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Conventional statistical models provide inaccurate predictions of concrete crack openings because they do not consider the
nonlinear temperature response and the residual characteristics of concrete. To address this problem, this study introduces a
nonlinear temperature factor and develops an improved statistical model of crack openings.*e chaotic characteristics of residual
time series of the improved statistical model are analyzed based on chaos theory and phase-space reconstruction theory. *ese
theories are integrated with back-propagation (BP) artificial neural networks and genetic algorithms (GAs) to establish a GA-BP
neural network model for predicting residuals. Finally, a hybrid model is developed for predicting the concrete crack opening
behavior. *e predictions of the conventional statistical model, the statistical model considering nonlinear temperature com-
ponent, and the hybrid model are compared using the case study on the crack openings of a regulating sluice.*e results show that
the proposed hybrid model in this study for predicting concrete crack openings is significantly more accurate than the con-
ventional statistical model and the statistical model considering nonlinear temperature component.

1. Introduction

Cracks are a common structural defect in hydraulic concrete.
*e operational behavior of macroscopic cracks in hydraulic
concrete structures is directly related to the safety of the
structure and is an important indicator of structural stability.
To determine the operational behavior of concrete crack
openings, the momentum misplacement is often monitored
in real time by installing a crack meter group. Given the
conditions of practical projects, concrete cracks are affected
by various complex factors, including water pressure, tem-
perature, and time. Hence, it is vital to establish an accurate
mathematical model to aid in monitoring concrete crack
openings and to quantitatively analyze, evaluate, and predict
their behavior.

Concrete cracks fall into the category of concrete de-
formation. At present, mathematical models based on
conventional statistical models of concrete deformations are
widely used in engineering monitoring and parameter

inversion [1]. Such models usually include temperature
component, hydraulic component, and aging component.
Experiments demonstrate that temperature is crucial to
control concrete deformation [2, 3] and that variations in
temperature are an important factor in determining the
opening and closing of concrete cracks [4]. *e temperature
component is thus considerably sensitive to the temperature
variations [1]. Although the hydraulic and aging compo-
nents of conventional statistical deformation models gen-
erally fit well to experimental results, the temperature
component is underfitted because conventional statistical
models [5, 6] generally consider only the linear response of
the system to temperature but neglect the complex nonlinear
relationship between the actual affected variables and en-
vironmental factors in practical engineering. Previous
studies show that variations in temperature are related
nonlinearly to concrete deformation, and including such
nonlinearities in prediction models should provide more
accurate results than conventional models [7, 8].
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To further improve the accuracy of statistical models,
chaos theory has recently been harnessed to analyze and
predict the residual series of statistical models, effectively
establishing a hybrid model that provides more accurate
predictions than the statistical models. For instance, Wei
et al. [9] established a back-propagation autoregressive in-
tegrated moving-average model based on the wavelet
analysis that directly predicts chaotic residual time series.
*e nonlinear method predicts the residual, which is gen-
erated by a phase-space reconstruction, with the result being
a hybrid model based on a conventional statistical model
[10, 11]. *e results show that hybrid models based on
residual prediction are more accurate than conventional
models. Bao andWu [10] improved the mathematical model
for monitoring concrete cracks by combining chaos theory
with a conventional statistical model to establish a hybrid
model of concrete crack openings. *e results indicate that
the stress field at the crack tip generates singularities when
exposed to water pressure and temperature variations, which
irreversibly deforms the concrete at the crack tip. Hence,
crack openings also involve an irrecoverable part caused by
nonlinear factors, suggesting that conventional statistical
models cannot predict the deformation behavior as a
function of water pressure and temperature. *is part of the
deformation contains significant information about the
crack evolution process, which is usually described in terms
of a residual series, that is, a chaotic residual time series.
Hence, it is necessary to analyze the residual time series of
statistical models of concrete crack openings.

At present, there are some reports on the prediction
methods of time series [12]. *e studies show that methods
based on phase-space reconstruction are commonly used to
predict chaotic time series. *e essence of this approach is to
transform the extension of time series into the interpolation
of phase space. Based on the Takens embedding theorem
[13], the optimized delay time and minimum embedding
dimension are determined according to the actual time
series. *e one-dimensional (1D) time series can then be
reconstructed into a phase space with the same topological
meaning as the motive power system. A reasonable selection
of the delay time and embedding dimension then allows
reconstruction of the phase space with satisfactory adapt-
ability, thereby producing the internal nonlinear mapping.
By exploiting the properties of the Lyapunov exponent, this
approach can recognize and make short-term predictions of
chaotic time series [14, 15]. Currently, the methods for
determining optimized delay time and minimum embed-
ding dimension depend on the amount of data they are fed,
the amount of computation, the anti-noise performance,
and the objectivity with which the parameters are selected.
*e methods available for selecting optimized delay time
typically include the autocorrelation coefficient method [16],
the mutual information method [17], and the average dis-
placement (AD) method [18], and the methods used to
calculate the minimum embedding dimension typically
include the geometric invariant method [14], the pseudo-
neighbor method [19], and the Cao method [20].

Casdagli [21] proposed the basic principle for predicting
chaotic time series, which was used to develop prediction
methods involving artificial neural networks [9, 22, 23]. BP neural
networks are suitable for nonlinear mapping, making them good
candidates for predicting chaotic time series. However, single
neural networks converge slowly, resulting in local minima and
overfitting. Ding et al. [24] proposedGA-BP neural networks and
demonstrated that genetic algorithms (GAs) provide obvious
improvements over BP neural networks. Hence, phase-space
reconstruction combined with GA-BP neural networks is ex-
pected to accurately predict chaotic time series.

In this study, the conventional statistical model is firstly
improved by considering the nonlinear temperature factor.
Further, the improved statistical model is combined with the
GA-BP neural network model using chaos theory and phase-
space reconstruction theory, to develop a hybrid model for
predicting concrete crack openings. Finally, a detailed case
study on the crack openings of a regulating sluice is pre-
sented to illustrate the application of the hybrid model.

2. Improved Statistical Model for Concrete
Crack Openings

Hydraulic concrete structures with macroscopic cracks are
affected by water pressure, temperature, and time. It is il-
lustrated in Figure 1.

Consider a hydraulic concrete structure with K mea-
suring points near a macroscopic crack. A conventional
statistical model describing concrete crack openings
(denoted as model I) is as follows:
δ(t) � δT(t) + δH(t) + δθ(t) + δε(t)

� a0 + 
K

i�1
aiTi + 

4

i�1
biH

i
+ c1θ + c2 ln θ + δε(t),

(1)

where δ(t) is the measured crack opening, δT(t) is the
temperature component, δH(t) is the hydraulic component,
δθ(t) is the aging component, δε(t) is the residual, Ti is the
measured temperature of the ith measuring point, K is the
number of temperature-measuring points, H is the water
depth, θ� t/100, t is time, and a0, ai, bi, c1, and c2 are all
regression coefficients.

Wang et al. [5] show that the temperature component in
equation (1) does not consider a nonlinear temperature re-
sponse. Since the concrete openings as a function of temperature
is a complex nonlinear process, ignoring this nonlinearity will
lead to underfitting. In contrast, including the environmental
variables leading to nonlinearity alleviates this underfitting.
Hence, we propose an improved statistical model of concrete
crack openings, which is called statistical model considering
nonlinear temperature component (denoted as model II) that
accounts for the nonlinear temperature response [6–8]:
δ(t) � δT(t) + δH(t) + δθ(t) + δε(t)

� a0 + 

L

p�1


K

i�1
aipT

p

i + 

4

i�1
biH

i
+ c1θ + c2 ln θ + δε(t),

(2)
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where L represents the order of the temperature polynomial
reflecting the influence of the nonlinear temperature re-
sponse (L is generally a positive integer between 1 and 4 and
is determined by fitting to measured values); aip is the re-
gression coefficient corresponding to the pth power of the
measured temperature at the ithmeasurement point, and the
other symbols have the samemeaning as in equation (1).*e
regression coefficients of the statistical model are deter-
mined using regression analysis or optimization algorithms.
*e residual time series δε(t) is obtained by separating the
measured data of the concrete crack openings.

3. Prediction of Residual Based on
Chaos Theory

Under the action of water pressure and temperature vari-
ation, the stress field at the crack tip manifests singularity,
which makes the concrete at the crack tip produce irre-
versible deformation. *at is, the crack opening contains an
irreversible part. Since the aging component cannot reflect
the irreversible deformation accurately because of the lim-
itations of its simple functions, the irreversible deformation
is retained in the residual. In particular, when the crack
opening suddenly changes due to overloading or drastic
temperature variation, the hydraulic component, tempera-
ture component, and aging component of statistical model
can hardly reflect this mutation of crack opening. In other
words, the residual sequence contains a lot of information
about the evolution of cracks [10] and some studies showed
[9, 14] that this residual sequence contains chaotic char-
acteristics. *erefore, chaos theory is used to analyze and
predict the residual.

3.1. Phase-Space Reconstruction of Residual Sequence.
Previous studies [10, 13] have shown that a 1D residual time
series x(t)� {x(ti)|i� 1, 2, 3, . . ., N} can be reconstructed into
the following form in m-dimensional phase space Rm:

x t1(  x t2(  · · · x tM( 

x t1 + τ(  x t2 + τ(  · · · x tM + τ( 

⋮ ⋮ ⋮ ⋮

x t1 +(m − 1)τ(  x t2 +(m − 1)τ(  · · · x tM +(m − 1)τ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

whereM�N − (m − 1)τ is the number of phase points,m> 0
is the integer embedding dimension, and τ is the delay time,
which is usually a positive integer multiple of the sampling
interval of the residual time series x(t).

*e first-phase point in equation (3) can be expressed as
follows:

X ti(  � x ti( , x ti + τ( , · · · , x ti +(m − 1)τ(  
T

(i � 1, 2, · · · , n).

(4)

According to equations (3) and (4), the key of phase-
space reconstruction lies in the determination of the delay
time τ and the embedding dimension m.

3.1.1. Determination of Delay Time. Selecting the optimized
delay time t0 usually involves the autocorrelation coefficient
method [16], the mutual information method [17], or the
AD method [18]. *e autocorrelation coefficient method is
not suitable for nonlinear systems [25] and imposes a
subjective selection of the method to calculate the descent
coefficient. Although the mutual information method
overcomes the shortcomings of the autocorrelation coeffi-
cient method, its calculation is relatively complicated.
Hence, this study uses the AD method [18] to select the
optimized delay time; it is an efficient calculation and avoids
information redundancy and the complete irrelevance of
delay coordinates caused by improper delay time. Under the
2-norm, the average displacement S2(m, τ) is defined as
follows:

S2(m, τ)≜
1

M


M

i�1

��������������������


m− 1

l�1
x ti + lτ(  − x ti(  

2



. (5)
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Figure 1: Influencing factors of macroscopic concrete cracks.
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When given different embedding dimensions (≥2), S2(m,
τ) tends to be stable with increasing τ. Rosenstein et al. [18]
suggested that optimized delay time can be determined
according to the S2(m, τ) vs. τ graph under different em-
bedding dimensionm; that is, when the slope of S2(m, τ) vs. τ
decays to 40% of the initial slope, the corresponding τ is the
optimized delay time. Research shows that this method is
reliable for small, noisy datasets and that the computation
time is short.

3.1.2. Determination of Embedding Dimension. Methods to
calculate the minimum embedding dimension me include
the geometric invariant method, the pseudo-neighbor
method, and the Cao method. However, the geometric in-
variant method requires a noise-free time series, which is
barely possible in practical applications. Cao [20] proposed
the pseudo-neighbor point method, but this method is very
subjective when selecting the decision threshold. *ey also
proposed a practical method (called the “Cao method”) for
determining the minimum embedding dimension. *is
method not only is robust against noisy data but also reduces
the interference of subjective factors and adverse effects
caused by slight reductions in data size. For this reason, this
study adopts the Cao method to calculate the minimum
embedding dimension.

When an optimized time delay is given, the following
parameters are defined in m-dimensional phase space:

a(i,m) is defined as follows:

a(i, m) �
Xi(m + 1) − Xn(i,m)(m + 1)

����
����∞

Xi(m) − Xn(i,m)(m)
����

����∞
(i � 1, 2, · · · , M), (6)

where Xi(m) � [x(ti), x(ti + τ), . . . , x(ti + (m − 1)τ)]T (i

� 1, 2, . . . , M), ‖Xi(m + 1) − Xn(i,m)(m + 1)‖∞ is the dis-
tance defined under the infinite norm, and Xn(i,m)(m) is the
nearest point to the phase point Xi(m), which means the
phase point at the minimum Euclidean distance from Xi(m).

*e mean value of E(m) of a(i,m) is as follows:

E(m) �
1

M


M

i�1
a(i, m). (7)

When the embedding dimension is incremented fromm
to m+ 1, E1(m) is as follows:

E1(m) �
E(m + 1)

E(m)
. (8)

Cao et al. [20] report that, given a fixed-point attractor in
the residual time series, E1(m) would stop changing once the
embedding dimension m exceeds a certain value m0. In this
case, m0 + 1 is the minimum embedding dimension, which
may be determined by a graphical analysis of E1(m) vs. m.

In actual calculations, it is difficult to determine whether
E1(m) increases slowly or remains constant as m increases.
For a group of random residual series, E1(m) increases with

increasing m and converges for a deterministic residual
series E1(m). Hence, wemust introduce E2(m) to distinguish
random residual series from deterministic residual series.
E2(m) is given as follows:

E2(m) �
E
∗
(m + 1)

E
∗
(m)

, (9)

where

E
∗
(m) �

1
M



M

i�1
x ti + mτ(  − x tn(i,m) + mτ 



. (10)

For random residual series, E2(m)� 1 for any m; for
deterministic residual series, E2(m) is a nonconstant func-
tion of m; that is, some m must exist so that E2(m)≠ 1.
*erefore, Cao et al. [20] suggested that E1(m) and E2(m) be
calculated at the same time to determine the minimum
embedding dimension and distinguish between random
residual series and deterministic residual series. For nota-
tional convenience, E1(m) and E2(m) are denoted as E1 and
E2, respectively.

3.1.3. Identification of Chaotic Characteristics. *e maxi-
mum Lyapunov exponent λ1 is of important significance for
determining the chaotic characteristics contained in residual
time series. For phase space, λ1> 0 indicates that the system
is chaotic. Rosenstein et al. [26] analyzed common methods
of calculating the maximum Lyapunov exponent. For
problems of unreliable calculation, intensive computation,
and difficult-to-implement existing methods for small
datasets, a practical method (called the “Rosenstein method”
and also known as the “small-dataset method”) was pro-
posed for small datasets.*e advantage of this method is that
it is robust against the reconstruction dimension, time delay,
and noise, thereby producing a more accurate maximum
Lyapunov exponent. According to the theory of chaotic
dynamics, the reciprocal λ− 1

1 of the maximum Lyapunov
exponent is the maximum prediction time and can be used
as a reliability indicator of a short-term prediction [27].

When adopting the Rosenstein method to calculate the
maximum Lyapunov exponent, dj(k) is used in the phase
space reconstructed by the optimized delay time and min-
imum embedding dimension to express the Euclidean dis-
tance between phase point j, X(tj), and its initial nearest
point X(tj) (the meaning is the same as the nearest point in
(5)) at moment kΔt:

dj(k) � X tj + kΔt  − X t
j
∧ + kΔt 

�������

�������
, (11)

where Δt is the sampling interval and is usually taken as
Δt� 1 for calculational convenience.

*e calculation result for dj(k) is expressed in matrix
form as follows:
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������ X t2(  − X t
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j
∧ 

�������

�������
· · ·

X t1 + Δt(  − X t
1
∧ + Δt 

������

������ X t2 + Δt(  − X t
2
∧ + Δt 

������

������ · · · X tj + Δt  − X t
j
∧ + Δt 

�������

�������
· · ·

⋮ ⋮ ⋮ ⋮ ⋮

X t1 + kΔt(  − X t
1
∧ + kΔt 

������

������ X t2(  − X t
2
∧ + kΔt 

������

������ · · · X tj + kΔt  − X t
j
∧ + kΔt 

�������

�������
· · ·

⋮ ⋮ · · · ⋮ · · ·
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. (12)

dj(k) is expressed as [26].

dj(k) ≈ Cje
λ1(kΔt)

. (13)

Taking the logarithm of both sides of equation (13) gives
the following:

Indj(k) ≈ inCj +(kΔt), (14)

where Cj is the initial bifurcation and its value determined
for j is constant. y(k) is defined as follows:

y(k) �
1
Δt
〈Indj(k)〉, (15)

where 〈ln dj(k)〉 is the average over all j, that is, the average
of the natural logarithm of the nonzero elements in row k of
the matrix in equation (11).

In this case, we take the part of y(k) that is close to linear
with respect to k according to equations (13) and (14) and
use the least-squares method to obtain a linear fit. *e slope
of the line is λ1, that is, the maximum Lyapunov exponent.

3.2. Predicted Value of Residual Based on GA-BP Neural
Network. In the phase-space reconstruction of the residual
time series, the “trajectory” in the reconstructed phase space
is “dynamically equivalent” to the original system due to the
concept of differential homeomorphism. *erefore, there is
a unique mapping relation:

X t + Pt(  � F(X(t)), (16)

where Pt is the prediction time, and the mapping relation F
can be calculated by approximating all phase points in phase
space. In this study, the nonlinear mapping relation is
constructed using artificial neural networks with the whole
domain method. *e GA is a heuristic random evolutionary
search algorithm, which has global search ability and can
solve the error function without gradient information.
Previous studies demonstrated that the GA-BP neural
networks established by GAs provide better fits to nonlinear
functions and more accurate short-term predictions of
typical chaotic time series, even when compared with the
predictions of BP neural networks [23, 28]. *erefore, this
study uses GAs to optimize BP neural networks and thereby
improves simple BP neural networks to attain the global
maximum.

Setting the fitness function is quite important with GAs.
In this study, we use the fitness function [29]as follows:

Fitness � 1000 ×
R
2

RMSE
, (17)

which shows that a large R2 and small root-mean-square
error (RMSE) indicate a better fit. *e optimal fitness is
attained when the fitness becomes stable as a function of the
evolutionary generations.

*e equations for R2 and the RMSE are as follows:

R
2

�


Nt

i�1 (δ
∧

− δ)
2


Nt

i�1 δt − δ
∧

 

2

+ 
Nt

i�1 δ
∧

− δt 

2

]RMSE �
1

Nt



Nt

i�1
δt − δ
∧

 

2
⎡⎣ ⎤⎦

1
2

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(18)

where Nt is the number of samples in the test set, δt is the
measured value, δ

∧
is the predicted value, and δt is the average

measured value.
In GA-BP neural networks, the input vector is as follows:

X(m) � [x(t), x(t − τ), · · · , x(t − (m − 1)τ)]
T
, (19)

and the output vector is as follows:

X t + Pt(  � x t + Pt( , x t + Pt − τ( ,⋮, x t + Pt − (m − 1)τ(  
T
.

(20)

*e separated residual time series is trained to optimize
the neural network model, which gives the weight and
threshold of the GA-BP neural network model. *e residual
time series is then predicted.

3.3. Hybrid Model for Predicting Concrete Crack Opening.
Model II and the GA-BP neural network (15) are integrated
to establish the improved hybrid model for predicting
concrete crack openings (denoted as “hybrid model”).
Mathematically, the model is expressed as follows:
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δ t + Pt(  � δT t + Pt(  + δH t + Pt( 

+ δθ t + Pt(  + x t + Pt( ,
(21)

where δT(t + Pt), δH(t + Pt), and δθ(t + Pt) predict the
temperature, hydraulic, and aging components of Pt, re-
spectively; x(t+Pt) is the predicted value of the residual
based on GA-BP neural network.

Figure 2 presents a flow chart of the procedure used by
the hybrid model for predicting concrete crack openings.

4. Case Study of Regulating Sluice with Cracks

4.1. Background of Regulating Sluice with Cracks

4.1.1. Crack Distribution. Hubei Province has undertaken a
large water control project designed for power generation
and shipping, irrigation, aquaculture, and tourism. *e
project consists of a regulating sluice located in the main
river with an earth-rockfill dam in the main riverbed, an
earth-rockfill dam in the Gucheng Section, a powerhouse in
the old river, a ship lock, a concrete gravity dam, and an
earth-rockfill dam on both sides of the embankment.

On-site inspection has revealed three cracks at the top of
the upstream traffic bridge of the gate storehouse on the left
bank of the sluice (see Figure 3). Two of these cracks run
upstream and downstream and stop at the lowest part of the
breast wall. Meanwhile, a long-term calcium precipitation
trace appears on the vertical surface of the retaining wall
upstream of the gate storehouse and extends to the floor of
the upstream wall of the gate storehouse, which is located
between the two penetrating cracks at the top of the sluice
and threatens the normal operation of gate storehouse.

4.1.2. Monitoring by Crack Meter. To diagnose the evolution
of the concrete crack in the regulating sluice, nine sets of bi-
directional vibrating string crackmeter groups were installed to
monitor the openings and misplacement momentum (see
Figure 4). Mkj-1 andMkj-2 were installed on the upstream side
of the sluice, Mkj-3–Mkj-5 were installed near the top of the
sluice, Mkj-6 and Mkj-7 were installed near the upstream
surface of the sluice, andMkj-8 andMkj-9 were installed on the
top of the sluice near the downstream section. From June 12 to
19, 2020, nine sets of bidirectional crack meters were installed
and debugged. Figure 5 shows the measured crack openings
and temperature lines of crack meter Mkj-3.

An obvious negative correlation appears between the
crack opening at the sluice and the temperature. When the
temperature increases, the crack closes and vice versa. Next,
we use the measured crack opening in the hybrid model for
concrete crack openings.

4.2. Model II of Concrete Crack Openings in Sluice

4.2.1. Determination of L inModel II. *e various measuring
points may give different results due to the nonlinear
temperature response. To determine L in model II according
to the principle mentioned above, we use nine temperature
measurements by the crack meter. Using equation (2), we

establish model II for concrete crack openings for L� 1, 2, 3,
4, 5. *e model regression coefficient corresponding to
different results for L is obtained by regression analysis. R-
square and RMSE of different improved models were cal-
culated. *e results are shown in Figure 6.

When L increases from 1 to 3, both R2 and RMSE
improve significantly; when L≥ 3, the two parameters re-
main stable. From the point of view of statistical models, this
shows that temperature exerts a nonlinear effect on the
concrete crack opening. *erefore, when model II with
nonlinear temperature effects is included, R2 � 0.891 and
RMSE� 0.04571. Table 1 lists the regression coefficients
obtained through regression analysis. Using these, model II
for concrete crack openings is as follows.

δ(t) � a0 + 
3

p�1


9

i�1
aipT

p
i + 

4

i�1
biH

i
+ c1θ + c2 ln θ + δε(t).

(22)

4.2.2. Comparison with Other Models. Figure 7 compares
model II for crack openings (22) with model I (1).

Model I considers only the linear response to temper-
ature, as highlighted by the ellipses in Figure 7(a). Note that
the fit near the extreme values is not ideal. In Figure 7(b), the
nonlinear response to temperature is considered in model II,
which makes the fit closer to the measured trajectory. *is is
seen in the decrease in the residual error of model II
(Figure 7(c)).

Notably, limitations of the statistical models shown in
Figures 7(b) and 7(c) still result in periods where the fit is
poor, which will affect the accuracy of the models’ predic-
tions to some extent. Hence, the prediction methods based
on the statistical model may still be improved. For this
reason, we apply chaos theory to further analyze the residual,
which leads to the more accurate model.

4.3. Phase-Space Reconstruction of Residual Series

4.3.1. Determination of Embedding Dimension and Delay
Time. *e residual time series from model II for crack
openings is obtained by separating the measured values.
From the residual time series, 1825 samples from 22:00 on
June 23, 2020, to 7:00 on February 11, 2021, are selected as
the training dataset, and 24 samples from 10:00 on February
11, 2021, to 7:00 on February 14, 2021, are selected as a
posteriori prediction dataset. Figure 8 shows S2(m, τ) as a
function of delay time τ constructed using the AD plotting
method, which is based on phase-space reconstruction
theory. Figure 9 plots E1 and E2 (determined by the Cao
method) as a function of embedding dimension m.

When the embedding dimension is constant, the slope of
S2(m, τ) vs. τ stabilizes as τ increases. *e delay time is
optimal when the slope of S2(m, τ) vs. τ decreases to 40% of
its initial value, which gives τ � 2 as the optimal delay time.
For a given optimal delay time, E1 stabilizes with increasing
embedding dimension, and E2 ≠ 0. *erefore, when E1
stabilizes, the corresponding embedding dimension (i.e., the
minimum embedding dimension) is eight.
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4.3.2. Phase-Space Reconstruction of Residual Time Series and
Determination of Prediction Step. Given the embedding
dimension and delay time, phase-space reconstruction is
applied to the 1D residual time series via equation (3), as per
the principle mentioned above. *e maximum Lyapunov
exponent is calculated via the Rosenstein method, indicating
that the system contains chaotic components. *e reciprocal
of the system is then calculated, giving a maximum

prediction step of 40. *erefore, the posterior step is 24 (i.e.,
24 samples at 7:00 on February 11, 2021, and 7:00 on
February 14, 2021), and the duration is three days.

4.4. Hybrid Model Based on GA-BP Neural Networks

4.4.1. Training to Optimize GA-BP Neural Networks. As
shown in Figure 1, we use 1825 samples from 22 on June 23,

Predicted value δ (t+Pt) of crack opening
based on improved hybrid model 

Updating BP neural network
with new weights and threshold

Accuracy
satisfied?

Training of BP neural network

Yes

Yes 

No

No

Evolution

Calculation of fitness
Updating

group

 Initialization of
GA-BP neural network

Data normalization

Group initialization

 Determination of GA parameters and gene chain

Chaotic residual predicted
value x (t+Pt)

Prediction of chaotic
 residual based on 

GA-BP neural network

Predicted value of 
hydraulic component δT (t+Pt),

temperature component δH (t+Pt)
and time component δθ (t+Pt)

based on improved statistics model

Phase space reconstruction

Residual sequence
separated from improved

statistics model

Establishing nonlinear temperature component-based
statistics model of crack opening
δ (t) = δT (t)+δH (t)+δθ (t)+δε (t)

Considering nonlinear
temperature response

Observation date of hydraulic
structure macro crack opening

Accuracy 
satisfied?

Figure 2: Flow chart of the hybrid model for predicting concrete crack openings.
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Figure 3: Main cracks in traffic bridge of sluice.
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2020, to 7:00 on February 11, 2021, to train the GA-BP
neural networks.*e structure of the BP neural network is 8-
12-8, the GA’s maximum number of generations is 30, the
population is 40, the crossover probability is 0.8, and the
variation probability is 0.1. Figure 10 shows the resulting fit.

When the fitness stabilizes (i.e., for >5 generations) and
satisfies the precision requirements of neural networks, the
optimized BP neural network is created using the weights
and threshold parameters output at this time to train and
predict the reconstructed residual time series.
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Figure 4: Layout of bidirectional crack meters.
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4.4.2. Hybrid Model. Based on the length of the posteriori
predicted dataset of residual time series, the prediction is
made starting at 10:00 on February 11, 2021, and the pre-
diction step is 24 (three days). *e residual time series
predicts that x(t+ 1), x(t+ 2), . . ., x(t+ 24) are obtained, and
the hybrid model is as follows:

δ t + Pt(  � a0 + 
3

k�p



9

i�1
aipT

p

i + 
4

i�1
biH

i
+ c1θ

+ c2 ln θ + x t + Pt( ,

(23)

where δ(t + Pt) is the predicted concrete crack opening at
time Pt, where Pt � 1, 2, . . ., 24.

4.4.3. Prediction Accuracy. Mean square error (MSE), mean
absolute error (MAE), and normalized mean square error

(NRMSE) are introduced to evaluate the prediction accuracy
of the hybrid model. *ese are given by:

MSE �
1

Nt



Nt

i�1
δt − δ
∧

 

2

,

MAE �
1

Nt



Nt

i�1
δt − δ
∧


,

NRMSE �
1
σ

1
Nt



Nt

i�1
δt − δ
∧

 

2
⎡⎣ ⎤⎦

1/2

,

(24)

where σ is the standard deviation of the test set, Nt is the
number of samples in the test set, δt is the measured concrete
crack opening, and δ

∧
is the predicted concrete crack

opening. *e closer the three evaluation indexes are to zero,
the more accurate is the prediction.

According to the posteriori prediction of the residual
time-series dataset, equation (23) gives the prediction of the
hybrid model for concrete crack openings starting from 10:
00 on February 11, 2021, with a prediction step of 24 (three
days). Figure 11 compares this prediction with those of
model I and model II. Table 2 gives the evaluation indicators
for different models.

Unlike the values predicted by the conventional statis-
tical model, those predicted by the statistical model con-
sidering nonlinear temperature component, which considers
the nonlinear response to temperature, are closer to the
measured values, although the improvement is minimal near
the extreme values. However, the difference between the
predicted values and the measured values near the extrema is
significantly reduced when using the hybrid model. Com-
pared with model I, the MSE, MAE, and NRMSE of the
hybrid model decreased by 87.0%, 68.5%, and 63.9%, re-
spectively. Compared with model II, the MSE, MAE, and
NRMSE of the hybrid model decreased by 73.4%, 51.4%, and
48.4%, respectively.

In summary, a positive Lyapunov exponent indicates
that concrete crack openings have chaotic components, so
the hybrid model makes significantly improved predictions
of concrete crack openings.

4.5. Dynamic Prediction Based on Hybrid Model of Concrete
Crack Openings. Early warning is a dynamic process in real
engineering because concrete crack openings evolve over
time. Given new monitoring data, the parameters of the
model must be updated and the dynamic prediction must be
redone. To verify the reliability of the hybrid model, ten
consecutive dynamic predictions were made, each with a
time step of 24 (three days), and MSE, MAE, and NRMSE of
model I, model II, and the hybrid model were statistically
analyzed. Based on these three metrics, Table 2 gives the

Table 1: Regression coefficients of model II for concrete crack
openings.

Regression coefficient Equation (22)
a11 − 1.661× 10− 1

a21 9.235×10− 2

a31 1.701× 10− 2

a41 0
a51 0
a61 7.707×10− 2

a71 2.446×10− 2

a81 9.186×10− 2

a91 − 1.097×10− 1

a12 2.297×10− 3

a22 − 1.320×10− 3

a32 0
a42 0
a52 1.158×10− 3

a62 − 2.587×10− 3

a72 0
a82 − 3.704×10− 3

a92 2.673×10− 3

a13 0
a23 0
a33 0
a43 − 8.494×10− 6

a53 -1.737×10− 5

a63 1.863×10− 5

a73 0
a83 4.518×10− 5

a93 − 2.476×10− 5

b1 -6.393×10− 2

b2 − 2.685
b3 0
b4 2.094×10− 1

c1 2.537×10− 1

c2 7.648×10− 2

a0 2.931× 10− 1
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Figure 7: Fitting effect of model I and model II. (a) Model I fitting. (b) Model II fitting. (c) Residuals of model I and model II.
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calculated improvement for the hybrid model relative to
model I andmodel II, and Figure 12 shows the box plots for a
comparative analysis.

For the hybrid model, the three evaluation metrics are
significantly improved compared with the two statistical
models. *e improvement for the hybrid model relative to
model I is 45.9%–70%, and the maximum improvement in
the MSE exceeds 80%. *e average improvement for the
hybrid model relative to model II is 23.4%–40.1%, and the
maximum improvement in the MSE exceeds 70%. *is
indicates that the hybrid model provides more accurate
predictions of concrete crack openings than does model II.

5. Conclusions

In this study, the conventional statistical model for concrete
crack opening is improved by considering the nonlinear
temperature factor. Using chaos theory and phase-space
reconstruction theory, a hybrid model that combines the
improved statistical model with a GA-BP neural network
residual model is finally developed to predict concrete crack
openings in hydraulic structures.

It is found that concrete crack openings are affected by
the nonlinear temperature response. However, the con-
ventional statistical model cannot accurately reflect the
temperature component of the system. *e improved sta-
tistical model makes a significant improvement in this area
by introducing the second- and third-order temperature
components.

*e residual series of the statistical model considering
nonlinear temperature component contains useful infor-
mation of crack evolution; the presence of a chaotic com-
ponent is demonstrated by calculating the maximum
Lyapunov exponent. *e phase-space reconstruction of the
residual series is combined with a GA-BP neural network
and the statistical model considering nonlinear temperature
component to establish a hybrid model to predict the re-
siduals. *e predictions of the hybrid model are more ac-
curate than those of the statistical model.

*ese results of the case study show that the hybrid
model produces more reliable short-term dynamic predic-
tions of concrete crack openings, making it of practical use
for generating early warnings of concrete crack openings.
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Table 2: Metrics for evaluating the prediction accuracy of the different models.

MSE MAE NRMSE
Model I (M1) 6.371× 10− 3 7.4935×10− 2 1.462×10− 3

Model II (M2) 3.118×10− 3 4.8492×10− 2 1.023×10− 3

Hybrid model (M3) 8.30×10− 4 2.3575×10− 2 5.28×10− 4

(M2 − M3)/M2 73.4% 51.4% 48.4%
(M1–M3)/M1 87.0% 68.5% 63.9%
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Supplementary 1. Concise description for Figure 5. Figure 5:
concrete crack opening (blue) and temperature (red). Col-
umnA is time. Column B is concrete crack opening. Column
C is measured temperature. Supplementary 2. Concise de-
scription for Figure 6. Figure 6: RMSE and R2 as a function of
L in model II. Column A is the order of the temperature
polynomial (denoted as L). Column B is RMSE. Column C is
R2. Supplementary 3. Concise description for Figure 7.
Figure 7: fitting effect of model I and model II. Column A is
time. Column B is measured value. Column C is fitted value
by model I. Column D is residuals of model I. Column E is
fitted value by model II. Column F is residuals of model II.
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S2(m,τ) as a function of delay time τ for different embedding
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time. Column B is measured values. Column C is predicted
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Column E is predicted values by hybrid model. Supple-
mentary 8. Concise description for Figure 12. Figure 12:
dynamic prediction of hybrid model of concrete crack
openings compared with that of statistical models. Column
A is times of dynamic prediction. Column B is improvement
of MSE due to hybrid model relative to model I. Column C is
improvement of MAE due to hybrid model relative to model
I. Column D is improvement of NRMSE due to hybrid
model relative to model I. Column E is improvement of MSE
due to hybrid model relative to model II. Column F is
improvement of MAE due to hybrid model relative to model
II. Column G is improvement of NRMSE due to hybrid
model relative to model II. (Supplementary Materials)
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