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In the utilized analysis, we consider the inverse coe�cient problem of recovering the time-dependent di�usion coe�cient along
the solution of the conformable time-di�usion equation subject to periodic boundary conditions and an integral over-posed data.
Along with this, the conformable time derivative with order 0< η≤ 1 is de�ned in the sense of a limit operator.�e formal solution
set for the considered inverse coe�cient conformable problem is acquired via utilizing the Fourier expansion method. Under
some conditions on the data and applicability of the Banach theorem, we insured the existence and uniqueness of the regular
solution. Continuous dependence of the solutions set q(t), u(x, t){ } in the given data is shown. Couples of illustrative examples in
the form of data results and computational �gures are also utilized. Future remarks, highlights, and work results are epitomized in
the penultimate part. Finally, some latest used and focused references are given.

1. Prefatory Introduction

In all branches of applied mathematics, a forward problem is
a problem of modeling a few physical �elds, phenomena, or
processes. �e goal of solving a forward problem is to derive
a function that describes its physical process. During the last
decades, the mathematical construction based on the in-
version of measurements which is named an inverse
problem has been growing in interest. �ese problems form
a multidisciplinary area joining applications of mathematics
with many branches of sciences. For example, here, we try to
list it brie�y so that we do not prolong the reader and do not
increase the size of the paper as much as possible, so the
reader can refer to the references mentioned in this article to
discover more. �e authors of [1, 2] have discussed the
applicability of the ICP in the fractional di�usion area with

several theoretical results. �e authors of [3] have deter-
mined the lost source term coe�cients in the inverse DFM.
�e authors of [4] have studied the e�ect of the inverse
Sturm-Liouville fractional problems.�e authors of [5] have
utilized a complete study on the �nal overdetermination for
the inverse DFM.

Many cosmopolitan researchers are interested in the
inverse problem for DFM, integrodi�erential equations, and
heat equations where the time- or space-fractional deriva-
tives are Riemann, Caputo, Fabrizio, tempered Caputo, or
Atangana-Baleanu approaches as follows. �e authors of [6]
have utilized several inverse integrodi�erential equations
that involved two arbitrary kernels applying the Caputo
fractional tempered derivative. �e authors of [7] have
discussed the ICP for DFM with nonlocal BCs. �e authors
of [8] have utilized the ICP for a multiterm DFM with
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nonhomogeneous BCs. 'e authors of [9] have proved the
stability analysis and regularization in the ICP for DFM.'e
authors of [10] have discussed the uniqueness of the ICP for
a multidimensional DFM. 'e authors of [11] have exam-
ined the inverse heat equation in a linear case that involved
the Riemann fractional derivative. 'e authors of [12]
presented the inverse DFM equation in its linear version that
involved the Fabrizio fractional derivative together with an
application on the Sturm-Liouville operator. Such derivative
approaches can formulate various physical phenomena, for
instance, Schrodinger equation [13, 14], delay differential
models [15], telegraph equation [16], heat and fluid flows
model [17], Neumann DFM [18].

Conformable calculus proposed by [19] and general-
ized by [20] appears in various areas of applied sciences,
abstract analysis, control, engineering, and biology as
stellar mathematical agents to characterize the memory
and hereditary behaviors of many processes and sub-
stances. It has been successfully applied in various areas of
science and engineering (here, we try to list it briefly so
that we do not prolong the reader and do not increase the
size of the paper as much as possible, so the reader can
refer to the references mentioned in this article to discover
more) as in Newton mechanics [21], in solution of Bur-
gers’ model [22], in time scales control problem [23], and
in traveling wave field [24].

It was applied to modeled diverse nonlinear con-
formable time-partial differential equation models with
priority given to providing a more comprehensive expla-
nation of chaos, dynamic systems, and the pattern of state
change over time. Today, the notion of the CTD is one of
the significant tools that appear in applied mathematics due
to its suitability for the modulation of numerous real-world
problems than the vintage derivative. 'ereafter, the em-
ploy of the CTD has acquired remarkable refinement and
awareness in many sections of engineering and theoretical
sciences.

Parameter identification shape OPD plays an important
role in applied mathematics, engineering, and physics. 'e
problem of recovering the diffusivity was studied by many
researchers as follows. 'e authors of [25] have determined
unknown source coefficients in the (space-time) DFM. 'e
authors of [26] have exercised the quasi-boundary method
for ICP related to the DFM.'e authors of [27] have utilized
the ICP related to the degenerate parabolic model in
L2-space. 'e authors of [28] have presented several theo-
retical and experimental results of the DFM. 'e authors of
[29] have tested the variational methods in the case of ICP
for the Sturm-Liouville fractional problem. 'is work
contributes to giving a solution set of an ICP for DFM
involving CTD from an integral OPD specified condition
together with periodic BCs. Anyhow, in the rectangle
D � (0, 1) × (0, T], let us consider the general one-dimen-
sional CTDE given by the subsequent formulation

T
η
t u(x, t) � q(t)uxx(x, t) + f(x, t), (1)

and subject to the subsequent constraints

u(0, t) � u(1, t),

ux(1, t) � 0,

u(x, 0) � ϕ(x),

⎧⎪⎪⎨

⎪⎪⎩
(2)

where (x, t) ∈ D, t ∈ (0, T], x ∈ (0, 1), f ∈ C(D⟶ R),
ϕ ∈ C((0, 1)⟶ R), and q ∈ C((0, T]⟶ R). Hither, T

η
t

stands for the CTDwith order η ∈ (0, 1], q(t) is the diffusion
coefficient, and f(x, t) is the source term map.

As an upshot, if all functions f(x, t), q(t), and ϕ(t) are
known, then the ICP (1) and (2) are mentioned as a direct
problem. Anyhow, the ICP utilized here is to determine the
coefficient diffusion term q(t) in (1) and (2) from an integral
OPD condition given by

k(t)u(0, t) + 􏽚
1

0
u(x, t)dx � E(t), (3)

with k(t) � θ + βq− c(t) where β, c, θ> 0 are coefficients
and are considered for unique solvability of the ICP,
and E is a fully continuous map. 'e veracity of this type
of ICP arises in the mathematical figuration of the
technological process of external guttering applied
[32, 33].

, the CTD and the conformable integral with order-
η ∈ (0, 1]are as

T
η
t u(x, t) � lim

ε⟶0

u x, t + εt1− η
􏼐 􏼑 − u(x, t)

ε
,

I
η
0u(x, t) � 􏽚

t

0

u(x, ξ)

ξ1− η dξ.

(4)

After the formulation of the problem and the formation
of some basic related results in the prefatory introduction,
the rest of the utilized analysis is epitomized as follows:

(i) Phase 1: some requisite results related to the spectral
problem including the eigenfunctions and eigen-
values of the spectral and its conjugate problem are
recalled in section 2

(ii) Phase 2: unique existence of a regular solution is
proved in section 3

(iii) Phase 3: continuous dependence of the solution on
the given data is proved in section 4

(iv) Phase 4: illustrative application examples are uti-
lized in section 5

(v) Phase 5: work results, highlights, and future work
are presented in section 6

2. Spectral Problem and Series Representation

'is section is intended to expand the solution of an ICP for
the CTDE insight of BCs and an integral OPD constraint.
'e solution-based approach and its theoretical concept are
derived with consistency from the FEM.

Let us fundamentally consider the subsequent spectral
problem on 0≤x≤ 1:
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S″(x) + λS(x) � 0,

S(0) � S(1),

S′(1) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Certainty, problem (5) is well-known in [36] as the
auxiliary spectral problem for solving a boundary value
problem. Anyhow, (5) has the eigenvalues and the corre-
sponding eigenfunctions as

λn � (2nπ)
2
, n � 0, 1, 2, . . . , (6)

S0(x) � 2,

S2n− 1(x) � 4 cos(2πnx), n � 1, 2, . . . ,

S2n(x) � 4(1 − x)sin(2πnx), n � 1, 2, . . . .

⎧⎪⎪⎨

⎪⎪⎩
(7)

'e set of eigenfunctions Sn􏼈 􏼉
∞
n�1 forms a basis for

L2[0, 1] space, and the adjoint problem to (5) has the
subsequent form on 0≤ x≤ 1

Z ″(x) + λZ(x) � 0,

Z(0) � 0,

Z′(0) � Z′(1) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

'e system of eigenfunctions and associated functions
of(8)is denoted by

Z0(x) � x,

Z2n− 1(x) � x cos(2πnx), n � 1, 2, . . . ,

Z2n(x) � sin(2πnx), n � 1, 2, . . . .

⎧⎪⎪⎨

⎪⎪⎩
(9)

As an upshot, (6) and (7), and (9) form a biorthonormal
system on [0, 1]. 'e coming lemmas are important for the
mathematical analysis of the ICP.

Lemma 1. If g ∈ C3[0, 1] satisfies the constraints
g(0) � g(1), g′(1) � 0, and g″(1) � g″(0), then

􏽘

∞

n�1
λn g2n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ c1gC3 ,

􏽘

∞

n�1

��
λn

􏽰
g2n− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ c2gC3 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

for some constants c1 and c2 with gn � 􏽒
1
0 g(x)Zn(x)dx.

Proof. 'e subsequent equality

λng2n � −
1
��
λn

􏽰 􏽚
1

0
g″(x)cos

��

λn

􏽱

x􏼒 􏼓dx, (11)

holds by applying three times parts integrations and that
too g(0) � g(1) and g″(1) � g″(0). Indeed, the equality

��

λn

􏽱

g2n− 1 � −
1
λn

􏽚
1

0
xg″(x) + 2g′(x)􏼂 􏼃cos

��

λn

􏽱

x􏼒 􏼓dx, (12)

holds by applying two times parts integrations and that
too g(0) � g(1) and g′(1) � 0. Using the Bessel and
Schwarz inequalities for (11) and (12), we get (10). □

Lemma 2. If qj(t) ∈ C[0, T] satisfies the constraints
0< a≤ qj with j � 1, 2, then for n ∈ N and ∀t ∈ [0, T], we
take out the inequality

e
− λn 􏽒

t

0
sη− 1q1(s)ds

− e
− λn 􏽒

t

0
sη− 1q2(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
1
ae

q1 − q2
����

����C
. (13)

Proof. By utilizing the mean value theorem results on e− x,
one gained ∃ϑ with λn 􏽒

t

0 sη− 1q1(s)ds≤ ϑ≤ λn 􏽒
t

0 sη− 1q2(s)ds

such that

e
− n 􏽒

t

0
sη− 1q1(s)ds

− e
− n 􏽒

t

0
sη− 1q2(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� e
− ϑ λn 􏽚

t

0
s
η− 1

q1(s) − q2(s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ λn

t
η

η
e

− λnatη/η
q1 − q2

����
����C

.

(14)

At last, by mention xe− bx ≤ 1/be with x≥ 0 and
b � cst> 0, we obtain the (13). □

3. Existence-Uniqueness of Solution

'is section is intended to justify the existence of the
classical solution set q(t), u(x, t)􏼈 􏼉 that is to show under
constraints (2) and (3), and q(t)> 0 that q(t) ∈ C[0, T] and
u(x, t) ∈ C2,1(D)∩C1,0(D). 'e derivation-based approach
depends on the contraction approach and the Banach fixed
point theorem.

First, according to our classical technique of the FEM, we
determine the solution u(x, t) of (1) and (2) as in the
subsequent form

u(x, t) � ϕ0 + 􏽚
t

0
s
η− 1

f0(s)ds􏼨 􏼩S0(x) + 􏽘
∞

n�1
ϕ2ne

− λn 􏽒
t

0
sη− 1q(s)ds

+ 􏽚
t

0
s
η− 1

f2n(s)e
− λn 􏽒

t

s
yη− 1q(y)dy

ds􏼨 􏼩S2n(x)

+ 􏽘
∞

n�1

ϕ2n− 1 − 4πnϕ2nt( 􏼁e
− λn 􏽒

t

0
sη− 1q(s)ds

+ 􏽚
t

0
f2n− 1(s) − 4πnf2n(s)(t − s)( 􏼁s

η− 1
e

− λn 􏽒
t

s
yη− 1q(y)dy

ds

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

S2n− 1(x),

(15)

where the coefficient ϕn and the function fn(t) are given as
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ϕn � 􏽚
1

0
ϕ(x)Zn(x)dx,

fn(t) � 􏽚
1

0
f(x, t)Zn(x)dx.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

Now, let us drive the solution of the ICP from the OPD
specified condition (3) as in the next assumptions

F[k(t)] � k(t), (17)

F[k(t)] �
1
Φ(t)

2 ϕ0 + 􏽚
t

0
s
η− 1

f0(s)ds􏼠 􏼡

+
2
π

􏽘

∞

n�1

1
n

ϕ2ne
− λn 􏽚

t

0
s
η− 1

q(s)ds
+ 􏽚

t

0
s
η− 1

f2n(s)e
− λn 􏽚

t

s
y
η− 1

q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
− E(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)

Φn(t) � − 2 ϕ0 + 􏽚
t

0
s
η− 1

f0(s)ds􏼠 􏼡 + 4 􏽘
∞

n�1
4πntϕ2n − ϕ2n− 1( 􏼁e

− λn 􏽒
t

0
sη− 1q(s)ds

􏼨

+ 􏽚
t

0
4πnf2n(s)(t − s) − f2n− 1(s)( 􏼁s

η− 1
e

− λn 􏽒
t

s
yη− 1q(y)dy

ds􏼩,

(19)

q(t) �
β

k(t) − θ
􏼢 􏼣

1/c

. (20)

Theorem 1. Under the subsequent constraints,

(1) ϕ ∈ C3[0, 1] such that

(i) ϕ(0) � ϕ(1), ϕ′(1) � 0, and ϕ″(1) � ϕ″(0)

(ii) ϕ2n ≥ 0 and ϕ2n− 1 ≤ 0 with n � 1, 2, . . . and
ϕ0 + 2ϕ1 < 0

(2) f ∈ C(D) and f ∈ C3[0, 1] for arbitrarily fixed
t ∈ [0, T] such that

(i) f(0, t) � f(1, t), fx(1, t) � 0, and fxx(0, t) �

fxx(1, t)

(ii) f2n(t)≥ 0 and f2n− 1(t)≤ 0 with n � 1, 2, . . . and
f0(t) + 2f1(t)< 0

(3) E(t) ∈ C[0, T] and satisfies E(t)< 2(ϕ0 + f0(t)),
∀t ∈ [0, T]

Aere exist positive numbers θ0 and c0 such that the ICP
(1) and (2), and (3) with the parameters θ< θ0 and c< c0 has
a unique solution.

Proof. First, the sums involved in u(x, t) and ux(x, t) are
continuous in D, since by using the results of Lemma 2; the
series (16) and its x-partial derivative are uniformly con-
vergent in D, next, since the series

􏽘

∞

n�1

��

λn

􏽱 3
e

− Cλnϵ, (21)

is convergent. 'en, the CTD and the second-order de-
rivative of the series u(x, t) concerning x are uniformly
convergent for t≥ ϵ> 0. So

u(x, t) ∈ C
2,1

(D)∩C
1,0

(D). (22)

Now, let us consider

E0 � 2min
t

􏽚
t

0
s
η− 1

f0(s)ds􏼨 􏼩 − max
t

E(t){ },

E1 � 2max
t

􏽚
t

0
s
η− 1

f0(s)ds􏼨 􏼩 + max
t

􏽘

∞

n�1

2
nπ

􏽚
t

0
s
η− 1

f2n(s)ds􏼨 􏼩 − min
t

E(t){ },

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

together with
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θ0 �
1
Ψn

2ϕ0 + E0( 􏼁,

θ1 �
1

− 4 ϕ1 + 􏽒
T

0 s
η− 1

f1(s)ds􏼒 􏼓 − 2 ϕ0 + 􏽒
T

0 s
η− 1

f0(s)ds􏼒 􏼓

2ϕ0 +
2
π

􏽘

∞

n�1

1
n
ϕ2n + E1

⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ψn � − 2 ϕ0 + 􏽚
T

0
s
η− 1

f0(s)ds􏼠 􏼡 + 4 􏽘
∞

n�1
4πnTϕ2n − ϕ2n− 1( 􏼁 + 􏽚

T

0
4πn(T − s)f2n(s) − f2n− 1(s)( 􏼁s

η− 1
ds􏼨 􏼩.

(24)

'en, using(18)and(21)over0≤ t≤T, one gained

0< θ0 ≤ k(t)≤ θ1. (25)

Under the condition θ0 > θ, the subsequent inequalities
are hold

0<
β

θ1 − θ
􏼢 􏼣

1/c

≤ q(t)≤
β

θ0 − θ
􏼢 􏼣

1/c

. (26)

Now, let us show that F: Cθ[0, T]⟶ Cθ[0, T] and that
F is a contraction mapping in Cθ[0, T] for small θ and large
c, where Cθ[0, T] � k(t) ∈ C[0, T]: θ0 ≤ k(t)≤ θ1,􏼈 ∀t ∈
[0, T]}. Anyhow, let k1(t), k2(t) ∈ Cθ[0, T], we have

F k1(t)􏼂 􏼃 − F k2(t)􏼂 􏼃 �
1

− 2 ϕ0 + 􏽒
t

0 s
η− 1

f0(s)ds􏼐 􏼑 + θ21(t)

·
θ10(t) − E(t) + 2 ϕ0 + 􏽒

t

0 s
η− 1

f0(s)ds􏼐 􏼑

− 2 ϕ0 + 􏽒
t

0 s
η− 1

f0(s)ds􏼐 􏼑 + θ11(t)
θ21(t) − θ11(t)􏼐 􏼑 − θ20(t) − θ10(t)􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(27)

with θm
0 (t), θm

0 (t), and qm(t) for m � 0, 1 are given as
subsequent

θm
0 (t) �

2
π

􏽘

∞

n�1

1
n

ϕ2ne
− λn 􏽒

t

0
sη− 1qm(s)ds

+ 􏽚
t

0
s
η− 1

f2n(t)e
− λn 􏽒

t

s
yη− 1qm(y)dy

ds􏼨 􏼩,

θm
1 (t) � 4 􏽘

∞

n�1
4πnϕ2nt − ϕ2n− 1( 􏼁e

− λn 􏽚
t

0
s
η− 1

qm(s)ds
+ 􏽚

t

0
4πnf2n(s)(t − s) − f2n− 1( 􏼁s

η− 1
e

− λn 􏽚
t

s
y
η− 1

qm(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

qm(t) �
β

km(t) − θ
􏼢 􏼣

1/c

.

(28)

Based on Lemma 2 and inequality (26), one can collect
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2
π

􏽘

∞

n�1

1
n

ϕ2n e
− λn 􏽒

t

0
sη− 1q2(s)ds

− e
− λn 􏽒

t

0
sη− 1q1(s)ds

􏼢 􏼣􏼨

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽚
t

0
s
η− 1

f2n(s) e
− λn 􏽚

t

s
y
η− 1

q2(y)dy
− e

− λn 􏽚
t

s
y
η− 1

q1(y)dy⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ds

⎫⎪⎪⎬

⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
2
πe

􏽘

∞

n�1

1
n

ϕ2n + 􏽚
t

0
s
η− 1

f2n(s)ds􏼨 􏼩
β

θ1 − θ
􏼢 􏼣

− (1/c)

q2 − q1
����

����C[0,T]
,

(29)

θ21(t) − θ11(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 4 􏽘
∞

n�1

4πnϕ2nT − ϕ2n( 􏼁 e
− λn 􏽚

t

0
s
η− 1

q2(s)ds
− e

− λn 􏽚
t

0
s
η− 1

q1(s)ds⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽚
T

0
4πnf2n(s)(T − s) − f2n− 1( 􏼁s

η− 1
e

− λn 􏽚
t

s
y
η− 1

q2(y)dy
− e

− λn 􏽚
t

s
y
η− 1

q1(y)dy⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
4
e

􏽘

∞

n�1
4πnϕ2nT − ϕ2n( 􏼁 + 􏽚

T

0
f2n− 1(s) − 4πnf2n(s)(T − s)( 􏼁s

η− 1ds􏼨 􏼩

·
β

θ1 − θ
􏼢 􏼣

− (1/c)

q2 − q1
����

����C
.

(30)

Putting (29) and (30) into (27), we get

max
0≤t≤T

F k1(t)􏼂 􏼃 − F k2(t)􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
β

θ1 − θ
􏼢 􏼣

− (1/c)

l q2 − q1
����

����C
, (31)

l � −
2
πe

1

4 ϕ1( 􏼁 + 􏽒
T

0 s
η− 1

f1(s)ds􏼚 􏼛 + 2 ϕ0 + 􏽒
T

0 s
η− 1

f0(s)ds􏼚 􏼛

·

− 2πθ1 􏽘

∞

n�1
ϕ2n− 1 − 4πnϕ2nT( 􏼁 + 􏽚

T

0
f2n− 1(s) − 4πnf2n(s)(T − s)( 􏼁s

η− 1ds􏼨 􏼩

+ 􏽘
∞

n�1
n ϕ2n + 􏽚

T

0
s
η− 1

f22(s)ds􏼨 􏼩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(32)

By using the mean value theorem and (26), we show
that

q2(t) − q1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
β1/c

c θ0 − θ( 􏼁
1+(1/c)

k2(t) − k1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (33)

From (31) and (33), we deduce that

F k2􏼂 􏼃 − F k1􏼂 􏼃C≤
l

θ0 − θ( 􏼁c

θ1 − θ
θ0 − θ

􏼠 􏼡

1/c

k2 − k1
����

����C
. (34)

We fix a sufficiently large number c0 > 0 such that

M �
l

θ0 − θ( 􏼁c0

θ1 − θ
θ0 − θ

􏼠 􏼡

1/c

≤ 1. (35)

In the case c> c0 and according to the Banach fixed
point theorem, we obtained that (19) has a unique solution
q(t) ∈ Cθ[0,T]. □

4. Continuously Dependent on the Data

'is section is focused on the continuous dependence of the
solutions set on the given data. In other words, some stability
analysis is derived from the ICP (1) and (2), and (3) insight of
CTD.

First, considering a solution set q(t), u(x, t)􏼈 􏼉, where’s
u(x, t), uxx(x, t), and T

η
t u(x, t) are in C([0, 1]×

[0, 1]⟶ R) and q ∈ C((0, T]⟶ R).

Theorem 2. Consider the given data in the form
f(x, t),ϕ(x), E(t)􏼈 􏼉 which satisfies the assumptions (1), (2),
and (3) of Aeorem 1. Assume that
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2ϕ0 + E0 ≥M0 > 0,

ϕ0 + 2ϕ1 ≤ − M1,

f0(t) + 2f1(t)≤ − M2.

⎧⎪⎪⎨

⎪⎪⎩
(36)

together with

EC ≤M3,

ϕC3 ≤M4,

fC3,1 ≤M5,

⎧⎪⎪⎨

⎪⎪⎩
(37)

for some Mi > 0 with i � 0, . . . , 5. So, the set
q(t), u(x, t)􏼈 􏼉 of ICP (1), (2), and (3) depends continuously on
the given data f(x, t), ϕ(x), E(t)􏼈 􏼉.

Proof. Let u(x, t), q(t)􏼈 􏼉 and 􏽥u(x, t), 􏽥q(t)􏼈 􏼉 be two solution
sets of (1), (2), and (3) relating to the data sets f,ϕ, E􏼈 􏼉 and

􏽥f, 􏽥ϕ, 􏽥E􏽮 􏽯, simultaneously. Utilizing (18), one has

k(t) �
1
Φn(t)

2 ϕ0 + 􏽚
t

0
s
η− 1

f0(s)ds􏼠 􏼡 +
2
π

􏽘

∞

n�1

1
n

ϕ2ne
− λn 􏽚

t

o
s
η− 1

q(s)ds
+ 􏽚

t

0
s
η− 1

f2n(s)e
− λn 􏽚

t

s
y
η− 1

q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
− E(t)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

q(t) �
β

k(t) − θ
􏼢 􏼣

1/c

,

􏽥k(t) �
1

􏽥Φn(t)
2 􏽥ϕ0􏼐 + 􏽚

t

0
s
η− 1 􏽥f0(s)ds􏼐 􏼑 +

2
π

􏽘

∞

n�1

1
n

􏽥ϕ2ne
− λn 􏽚

t

0
s
η− 1

􏽥q(s)ds⎛⎜⎜⎜⎜⎜⎜⎝ + 􏽚
t

0
s
η− 1 􏽥f2n(s)e

− λn 􏽚
t

s
y
η− 1

􏽥q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
− 􏽥E(t)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽥q(t) �
β

􏽥k(t) − θ
􏼢 􏼣

1/c

.

(38)

In which, Φn(t) and 􏽥Φn(t) are given as the subsequent

Φn(t) � − 2 ϕ0 + 􏽚
t

0
s
η− 1

f0(s)ds􏼠 􏼡

+ 4 􏽘
∞

n�1
4πntϕ2n − ϕ2n− 1( 􏼁e

− λn 􏽒
t

0
sη− 1q(s)ds

+ 􏽚
t

0
4πnf2n(s)(t − s) − f2n− 1(s)( 􏼁s

η− 1
e

− λn 􏽒
t

s
yη− 1q(y)dy

ds􏼨 􏼩,

􏽥Φn(t) � − 2 􏽥ϕ0 + 􏽚
t

0
s
η− 1 􏽥f0(s)ds􏼠 􏼡

+ 4 􏽘
∞

n�1
4πn􏽥ϕ2nt − 􏽥ϕ2n− 1􏼐􏼐 􏼑e

− λn 􏽚
t

0
s
η− 1

􏽥q(s)ds
+ 􏽚

t

0
4πn􏽥f2n(s)(t − s) − 􏽥f2n− 1(s)􏼐 􏼑s

η− 1
e

− λn 􏽚
t

s
y
η− 1

􏽥q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(39)

Herein, by using the Schwarz and the Bessel inequalities
together with (10) and (13), it is easy to estimate the sub-
sequent quantities
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􏽘

∞

n�1

1
n

ϕ2ne
− λn 􏽒

t

0
sη− 1q(s)ds

+ 􏽚
t

0
s
η− 1

f2n(s)e
− λn 􏽒

t

s
yη− 1q(y)dy

ds􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤C ϕC3 + fC3,1( 􏼁,

􏽘

∞

n�1
4πnϕ2nt( − ϕ2n− 1( 􏼁e

− λn 􏽚
t

0
s
η− 1

q(s)ds
+ 􏽚

t

0
4πnf2n(s)(t − s) − f2n− 1(s)( 􏼁s

η− 1
e

− λn 􏽚
t

s
y
η− 1

q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ (1 + 4πT)C ϕC3 + fC3,1( 􏼁,

􏽘

∞

n�1

1
n

ϕ2ne
− λn 􏽚

t

0
s
η− 1

q(s)ds
+ 􏽚

t

0
s
η− 1

f2n(s)e
− λn 􏽚

t

s
y
η− 1

q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

− 􏽘
∞

n�1

1
n

􏽥ϕ2ne
− λn 􏽚

t

0
s
η− 1

􏽥q(s)ds⎛⎜⎜⎜⎜⎜⎜⎝ + 􏽚
t

0
s
η− 1􏽥f2n(s)e

− λn 􏽚
t

s
y
η− 1

􏽥q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤N1‖ϕ − 􏽥ϕ‖C3 + N2‖q − 􏽥q‖C3 + N3‖f − 􏽥f‖C3 ,

􏽘

∞

n�1

1
n

ϕ2n− 1 − 4πnϕ2nt( 􏼁e
− λn 􏽚

t

0
s
η− 1

q(s)ds
+ 􏽚

t

0
f2n− 1(s) − 4πnf2(s)(t − s)s

η− 1
e

− λn 􏽚
t

s
y
η− 1

q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽘
∞

n�1

1
n

􏽥ϕ2n− 1 − 4πn􏽥ϕ2nt􏼐 􏼑e
− λn 􏽚

t

0
s
η− 1

􏽥q(s)ds⎛⎜⎜⎜⎜⎜⎜⎝ + 􏽚
t

0
􏽥f2n− 1(s) − 4πn􏽥f2n(s)(t − s)s

η− 1
e

− λn 􏽚
t

s
y
η− 1

􏽥q(y)dy
ds

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤N4‖ϕ − 􏽥ϕ‖C3 + N5‖q − 􏽥q‖C3 + N6‖f − 􏽥f‖C3 ,

(40)

where Ni with i � 1, 2, . . . , 6 are positive constants. 'us,
one can write

|k(t) − 􏽥k(t)|≤N7‖ϕ − 􏽥ϕ‖C3 + N8‖q − 􏽥q‖C

+ N9‖f − 􏽥f‖C3 + N10‖E − 􏽥E‖C,
(41)

where Ni with i � 7, 8, 9, 10 are positive constants. Hence,
from (32), we have for θ< θ0 that

|q(t) − 􏽥q(t)|≤
β1/c

c θ0 − θ( 􏼁
1+1/c |k(t) − 􏽥k(t)|, (42)

with θ0≥2ϕ0 + E0/N11(fC3 +ϕC3)≥M0/N11(M3 + M4).
If θ is sufficiently small such that θ<M0/N11(M3 + M4) by
using (41) in (42), we get

k(t) − 􏽥k(t)C ≤N ‖ϕ − 􏽥ϕ‖C3 +‖f − 􏽥f‖C3 +‖E − 􏽥E‖C􏼐 􏼑, (43)

for some positive constant N. In the end, this proves that
q continuously depends on the input data. Similarly, one can
deal with the above results to rely that u(x, t) depends
continuously upon the given data. □

5. Illustrative Application Examples

'rough this part, we are going to present some examples
of the ICPs for the CTDE. Anyhow, to show the theoretical

outcomes of the previous sections, we illustrate two application
examples. 'at is, we will show through these two applications
that the solution q(t), u(x, t)􏼈 􏼉 depends continuously on the
order 0< η≤ 1 input data.

'e reader should remember that we used the
MATHEMATICA 11 program in our calculations for the
numerical tables and our drawings of figures.

Example 1. Consider the ICP (1), (2), and (3) for the CTDE
in the domain [0, 1] × [0, 1] with the given data:

T
η
t u(x, t) � q(t)uxx(x, t) + cos(2π) e

−
tη

η − 1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (44)

and subject to the subsequent constraints
u(0, t) � u(1, t),

ux(1, t) � 0,

u(x, 0) � − cos(2πx),

⎧⎪⎪⎨

⎪⎪⎩

k(t)u(0, t) + 􏽚
1

0
u(x, t)dx � − 1 + 4π2e− tη/η

􏼐 􏼑e
− tη/η

,

(45)

with θ � β � c � 1 and k(t) � 1 + 4π2e− tη/η.
Simple manipulations yield that the analytical solutions

set q(t), u(x, t)􏼈 􏼉 can be formed as
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q(t) �
1
4π2

et
η/η,

u(x, t) � − cos(2πx)e− t
η/η.




(46)

Example 2. Consider the ICP (1), (2), and (3) for the CTDE
in the domain [0, 1] × [0, 1] with the given data:

Tη
t u(x, t) � q(t)uxx(x, t) +(1 − x)sin(2πx) 1 − ηe− t

η
( ),

(47)

and subject to the subsequent constraints
u(0, t) � u(1, t),

ux(1, t) � 0,

u(x, 0) �(1 − x)sin(2πx),




k(t)u(0, t) + ∫
1

0
u(x, t)dx �

1
4π2

e− t
η
,

(48)

with θ � β � c � 1 and k(t) � 1 + 4π2e− tη .

Simple manipulations yield the analytical solutions set
q(t), u(x, t){ } that can be formed as

q(t) �
1
4π2

et
η
,

u(x, t) �(1 − x)sin(2πx)e− t
η
.




(49)

Next, some computational �gures for the analytical
solution set q(t), u(x, t){ } are analyzed and utilized in the
form of one- and two-dimensional plots towards the con-
tinuous behavior over the order η ∈ (0, 1]. Anyhow, Fig-
ures 1 and 2 illustrate the solution u(x, t) in the case of
η ∈ 1, 0.85, 0.7, 0.55{ } for examples 1 and 2, simultaneously
whilst Figure 3 illustrates the solution q(t) in the case of
η ∈ 1, 0.85, 0.7, 0.55{ } for examples 1 and 2 together.

Right after that, as an important application result, from
Figures 1, 2, and 3, we show graphically that any small change in
the input order η ∈ (0, 1] leads to a change in the solution.

Ultimately, some computational data for the analytical
solution set q(t), u(x, t){ } are analyzed and utilized in the
form of tables towards the continuous behavior over the
order η ∈ (0, 1]. Anyhow, Tables 1 and 2 illustrate the
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Figure 1: Plot of the 3D analytical solution u(x, t) in example 1 on [0, 1] × [0, 1]: (a) η � 1, (b) η � 0.85, (c) η � 0.7, and (d) η � 0.55.
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solution set in the case of η ∈ 1, 0.85, 0.7, 0.55{ } for examples
1 and 2, simultaneously.

Right after that, as an important application result, from
Tables 1 and 2, we show tabularly that any small change in
the input order η ∈ (0, 1] leads to a change in the solution.

6. Work Results, Highlights, and Future Work

�e ICP which involves determining the time-dependent
coe�cient for the CTDE has been investigated and utilized
successfully in this research analysis in the form of
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Figure 2: Plot of the 3D analytical solution u(x, t) in example 2 on [0, 1] × [0, 1]: (a) η � 1, (b) η � 0.85, (c) η � 0.7, and (d) η � 0.55.
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Figure 3: Plot of the 2D analytical solution q(t) on [0, 1] as Red: η � 1, Green: η � 0.85, Yellow: η � 0.7, and Blue: η � 0.55 in (a) example 1
and (b) example 2.
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theoretical and practical. We have used the eigenfunctions of
spectral and adjoint problem approach to writing an explicit
solution of the direct problem, and then, we have used the
over-posed data to derive the solution of the presented ICP.
'e existence and uniqueness results of identifying the time-
dependent coefficient are formatted and proved by using the
Banach fixed point theorem. Also, the continuous depen-
dence upon the given data is proved too. Couples of illus-
trative examples are utilized, discussed, and shown in the
form of data results and computational figures. Our future
work will focus on the similar utilized analysis insight of the
fractional M-time derivative approach.

Abbreviations:

CTDE: Conformable time-diffusion equation
ICP: Inverse coefficient problem

FEM: Fourier expansion method
OPD: Over-posed data
BC: Boundary condition
CTD: Conformable time-derivative
DFM: Diffusion fractional model.
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Table 1: Tabulated data of the analytical solution set q(t), u(x, t)􏼈 􏼉 on [0, 1] × [0, 1] over the order η ∈ (0, 1] in example 1.

x t
η � 0.55 η � 0.7 η � 0.85 η � 1

u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉

0.2

0.2 (− 0.146, 0.054) (− 0.194, 0.040) (− 0.229, 0.034) (− 0.253, 0.031)

0.4 (− 0.103, 0.076) (− 0.146, 0.054) (− 0.180, 0.043) (− 0.207, 0.038)

0.6 (− 0.078, 0.100) (− 0.144, 0.069) (− 0.144, 0.054) (− 0.170, 0.046)

0.8 (− 0.062, 0.126) (− 0.091, 0.086) (− 0.177, 0.067) (− 0.139, 0.056)

0.4

0.2 (0.382, 0.054) (0.509, 0.040) (0.600, 0.034) (0.662, 0.031)

0.4 (0.270, 0.076) (0.381, 0.054) (0.471, 0.043) (0.542, 0.038)

0.6 (0.205, 0.100) (0.298, 0.069) (0.378, 0.054) (0.444, 0.046)

0.8 (0.162, 0.126) (0.238, 0.086) (0.306, 0.067) (0.364, 0.056)

0.6

0.2 (0.382, 0.054)x (0.509, 0.040) (0.600, 0.034) (0.662, 0.031)

0.4 (0.270, 0.076) (0.381, 0.054) (0.471, 0.043) (0.542, 0.038)

0.6 (0.205, 0.100) (0.298, 0.069) (0.378, 0.054) (0.444, 0.046)

0.8 (0.162, 0.126) (0.238, 0.086) (0.306, 0.067) (0.364, 0.056)

0.8

0.2 (− 0.146, 0.054) (− 0.194, 0.040) (− 0.229, 0.034) (− 0.253, 0.031)

0.4 (− 0.103, 0.076) (− 0.146, 0.054) (− 0.180, 0.043) (− 0.207, 0.038)

0.6 (− 0.078, 0.100) (− 0.114, 0.069) (− 0.144, 0.054) (− 0.170, 0.046)

0.8 (− 0.062, 0.126) (− 0.091, 0.086) (− 0.117, 0.067) (− 0.139, 0.056)

Table 2: Tabulated data of the analytical solution set q(t), u(x, t)􏼈 􏼉 on [0, 1] × [0, 1] over the order η ∈ (0, 1] in example 2.

x t
η � 0.55 η � 0.7 η � 0.85 η � 1

u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉 u(x, t), q(t)􏼈 􏼉

0.2

0.2 (0.504, 0.038) (0.550, 0.035) (0.590, 0.033) (0.623, 0.031)

0.4 (0.416, 0.046) (0.449, 0.043) (0.481, 0.040) (0.510, 0.038)

0.4 (0.358, 0.054) (0.378, 0.051) (0.398, 0.048) (0.418, 0.046)

0.8 (0.314, 0.061) (0.323, 0.060) (0.333, 0.058) (0.342, 0.056)

0.4

0.2 (0.233, 0.038) (0.255, 0.035) (0.273, 0.033) (0.289, 0.031)

0.4 (0.193, 0.046) (0.208, 0.043) (0.223, 0.040) (0.236, 0.038)

0.6 (0.166, 0.054) (0.175, 0.051) (0.185, 0.048) (0.194, 0.046)

0.8 (0.146, 0.061) (0.150, 0.060) (0.154, 0.058) (0.158, 0.056)

0.6

0.2 (− 0.156, 0.038) (− 0.170, 0.035) (− 0.182, 0.033) (− 0.192, 0.031)

0.4 (− 0.129, 0.046) (− 0.139, 0.043) (− 0.149, 0.040) (− 0.158, 0.038)

0.6 (− 0.110, 0.054) (− 0.117, 0.051) (− 0.123, 0.048) (− 0.129, 0.046)

0.8 (− 0.097, 0.061) (− 0.100, 0.060) (− 0.103, 0.058) (− 0.106, 0.056)

0.8

0.2 (− 0.126, 0.038) (− 0.138, 0.035) (− 0.147, 0.033) (− 0.156, 0.031)

0.4 (− 0.104.0.046) (− 0.112, 0.043) (− 0.120, 0.040) (− 0.128, 0.038)

0.6 (− 0.089, 0.054) (− 0.095, 0.051) (− 0.100, 0.048) (− 0.104, 0.046)

0.8 (− 0.079, 0.061) (− 0.081, 0.060) (− 0.083, 0.058) (− 0.085, 0.056)
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