T

􏽨 􏽩 � 􏽢Σ

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (30)

where the definitions ofM, 􏽢μ, and 􏽢Σ are the same as those of
(9). Under P2, RIML− can be written as
RIML−

( )min
w

λ · WLPM w,P2( 􏼁 − (1 − λ) · WReturn w,P2( 􏼁,

(31a)

s.t.w ∈ Rn
,wTe � 1,w ≥ 0, (31b)

where
WLPM w,P2( 􏼁 � max

P∈P2

LPM(w, P), (32)

WReturn w,P2( 􏼁 � min
P∈P2

EP(r(w, 􏽥ξ)). (33)

In the following, we also try to derive the equivalent SDP
reformulations of WLPM(w,P2) defined by (32) and
WReturn(w,P2) defined by (33).

Theorem 3. WLPM(w,P2) defined by (32) is equal to the
optimal objective function value of the following SDP
problem:

min
p1 ,v,U{ }

p1 + vT
􏽢μ +〈U, 􏽢Σ〉, (34a)

s.t.
U + H

1
2

v − 2U􏽢μ + B1w + B2w( 􏼁

1
2
v− 2U􏽢μ + B1w + B2w( 􏼁

T
p1 + 􏽢μTU􏽢μ − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽ 0,

(34b)

U
1
2

(v − 2U􏽢μ)

1
2
(v − 2U􏽢μ)

T
p1 + 􏽢μTU􏽢μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽ 0. (34c)

Proof. According to (32), WLPM(w,P2) can be rewritten
as

− min
P∈P2

− EP (a − r(w, 􏽥ξ))+􏽨 􏽩. (35)

+us, we first study the equivalent SDP reformulation of
the following problem:

min
P∈P2

− EP (a − r(w, 􏽥ξ))+􏽨 􏽩, (36)

which can be rewritten as

minP − 􏽚
R2n

(a − r(w, 􏽥ξ))+􏽨 􏽩dP(􏽥ξ), (37a)

s.t.􏽚
R2n

dP(􏽥ξ) � 1, (37b)

􏽚
R2n

􏽥ξdP(􏽥ξ) � 􏽢μ, (37c)

􏽚
R2n

(􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)
T
dP(􏽥ξ) � 􏽢Σ. (37d)

We set the dual variable of constraint (37b) as p1, that of
constraint (37c) as v, and that of constraint (37d) as U. +e
dual reformulation of problem (37) can be written as follows:
max
p1 ,v,U{ }

− p1 − vT
􏽢μ − 〈U, 􏽢Σ〉, (38a)

s.t. p1 + vT􏽥ξ +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ)≥ (a − r(w, 􏽥ξ))+, ∀􏽥ξ ∈ R2n

.

(38b)

Obviously, there is no dual gap between problems (37) and
(38). +us, the two problems (37) and (38) have the same
optimal objective function value. We note that constraint (38b)
is equivalent to the following two inequalities:
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p1 + vT􏽥ξ +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ)≥ a − r(w, 􏽥ξ), ∀􏽥ξ ∈ R2n

,

(39)

p1 + vT􏽥ξ +(􏽥ξ − 􏽢μ)
TU(􏽥ξ − 􏽢μ)≥ 0, ∀􏽥ξ ∈ R2n

. (40)

+eequivalentmatrix inequality of (39) is (34b), and that of
(40) is (34c). +us, we complete the proof of this theorem. □

Theorem 4. WReturn(w,P2) defined by (33) is equal to the
optimal objective function value of the following SDP problem:

max
q1 ,h,Q{ }

− q1 − hT
􏽢μ − 〈Q, 􏽢Σ〉, (41a)

s.t.
H + Q

1
2

B1w + B2w + h − 2Q􏽢μ( 􏼁

1
2
B1w + B2w + h− 2Q􏽢μ( 􏼁

T
q1 + 􏽢μTQ􏽢μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≽ 0.

(41b)

Proof: WReturn(w,P2) defined by (33) can be rewritten as
follows:

min
P

􏽚
R2n

􏽥ξ
T
B1w + 􏽥ξ

T
B2w + 􏽥ξ

T
H􏽥ξ􏼒 􏼓dP(􏽥ξ), (42a)

s.t.􏽚
R2n

dP(􏽥ξ) � 1, (42b)

􏽚
R2n

􏽥ξdP(􏽥ξ) � 􏽢μ, (42c)

􏽚
R2n

(􏽥ξ − 􏽢μ)(􏽥ξ − 􏽢μ)
T
dP(􏽥ξ) � 􏽢Σ. (42d)

We denote the dual variable of constraint (42b) by q1,
that of constraint (42c) by h, and that of constraint (42d) by
Q. +e dual reformulation of problem (42) can be written as

max
q1 ,h,Q{ }

− q1 − hT
􏽢μ − 〈Q, 􏽢Σ〉, (43a)

s.t. 􏽥ξ
T
B1w + 􏽥ξ

T
B2w + 􏽥ξ

T
H􏽥ξ+ q1 + hT􏽥ξ

+(􏽥ξ − 􏽢μ)
TQ(􏽥ξ − 􏽢μ)≥ 0, ∀􏽥ξ ∈ R2n

.
(43b)

Similarly, there is no dual gap between problems (42)
and (43). +us, the two problems have the same optimal
objective function value. +e equivalent matrix inequality of
(43b) is (41b). Hence, we finish the proof of this theorem.

According to +eorems 3 and 4, we can obtain the
equivalent SDP reformulation of model RIML− defined by
(31), and the final formulation is as follows:

min
p1 ,v,U,q1 ,h,Q{ }

λ · p1 + vT
􏽢μ +〈U, 􏽢Σ〉􏼐 􏼑 +(1 − λ) · q1 + hT

􏽢μ +〈Q, 􏽢Σ〉􏼐 􏼑,

(44a)

s.t.(31b), (34b), (34c), (41b). (44b)
□

4. Empirical Experiments

To investigate the performance of our model RIML, we
conduct empirical experiments with comparison to models
RIML− , SIML, and EW, where EW is the equally weighted
model. We assume that an investor from the Chinese
Mainland wants to invest RMB in four main international
stock indexes, which are Nikkei 225 (Japan), Hang Seng
Index (Hong Kong), S&P 500 (USA), and FTSE 100 (UK).
Market prices and spot exchange rates are from the database
Wind (https://www.wind.com.cn/).We use weekly historical
returns from March 26, 2004, to July 23, 2021 (883 obser-
vations).+e in-sample period is set fromMarch 26, 2004, to
March 30, 2007, containing 150 historical return observa-
tions. +e out-of-sample period is set from April 6, 2007, to
July 23, 2021, containing 733 historical return observations.
All experiments are conducted using MATLAB R2018a on
an Intel Core i7 CPU 3.20GHz desktop with 32GB of RAM.
We use MATLAB interface YALMIP by Lofberg [17]. SDP
problems (RIML and RIML− ) are solved by the Mosek
package (https://www.mosek.com/), and linear program-
ming problem (SIML) is solved by the Gurobi package
(https://www.gurobi.com/).

Based on Delage and Ye [15], to compute the two pa-
rameters λ1 and λ2 of the ambiguity set of our model RIML
in (9), we need to build uncertainty sets of the returns of
assets and exchange rates. We first illustrate the sample-
based mean returns, standard deviations, and covariance
matrix of returns of assets and exchange rates during the in-
sample period. Table 1 shows sample-based mean returns
and standard deviations. From Table 1, we find that the
standard deviations of returns of assets are much larger than
those of exchange rates. Table 2 shows a sample-based co-
variance matrix. From Table 2, we find that the covariance of
returns of assets is also much larger than those of exchange
rates. +us, we can conclude that the stock market is more
volatile than the currency market. According to this ob-
servation, we assume that the size of the uncertainty set of
returns of assets is larger than that of exchange rates.
Specifically, we set the upper bound of returns of assets as
0.06 and the lower bound of those as − 0.06, whereas we set
the upper bound of returns of exchange rates as 0.02 and the
lower bound of those as − 0.02.

We conduct rolling forward experiments to assess the
out-of-sample performances of models RIML, RIML− ,
SIML, and EW. We want to set the benchmark return a as
the realized mean return of model RIML in the in-sample
period dynamically, and then LPM(w, P) in (6) is similar to
semivariance. However, if we do not know the benchmark
return a beforehand, we cannot compute the portfolio of
model RIML; thus, we cannot acquire the realized mean
return of model RIML in the in-sample period. Hence,
instead, we use the realized mean return of model EW in the
in-sample period to approximate that of model RIML in the
in-sample period dynamically. Specifically, when the real-
ized mean return of model EW is positive or zero, we set the
benchmark return a as three times of it. When the realized
mean return of model EW is negative, we set a as a third of it.
Now we describe the procedure of our rolling forward
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experiment as follows. First, we use the 150 return obser-
vations in the in-sample period from March 26, 2004, to
March 30, 2007, to compute the relevant parameters of
models RIML and RIML− , and determine the three optimal
portfolios of models RIML, RIML− , and SIML. According to
the realized returns of assets and exchange rates in the first
week during the out-of-sample period, we can compute the
realized returns of the above three optimal portfolios and the
equally weighted strategy. +en, we move the in-sample
period one week forward by adding the new week and delete
the first week. Based on the return observations in the new
in-sample period, we can also compute the three new op-
timal portfolios of models RIML, RIML− , and SIML. Using
the returns observations in the second week of the out-of-
sample period and the optimal portfolios obtained from the
in-sample period, we can also derive the realized returns of
the four models. We continue this procedure until July 23,
2021. Consequently, we obtain four return series with 733
realized returns of the four models. Based on these four
return series, we assess the realized performances of the four
models using various performance measures, which are
mean return, Sharpe ratio [18], downside Sharpe ratio [19],
upside potential and downside risk (UP) ratio [20], Mean/
VaR, Mean/CVaR, and the cumulative return at July 23,
2021, where VaR and CVaR are at the 0.95 level, Mean/VaR
denotes Mean divided by VaR, and Mean/CVaR denotes
Mean divided by CVaR. Mean return and the cumulative
return on July 23, 2021, are return measures. Sharpe ratio,
downside Sharpe ratio, UP ratio, Mean/VaR, and Mean/
CVaR are risk-adjusted return measures. According to
Sortino and Meer [20], the UP ratio can be defined as
follows:

UP �
1/K 􏽐

K
t�1 max 0, rt − ρt􏼂 􏼃

����������������������

1/K􏽐
K
t�1 max 0, ρt − rt􏼂 􏼃( 􏼁

2
􏽱 , (45)

where rt is the realized return of a portfolio at the t-th period
and ρt is a benchmark return at the same period,

t � 1, 2, . . . , K. Obviously, the UP ratio is an appropriate
measure to assess the performance of portfolios with
asymmetry distributions. Without loss of generality, in our
numerical experiments, we set that ρt � 0, t � 1, 2, . . . , K.

For a portfolio w, WLPM(w,P1) in (10) is much larger
than WReturn(w,P1) in (11). Hence, in order to balance
WLPM(w,P1) and WReturn(w,P1) and acquire a port-
folio that has a good performance in terms of risk-adjusted
return, we should set the risk aversion coefficient λ small. In
our empirical experiments, we consider various cases of λ,
which are λ � 0.03, λ � 0.02, λ � 0.01, λ � 0.009, λ � 0.008,
λ � 0.007, λ � 0.006, λ � 0.005, λ � 0.004, λ � 0.003,
λ � 0.002, and λ � 0.001. Table 3 shows the realized per-
formances of models RIML, RIML− , SIML, and EW in terms
of the above various performance measures when λ � 0.03.
Table 4 shows the result when λ � 0.02. Table 5 shows the
result when λ � 0.01. Table 6 shows the result when
λ � 0.009. Table 7 shows the result when λ � 0.008. Table 8
shows the result when λ � 0.007. Table 9 shows the result
when λ � 0.006. Table 10 shows the result when λ � 0.005.
Table 11 shows the result when λ � 0.004. Table 12 shows the
result when λ � 0.003. Table 13 shows the result when
λ � 0.002. Table 14 shows the result when λ � 0.001. In order
to test whether the Sharpe ratio of our model RIML out-
performs those of other models significantly, we employ a
significance testing method about Sharpe ratios proposed by
Jobson and Korkie [21]. +e corresponding one-sided p

values are presented in the column of the Sharpe ratio.
∗∗ ∗ , ∗∗ , and ∗ indicate that the Sharpe ratio of our
model RIML outperforms that of the corresponding model
significantly at the 1% level, 5% level, and 10% level, re-
spectively. For all cases of the risk aversion coefficient λ, our
model RIML consistently performs best in terms of return
and risk-adjusted return measures among the four models.
+e Sharpe ratio of our model RIML is significantly larger
than those of the other three models. Interestingly, we find
that the realized performances of models RIML− and SIML
are very similar. For all performance measures, our model

Table 2: Sample-based covariance matrix of returns of assets and exchange rates during the in-sample period.

Covariance N225 HSI SPX FISE JPYCNY HKDCNY USDCNY GBPCNY
N225 4.9167e − 4
HSI 2.1037e − 4 4.1199e − 4
SPX 1.6326e − 4 1.3223e − 4 2.1912e − 4
FISE 1.8179e − 4 1.2539e − 4 1.5819e − 4 2.1408e − 4
JPYCNY − 1.8237e − 5 5.1719e − 5 1.5598e − 6 − 3.4262e − 5 1.2603e − 4
HKDCNY 2.6835e − 7 − 3.6671e − 6 6.0277e − 8 2.2379e − 7 2.1178e − 6 2.4194e − 6
USDCNY − 6.6258e − 8 − 5.0596e − 6 − 1.4664e − 6 1.5952e − 7 3.3600e − 7 2.4910e − 6 3.1682e − 6
GBPCNY − 4.2339e − 6 7.0252e − 5 1.7282e − 5 − 3.3184e − 5 6.9690e − 5 1.5398e − 6 8.5962e − 7 1.3084e − 4

Table 1: Sample-based mean returns and standard deviations of assets and exchange rates during the in-sample period.

Asset Mean Standard deviation Currency Mean Standard deviation
N225 0.002887 0.022174 JPYCNY − 0.001154 0.011226
HSI 0.003423 0.020297 HKDCNY − 0.000474 0.001555
SPX 0.001875 0.014803 USDCNY − 0.000458 0.001780
FISE 0.002670 0.014631 GBPCNY 0.000180 0.011438
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Table 3: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.03.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001705 0.059488 0.058076 0.514327 0.037829 0.001223 3.351051
RIML− 0.001370 0.047292∗∗ (0.022363) 0.046309 0.509334 0.029937 0.000975 2.504079
SIML 0.001348 0.046351∗∗ (0.016264) 0.045297 0.506573 0.029458 0.000949 2.359805
EW 0.000742 0.029613∗∗ (0.049575) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 4: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.02.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001726 0.060390 0.059258 0.519263 0.038103 0.001242 3.475284
RIML− 0.001295 0.044441∗∗∗ (0.004550) 0.043359 0.504967 0.028298 0.000911 2.282259
SIML 0.001290 0.044243∗∗∗ (0.004131) 0.043196 0.504939 0.028195 0.000907 2.286590
EW 0.000742 0.029613∗∗ (0.046820) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 5: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.01.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001703 0.059507 0.058433 0.518954 0.037254 0.001223 3.565365
RIML− 0.001283 0.043964∗∗∗ (0.004513) 0.042915 0.505353 0.028044 0.000902 2.265623
SIML 0.001286 0.044053∗∗∗ (0.004818) 0.043006 0.505152 0.028105 0.000903 2.245739
EW 0.000742 0.029613∗ (0.052438) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 6: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.009.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001699 0.059338 0.058265 0.518775 0.037128 0.001220 3.597911
RIML− 0.001283 0.043950∗∗∗ (0.004719) 0.042902 0.505258 0.028037 0.000902 2.256801
SIML 0.001280 0.043853∗∗∗ (0.004732) 0.042812 0.504836 0.027976 0.000899 2.224514
EW 0.000742 0.029613∗ (0.053487) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 7: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.008.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001693 0.059139 0.058068 0.518561 0.037014 0.001216 3.623607
RIML− 0.001285 0.044023∗∗∗ (0.005261) 0.042975 0.505304 0.028084 0.000903 2.247054
SIML 0.001271 0.043547∗∗∗ (0.004598) 0.042515 0.504746 0.027783 0.000893 2.207364
EW 0.000742 0.029613∗ (0.054733) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 8: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.007.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001688 0.058926 0.057856 0.518395 0.036891 0.001211 3.620472
RIML− 0.001290 0.044194∗∗∗ (0.006244) 0.043147 0.505530 0.028196 0.000907 2.246750
SIML 0.001281 0.043870∗∗∗ (0.005724) 0.042836 0.505163 0.027993 0.000900 2.222131
EW 0.000742 0.029613∗ (0.056102) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 9: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.006.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001683 0.058726 0.057660 0.518251 0.036779 0.001207 3.611440
RIML− 0.001290 0.044200∗∗∗ (0.006894) 0.043154 0.505624 0.028203 0.000907 2.236750
SIML 0.001287 0.044086∗∗∗ (0.006774) 0.043048 0.505264 0.028130 0.000904 2.235418
EW 0.000742 0.029613∗ (0.057409) 0.027876 0.470055 0.019598 0.000605 1.826263
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RIML outperforms models RIML− and SIML. +e experi-
mental result demonstrates the benefit of accounting for
moments ambiguity in a robust international portfolio
optimization model using first-order LPM as the risk
measure. For all cases of the risk aversion coefficient λ, the
model EW consistently has the worst performance in terms
of return and risk-adjusted return measures. DeMiguel et al.
[22] find that, in their numerical experiments, the equally
weighted model EW outperforms sample-based mean-var-
iance strategy and various extensions of sample-basedmean-
variance strategy, which are designed to deal with the
problem of estimation error. Hence, the result that our
model RIML significantly outperforms the model EW is very
encouraging. Our empirical results show that when λ is set
small, the variation of λ does not change the performances of
models RIML, RIML− , and SIML significantly.

5. Conclusions

In this paper, we propose a robust international portfolio
optimization model with worst-case LPM and mean return.
In this model, we assume that the distributions and the first-
and second-order moments of distributions of future returns
of assets and exchange rates are ambiguous. We reformulate
the proposed model into an equivalent SDP problem which
is computationally tractable. For investigation of the per-
formance of our proposed model, we also give two
benchmark models. In the first benchmark model SIML, we
use historical returns to form approximations of the dis-
tributions of future returns and build a scenario-based in-
ternational portfolio optimization model under these
approximations of distributions. In the second benchmark
model RIML− , we assume that the distributions of future

Table 14: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.001.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001654 0.057576 0.056534 0.517410 0.036149 0.001183 3.542119
RIML− 0.001341 0.045846∗∗ (0.020987) 0.044856 0.507387 0.029304 0.000942 2.287160
SIML 0.001351 0.046203∗∗ (0.024616) 0.045205 0.507646 0.029533 0.000949 2.288830
EW 0.000742 0.029613∗ (0.065501) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 10: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.005.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001678 0.058527 0.057466 0.505743 0.036670 0.001203 3.597434
RIML− 0.001291 0.044209∗∗∗ (0.007266) 0.043167 0.505743 0.028213 0.000907 2.236180
SIML 0.001295 0.044358∗∗∗ (0.007821) 0.043314 0.505397 0.028301 0.000910 2.249519
EW 0.000742 0.029613∗ (0.058741) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 11: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.004.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001672 0.058311 0.057255 0.517977 0.036551 0.001198 3.582173
RIML− 0.001298 0.044450∗∗∗ (0.008215) 0.043414 0.506065 0.028373 0.000912 2.245132
SIML 0.001318 0.045132∗∗ (0.010416) 0.044098 0.506448 0.028813 0.000926 2.281277
EW 0.000742 0.029613∗ (0.060217) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 12: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.003.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001667 0.058083 0.057032 0.517816 0.036426 0.001194 3.552670
RIML− 0.001318 0.045117∗∗ (0.011217) 0.044097 0.506885 0.028816 0.000927 2.273388
SIML 0.001344 0.045975∗∗ (0.015369) 0.044981 0.507586 0.029386 0.000945 2.307677
EW 0.000742 0.029613∗ (0.061814) 0.027876 0.470055 0.019598 0.000605 1.826263

Table 13: Realized performances of models RIML, RIML− , SIML, and EW according to various performance measures when λ � 0.002.

Mean Sharpe ratio Downside Sharpe UP ratio Mean/VaR Mean/CVaR Cumulative return
RIML 0.001661 0.057843 0.056797 0.517629 0.036296 0.001189 3.556490
RIML− 0.001337 0.045719∗∗ (0.016084) 0.044725 0.507588 0.029223 0.000940 2.293018
SIML 0.001335 0.045646∗∗ (0.016097) 0.044649 0.507032 0.029169 0.000938 2.287590
EW 0.000742 0.029613∗ (0.063534) 0.027876 0.470055 0.019598 0.000605 1.826263
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returns are ambiguous, but the first- and second-order
moments of distributions are known beforehand. We also
reformulate this model into an equivalent SDP problem. We
conduct empirical experiments in a rolling forward way
using the return measures and various risk-adjusted return
measures to compare the out-of-sample performances of the
four models RIML, RIML− , SIML, and an equally weighted
model EW. +e result demonstrates the superiority of our
model RIML over other models. It shows that investors can
get benefits when accounting for the ambiguity of the first-
and second-order moments. It also verifies that robust
models outperform scenario-based model and equally
weighted model.
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