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In this work, we consider the stochastic fractional-space Kuramoto-Sivashinsky equation using conformable derivative. The
Riccati equation method is used to get the analytical solutions to the space-fractional stochastic Kuramoto-Sivashinsky equation.
Because this equation has never been examined with space-fractional and multiplicative noise at the same time, we generalize
some previous results. Moreover, we display how the multiplicative noise influences on the stability of obtained solutions of the

space-fractional stochastic Kuramoto-Sivashinsky equation.

1. Introduction

Fractional differential equations (FDEs) have become the
subject of many investigations due to their widespread oc-
currence in numerous applications in finance, chemistry,
control theory, engineering, biology, physics, systems’ identi-
fication, and signal processing. In the literature, fractional
derivatives and integrals are discussed in numerous ways, for
instance, the Caputo, Riesz, Grunwald-Letnikov, and Rie-
mann-Liouville. The majority of them are differentiated by
fractional integrals, and as a result, they obtain nonlocal
properties from integrals. Heredity and nonlocality are well-
known features of these ideas [1], which are important in many
domains and are not precisely equal to old style New-
ton-Leibniz calculus. These derivatives no longer follow the
Chain Rule, the Product Rule, or the Quotient Rule for de-
rivative operations. Recently, a few authors introduced the
concept of local fractal derivatives (LFD). Kolwankar and
Gangal [2] developed a kind of LED by allowing an upper or
lower limit for the Riemann-Liouville derivative technique.

While, Khalil et al. [3] proposed a new fundamental idea and
kind of fractal derivative LFD called conformable local fractal
derivative (CFD), whose major attributes are similar to Newton
derivative and can be used to solve local fractal-type differential
equations more efficiently.

Many papers have been written about some features of
fractional differential equations, such as methods for explicit
and numerical solutions, the existence and uniqueness of
solutions, and solution stability [4-6]. One of the most
significant topics in FDE:s is the search for the exact solutions
of FDEs. Therefore, many efficient and powerful approaches
have been presented to get the exact solutions of FDEs, such
as the fractional Riccati subequation method, the Adomian
decomposition method, the (G'/G)-expansion method, the
exp (—¢ (¢))-expansion method, the tanh-sech method, the
modified Kudryashov method, the fractional modified trial
equation method, the Jacobi elliptic function method, and
the sine-cosine method [7-29].

On the contrary, stochastic differential equations (SDEs)
are very important for modeling many physical phenomena in
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different areas including environmental sciences, physics,
oceanography, engineering, and biology [30-32]. In particular,
SDEs are used to explain all dynamical systems in which
quantum effects are either ignored or can be considered as
perturbations. They can be thought of as an extension of
dynamical systems theory to model with noise. This is a sig-
nificant extension since real systems cannot be entirely isolated
from their environments, and therefore, this external stochastic
effect is always present.

The importance of investigating FPDE models with
stochastic impacts appears to be greater. To the best of my
knowledge, very little study has been done to find exact
solutions to fractional SPDEs, for example, [33-37].
Therefore, it is very important to consider FDEs with some
random force. Here, we consider the following the space-
fractional ~stochastic Kuramoto-Sivashinsky equation
(SFSKSE) in the sense of Atangana’s conformable derivative:

dy +[yDiy + pDy +rD S yldt = py df, (1)

where y(x,t) is a real stochastic function, D} is a con-
formable derivatives [3] of order «, p and r are nonzero real
constants, f(t) is the Brownian motion and it relies only on
t, and p is a noise intensity.

The Kuramoto-Sivashinsky (KS) (1), with p = 0 and & = 1,
can be used to demonstrate long waves at the interface between
two viscous fluids and unstable drift waves in plasmas, as well as
Benard convection in an elongated box in one space dimension.
Also, it is used to control surface roughness in sputtering-grown
thin solid films, amorphous film generation, and step dynamics
in epitaxy. Many authors have been obtained the exact solutions
of KS via various methods such as the truncated expansion
method [38], the modified polynomial expansion method
[39-42], the tanh method, and the extended tanh method [43],
the (G'/G)-expansion [44], the perturbation method [45], the
tanh-coth method [46, 47], the homotopy analysis method [48],
and the Painlevé expansions methods [49]. The exact solutions
of SFSKSE (1) have been discussed in [50, 51].

Our aim of this study is to employ the Riccati equation
method to establish the analytical solutions of SFSKSE (1).
The obtained solutions given here generalize previous re-
search, such as those discussed in [43, 47]. The influence of
multiplicative noise on these solutions is also explored. This
is the first publication that we are aware of which has found
the exact solution to SFSKSE (1) in the sense of Atangana’s
conformable derivative.

This study will be formatted as follows. We give the def-
inition of conformable fractal derivative (CFD) and Brownian
motion in Section 2. In Section 3, the wave equation for
SFSKSE (1) is attained, while in Section 4, we use the Riccati
equation method to get the analytical stochastic solutions of
SESKSE (1). In Section 5, we show several graphs to observe the
influence of the multiplicative noise on the SFSKSE solutions.
Finally, we give the conclusions of this study.

2. Preliminaries

In this section, we state the definition of the CFD and
Brownian motion. Also, we state some features of the CFD.
First, we define the CD as follows.
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Definition (cf. [3]). Define the CFD of ¢: (0,00) — R
of order « € (0,1] as

(/)(x + lef"‘) - gb(x). 2)

K

Dip(x) = lim0

Theorem 1. Let ¢, g: (0,00) — R be differentiable and,
also, a be differentiable functions; then, the next rule holds:

2:(¢9)(x) = x"""g ()¢ (9 (x)). (3)
In the following some features of the CED,

(1) D%l (x) +c,g9(x)] =€, D (x) + ¢, D59 (x), ¢,
c, eR

(2) 2%[C] =0, C is a constant
(3) DL [xV] =yx'"% yeR
(4) D%g(x) = x'"*dg/dx

In the next definition, we define Brownian motion [3(t).

Definition 1. Stochastic process {(t)},, is called a Brow-
nian motion if it satisfies

(1) p(0) =0
(2) B(t), t =0, is continuous function of ¢
(3) B(t) — B(s) is independent for s< ¢t

(4) B(t) — B(s) has a Gaussian distribution with mean
0 and variance t — s

3. Wave Equation for SFSKSE

To get the wave equation of SESKSE (1), we utilize the
following wave transformation:

v(x,t) = ¢(n)e(Pﬁ(t)_1/2P2t), n= %x“ + ct, (4)

where ¢ is the deterministic function. Differentiating (4)
with regards to ¢ and x, we obtain

dy = <c¢>’ + %pz(/) - %pch)e (pB(O-112pt) 1,

+ poe (pB(H-1/2pt) B,
(5)

D%y = A e lPPO-#1], DMy = 22/ e [PPO],
D3‘xw - /\(/)”'e(Pﬁ(t)—l/szt), D4a‘/’ _ A4¢”'e(p[5(t)—1/2p2t))

where +1/2p?¢ is the Itd correction term. Inserting (4) into
(1) and using (5), we have

T¢ + gl e (PPO-120) 4 5 L 5" = 0, (6)

where we put € =c/A, p = Ap, and 7 = A’r. Taking expec-
tation on both sides, we have

&' +¢g'e E(F ) 1 B 479 =0, (7)
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where ¢ is 2the deterministic function. We note that
E (ePP1)) = ¢P" /2 where B (t) is Normal standard distribution
and p is a real constant. Now, (7) has the form

o' +7¢¢ + o +qp = 0. (®)

Integrating (8) and putting the constant of integration
equal zero, we obtain

7¢ + g + %pz +T¢ = 0. ©)

4. The Analytical Solutions

To find the solutions of (9), we apply the Riccati equation
method. Consequently, we acquire the analytical solutions of
SFSKSE (1). Assume that the solution of SFSKSE (9) is

N
¢= Z agy’, (10)
=0
where y solves
! 2
X =x +b, (11)

where b is a constant will be determine later. Balancing ¢*
with ¢""" in (9), we can calculate the parameter N as follows:

x10°
4
g
<
:>
o
R=t
=N
3
x10'6
1
=0
g
g
\: _1
L2
E
35) -2
-3
10 L
10
5
Pace.,
X = 2 TINe
p=3,a=1
N =N +3. (12)
Hence,
N =3. (13)
From (13), we can rewrite (10) as
¢:a0+a1)(+a2)(2+a3x3. (14)

Inserting (14) into (9) and using (11), we have the next
polynomial with degree 6 of y as

(607013 + %ag >X6 +(247a, + ayas)x’,
+(67a1 +3pas + 54btas +a,a; + %ag >X4’
+(2pa, +40b7a, + a,a, +a; + aya; )y’
+(1~7a1 +8bFa, +63a;7b” + %af +¢a, +aya, + 3a1a3b>)(2,
+ (16a2b27 +2a,bp+aya, +<ca, ))(,

+ (”c'ao +2a,b°F + 6a;b°F + a,bp + aé) =0.
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FiGure 2: The plots of (27) with « = 0.5.

Equating each coefficient of Xk (k=6,54,3,2,1,0) by
zero, we get the following set of algebraic equations:
_ 1,

607a; + —a; = 0,

2
24ra, + aya; = 0,

— 1
67a, + 3pa, + 54bfa, + a,a; + Eag =0,
2pa, + 40bfa, + a,a, +¢a; + aya; = 0,

~ 1 ~

pa, + 8bra, + 63613?’172 + Eaf +Ca, + aya, + 3a,a;b = 0,

16a,b°7 + 2a,bp + aga, +<a, =0,

(16)

Cay +2a,b°F + 6a;b°F + a,bp + aj = 0.
(17)
Solving these equations by using Mathematica, we get

the following cases.
First case is

60p

a, = -G, a; = —=—
0 > 19

, 4, =0, a; = —1207, andb=0. (18)

Since b = 0, then the solution of (11) is
-1

x(m) =—.

(19)
n

According to (14), the corresponding solution of trav-
elling wave (9) is

60p
b(n) =T+ 9";1*1 + 1207,

T (20)

Hence, the analytical solution of SFSKSE (1) is

v, (x,t) =e (pB(1)-1/2p%))

[ _ 6013()\ . )“ ~<A . )3]
cl—c+——| —x +ct + 1207 —x~ +ct .
19 \« o

(21)
Second case is

60D p
a,=-¢, a, = —1—9‘0, a, =0, a; =-1207, andb = %

(22)
Since b = p/767, then the solution of (11) is
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P if b= p/767 >0i.e., p/T>0
X(ﬂ)=\/Etan(\/En)ifb=7%7>0 (23) ' pI76T> 0l piT>0) or
) = (pﬁ(t)—l/szt)
or yslxt) =e
() = —V=btanh (V=B ) if b = £-<0 (24) - 60p A o
xin an 1 767 = . —c+1—9\/—_btanh V-b pr +ct (28)
Then, the solution of (9) in this case is A
~ ~ 3 3 a
6 () = —E—610—9p\/5tan(\/511) B 1207(\/5)3&“13(\/5’1) +1207 (V=b )’tanh (\/—_b(&x +ct>)]
(25)  if b= p/767 <0 (i.e p/7 <0).
it b=7p/767>0 or Third case is
_ 60D 270p -11p
¢(n) = +1—9P V-btanh (V-b17) (26) a,=-¢, a, = Z—ng, a, =0, a; =-1207, andb = 767‘0.
+ 1207 (Vb )’tanh’® (V=b 1) (29)
if b = p/767 <. Since b = —11p/767, then the solution of (11) is
Therefore, by using (4), the analytical solution of SESKSE ~11p
Q) is x(n) = Vbtan (Vb )if b = 0 (30)

v, (x,1) = ¢ (PPO-112¢) [—E - 610—9‘0 Vb tan( Vb <£x“ + ct))

—120’1’(\/5)3tan3( Vb <§x“ + ct))]

(27)

or

x(n) = —V=btanh (V-by)if b = _71615<o. (31)

Hence, the solution of (9) is
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¢(n)=-—<+ —zigp \/Etan(\/l;r]) - 1207 (Vb )*tan’ (\/1311)
(32)
if b=—11p/767 >0 (i.e., B/F<0) or

270D
6 () = ¢~ 2P \ptanh (Vo )
19
(33)
+ 1207 (V=b)*tanh® (V=b )
if b= —11p/767 < Oi.e., p/F >0).
Thus, the analytical solution of SFSKSE (1), by using (2),
is

v, (x,t) = ¢ (PPO-112¢) [—5—6;)—91) Vb tan( Vb (%x“ +ct> )

—120?(\/13)3tan3<\/E(%x“+ct)>]
(34)
if b=-11p/767>0 or

vs(x,t) =e (pB(D-1/2p%t)

_ 60p A,
-[—C+F\/—_btanh<\/—_b(ax +ct)> (35)

+1207(\/—_b)3tanh3< V=b (%x“ + ct))]
if b = ~11p/767 > 0.

Remark 2. If we put p = 0 and & = 1 in equations (27), (28),
(34), and (35), then we get the same solutions of equation (1)
that are stated in [43, 47].

5. The Influence of Noise on the
SFSKSE Solutions

Here, we show the influence of multiplicative noise on the
solutions of SFSKSE (1). Fix the parameters ¢ =7 = p = —1.
We display some of a graphical representation for various
values of p (noise intensity). To plot the solution y, (¢, x) and
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¥, (t,x) defined in equations (27) and (35), we use the
MATLAB tool as follows.

In Figures 1-4, the surface is not flat when the noise
intensity is equal to zero, as shown in the first graph in the
tables. When noise appears and its strength grows
(p = 1,2,3), the surface is becoming more and more flat
after minor transit behaviors. Due to the multiplicative noise
effects, this implies that the solutions of SFSKSE (1) are
stable.

6. Conclusions

We have provided different analytical fractional-space sto-
chastic solutions of SFSKSE (1) via the Riccati equation
method in this study. In addition, some results such as those
presented in [43, 47] were expanded and improved. These
types of space-fractional stochastic solutions can be
employed to describe a wide range of fascinating and dif-
ficult scientific phenomena. In the end, we applied the
MATLAB package to produce some graphical representa-
tions to show how the stochastic term affects SESKSE (1)
solutions.
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