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In this article, we consider a fractional SEIR model, denoted by the SEIQHR model, which aims to predict the outbreak of
infectious diseases in general. In particular, we study the spread of COVID-19. �e fractional order o�ers a �exible, appropriate,
and reliable framework for pandemic growth characterization. Firstly, we analyze some elementary results of the model
(boundedness and uniqueness of solutions). In addition, we establish certain conditions to ensure the local stability of the disease-
free and endemic equilibrium points. Based on analytical and numerical results, we conclude that coronavirus infection (COVID-
19) remains endemic, which requires long-term prevention and intervention strategies.

1. Introduction

COVID-19 represents the disease caused by a virus in the
Coronaviridae family, and SARS-CoV-2 appeared at the end
of 2019 in Wuhan, China [1]. It spread rapidly around the
world, causing a worldwide epidemic [2, 3].

COVID-19 is a respiratory illness that can be fatal for old
patients or other chronic diseases. It is transmitted through
close contact with infected people. �e disease could also be
spread by asymptomatic patients [4], but scienti�c data are
lacking to attest with certainty. In addition, the international
health organization has imposed security measures to
control the spread including isolation, quarantine, increased
home con�nement, promotion of wearing face masks, travel
restrictions, the closure of public space, and the cancellation
of events. �e number of con�rmed cases increased rapidly
to reach more than 517 million cases, and approximately
6.25 million deaths were recorded worldwide as of May
2022.

�ere are several SEIR (susceptible-exposed-infectious-
recovered) models that study infectious diseases in general

[5–7]; since the appearance of the virus, the SEIR models
proposed aim to study the behavior of this epidemic [8].

In the last decade, fractional models have been used to
model diseases in general. For example, Singh [9] proposed a
new fractional model of blood alcohol model using the Hilfer
fractional operator. Kumar et al. [10] proposed a model to
study the transmission dynamics of dengue, and they
considered the generalized Caputo fractional operator. Since
the apparition of COVID-19, researchers have used frac-
tional derivatives used in the modeling of this infectious
disease. As an example, the work in [11–15] has developed
the classic SEIR model known by fractional models
(SEIQHR and SEIQR d) for epidemic analysis of COVID-
19 worldwide. �is development is founded on the estab-
lishment of new quarantine conditions and the hospitali-
zation of con�rmed cases, which are considered as epidemic
parameters for COVID-19. Recently, many types of frac-
tional derivatives have been employed to model the prop-
agation of COVID-19. For instance, Danane et al. proposed
a fractional-order model of the disease (COVID-19) with
government action and individual response by the Caputo
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operator. Bonyah et al. used the Atangana–Baleanu operator
for investigating the fractional optimal control dynamics of a
coronavirus model. Yadav et al. studied the dynamics of the
fractional-order COVID-19model withmemory effect using
the Liouville–Caputo operator, so they employed the
Adams–Bashforth–Moulton approach to find an approxi-
mate solution. Consequently, this development shows us
more precisely the behavior of this epidemic.

Recently, fractional calculus has shown wide applica-
bility in many fields, which can be obtained by extracting a
dynamic behavior of biological systems shown by a math-
ematical formulation of integer derivatives. Fractional
models have been proposed to study several phenomena
involving the memory effect, including epidemic behavior
[16], and they offer more flexibility than classical integer-
order models to fit the data accurately [17]. Several re-
searchers presented the differential fractional theory [18–21]
for this reason, and many papers studied fractional bio-
logical models [22, 23]. Recently, new types of fractional
derivatives have been developed. For instance, Khalil et al.
[24] proposed a new fractional derivative and its properties.
Subsequently, Abdeljawad [25] developed the properties of
the conformable fractional derivative. After that, Ben-
makhlouf et al. [26] studied the finite time stability (FTS)
and finite time boundedness (FTB) of the conformable
fractional derivative. Currently, Hattaf [27, 28] introduced a
new definition of the fractional derivative with a non-sin-
gular kernel in the sense of Caputo to generalize the various
types by making these properties, and he proposed an ap-
proach for studying the stability of the latter. After that,
Hattaf et al. [29] proposed a new numerical method for
approximating the generalized Hattaf fractional derivative
involving a non-singular kernel based on Lagrange poly-
nomial interpolation.

Inspired by the aforementioned work and previous lit-
erature, we provide the compartmental model of COVID-19
with a standard incidence rate explored in [30] considering
fractional Caputo derivatives for a better insight into the
disease. )e aim of the epidemic model (4) is to describe the
dynamic behavior of the disease and predict the tendency for
the disease to spread. )erefore, we have proposed a
SEIQHR model. First, we analyze the qualitative properties
of this model, including the existence and uniqueness of the
disease-free and endemic equilibrium points. Second, we
establish the conditions to ensure local asymptotic stability
of disease-free and endemic equilibrium points. )ird, we
study the contribution of parameters to reproductive
numbers. At the end, a numerical simulation is proposed to
show the behavior of the different compartments of our
model (4), and we will give some clarification into the in-
terpretation and role of fractional derivatives.

2. Preliminary Results

We begin by giving some definitions of fractional calculus.

Definition 1 (see [31]). )e Caputo fractional derivate of
function f order is defined by

d
β
f(t) � d

− (n− β) d
n

dt
n (f(t))

�
1
Γ(n − β)


t

0
f

(n)
(x)(t − x)

n− β− 1dx,

(1)

wheren − 1≤ β< n ∈ N∗.

Definition 2 (see [32]). Let the fractional system

d
β
X(t) � f(t, X), t> 0,

X t0(  � X0 > 0,

⎧⎨

⎩ (2)

whereβ ∈ [0, 1],t0 > 0, andf: [t0, +∞[×Ω⟶ Rn,Ω ⊂ Rn.
Iff(t, X)fulfill the local Lipschitz condition with respect toX,
there exists a unique solution of the above system.

Lemma 1 (see [33]). Let the fractional-order system

d
β
x(t) � f(x), t> 0,

x t0(  � x0 > 0,

⎧⎨

⎩ (3)

with0≤ β< 1,x ∈ R. 7e equilibrium points of the above
system are calculated by solving the following equation:
f(x) � 0.x∗are locally asymptotically stable if all eigenva-
luesλof the Jacobian matrixJ � zf/zxatx∗evaluated of the
equilibrium points satisfy Matignon’s condition (see [34])
|arg(λ)|> βπ/2.

3. Description of Model

In this section, we present a mathematical formulation to
model the behavior of compartments; first we will split our
population into six categories S(t) Susceptible, E(t) Ex-
posed, I(t) Infected, Q(t) Quarantined, H(t) Hospitalized
and R(t)Recovered. )e description of the parameters is
indicated in Table 1, so that the description of the inter-
actions between the compartments is illustrated in Figure 1.
)e incidence rate plays an important role in describing the
evolution of an infectious disease. Based on the spread of
different diseases, there are many forms of incidence rates
[30, 35–37]. In our model, we assume the bilinear incidence
rates [30] (β1SI and β2SE). )us, our proposed model (4) is
in the following form:

d
β
S(t) � Λ − β1SI − β2SE − dS − asS,

d
β
E(t) � β1SI + β2SE − αE − dE,

d
β
I(t) � αE − δI − ηI − μI − dI,

d
β
Q(t) � δI − kQ − εQ − dQ,

d
β
H(t) � εQ + ηI − rH − dH,

d
β
R(t) � rH + μI − dR − arR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with initial conditions

S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Q(0)≥ 0, H(0)≥ 0 andR(0)≥ 0,

(5)

where dβ is in the sense of Caputo fractional derivative and
0< β≤ 1.
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Ourmodel (4) is based on the following hypothesis. (H1):
the number of susceptible individuals added is constant each
day. (H2): the susceptible individuals (S) move into the
exposed (E) class before the infected class. (H3): when an
individual is infected (I), he is either quarantined (Q),
hospitalized (H) (severe case), or recovered. (H4): a con�ned
individual can be hospitalized if his situation is critical.

�e detailed description of (4) is presented in the fol-
lowing schema.

4. Boundedness and Uniqueness of Solutions

�is section is dedicated to demonstrate the boundedness of
the solutions of (4).

Lemma 2. �e set Ω � (S, E, I, Q,H, R) ∈ R6
+: N(t)≤{

N(0) + Λ/d} is a region of attraction for all solutions initi-
ating in the interior of the positive octant, where N � S+ E +
I + Q +H + R .

Proof 1. We pose N(t) � S(t) + E(t) + I(t) + Q(t)+
H(t) + R(t); then,

dβN + dN � Λ − kQ≤Λ. (6)

Using the theory of fractional inequality (see [31]), we
obtain

N(t)≤N(0)Eβ − dt
β( ) +
Λ
d

1 − Eβ − dt
β( )( ), (7)

where Eβ(z) � ∑
∞
k�0 z

k/Γ(βk + 1) is Mittag-Le¥er function
[31], Γ(z) � ∫∞0 xz− 1e− xdx is Euler’s gamma function, and
0<Eβ(− dtβ)≤ 1 if t⟶∞, and we have 0<N(t)≤N(0)+
Λ/d, proving this lemma.

Otherwise, model (4) is equivalent to the model:

dβX � F(X), (8)

where

X �

S

E

I

Q

H

R





,

F(X) �

Λ − β1SI − β2SE − dS
β1SI + β2SE − αE − dE
αE − δI − ηI − μI − dI
δI − kQ − εQ − dQ
εQ + ηI − rH − dH
rH + μI − dR





�

F1(X)
F2(X)
F3(X)
F4(X)
F5(X)
F6(X)





.

(9)

□

Table 1: Description of variables and parameters.

VARS and
PRM Explanation

S Susceptible individuals
E Exposed individuals
I Infected individuals
Q Quarantined individuals
H Hospitalized individuals
R Recovered individuals
Λ In�ow number of susceptible individuals
β1 Infection rates of the infected individuals
β2 Infection rates of the exposed individuals
α Incubation rate

δ Rate at which symptomatic infections are diagnosed
and quarantined

d Natural rate mortality

μ Rate at which symptomatic infections are diagnosed
and recovered

η Rate at which symptomatic infections are diagnosed
and hospitalized

ε Transition rate of quarantined individuals to the
hospitalized infected class

r
Transition rate of hospitalized individuals to the

recovered class
k �e death rate caused by the disease

S E

I

HQ R

β1

β2

α

η

rε

μδ

Λ

d d

d

dd, k d

Figure 1: Schematic diagram of (4).
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Theorem 1. Assume that the initial conditions X(0)≥ 0 .
7en, there exists a unique solution of system (4) defined
on0, +∞.

7e sufficient condition for the existence and uniqueness
of the solution of system (4) in the region Ω × [t0, T]with
initial conditions X(0) and L � max(d + 2(β1+ β2)M, d+

2(α + β2M), d + 2(η + μ + δ+ β1M), d + k + 2ε, (d + 2r), d

is ‖F(X)− F(X’)‖‖1≤L‖X− X’‖1..

Proof 2. To prove the global existence and uniqueness of (4),
consider the region Ω × [t0, T], where Ω � (S, E, I, Q, H,{

R) ∈ R+6: max |S|, |E|, |I|, |Q|, |H|, |R|{ }≤M, M> 0}.
For any X � (S, E, I, Q, H, R)T, X′ � (S′, E′, I′,

Q′, H′, R′)T ∈ Ω,

F(X) − F X′( 
����

����1 � 
6

i�1
Fi(X) − Fi X′( 




� β1 SI − S′I′(  + β2 SE − S′E′(  + d S − S′( 


 + β1 SI − S′I′(  + β2 SE − S′E′(  − (α + d) E − E′( 




+ α E − E′(  − (δ + η + μ + d) I − I′( 


 + δ I − I′(  − (k + d + ε) Q − Q′( 




+ ε Q − Q′(  + η I − I′(  − (r + d) H − H′( 


 + r H − H′(  + μ I − I′(  − d R − R′( 




≤ d + 2 β1 + β2( M(  S − S′


 + d + 2 α + β2M( (  E − E′


 + d + 2 η + μ + δ + β1M( (  I − I′




+(d + k + 2ε) Q − Q′


 +(d + 2r) H − H′


 + d R − R′


≤L X − X′
����

����1,

(10)

where

L � max d + 2 β1 + β2( M, d + 2 α + β2M( , d + 2 η + μ + δ + β1M( , d + k + 2ε, (d + 2r), d( . (11)

)us, F satisfies Lipschitz’s condition (see [32] and
Definition 2) with respect to X. □

5. Equilibria and Local Stability

In the first part of this section, we debate the existence
of equilibria. It is evident that (4) has an infection-
free equilibrium P0(Λ/d, 0, 0, 0, 0, 0). Also, other
endemic equilibrium point P∗(S∗, E∗, I∗, Q∗, H∗, R∗) is
defined after in (13). )e basic reproduction number of
(4) is

R0 �
Λ β1α + β2(δ + μ + d + η)( 

d + as( (δ + μ + d + η)(α + d)
. (12)

Theorem 2.

(1) If R0 ≤ 1 , then system (4) has one infection-free
equilibriumP0(Λ/d, 0, 0, 0, 0, 0).

(2) If R0 > 1 , then (4) has endemic equilibrium
pointP∗(S∗, E∗, I∗, Q∗, H∗, R∗),
where(S∗, E∗, I∗, Q∗, H∗, R∗)are defined after in (9).

Proof 3. To get the endemic equilibrium point of the (4), in
the interior of the equilibrium P∗(S∗, E∗, I∗, Q∗,

H∗, R∗), □

Proof. i.e., Fi(S, E, I, Q, H, R) � 0 for i � 1, . . . , 6, we get

S
∗

�
Λ(δ + μ + d + η)

β1αE
∗

+ β2E
∗

+ d( (δ + μ + d + η)
,

I
∗

�
αE
∗

δ + μ + d + η
,

Q
∗

�
δαE
∗

(k + d + ε)(δ + μ + d + η)
,

H
∗

�
[η(ε + k + d) + εδ]αE

∗

(k + d + ε)(r + d)(δ + μ + d + η)
,

R
∗

�
(r[η(ε + k + d) + εδ] + μ(r + d)(k + d + ε))αE

∗

(k + d + ε)(r + d)(δ + μ + d + η)d
,

E
∗

�
(δ + μ + d + η)d

β1α + β2(δ + μ + d + η)
R0 − 1( .

(13)

)en, if R0 > 1, then (4) has endemic equilibrium
point P∗.

Now, we analyzed the local asymptotic stability of dis-
ease-free equilibrium point P0 and endemic equilibrium
point P∗ for (4). □

Theorem 3. 7e disease-free equilibrium point P0 is locally
asymptotically stable, if δ + μ + η + 2 d + α> β2Λ/d and
R0 < 1 .

Proof 5. To prove the local stability of equilibria, the ei-
genvalues of the Jacobian matrix of (4) are evaluated by

J0 �
J11 J12

J21 J22
 , (14)
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where

J11 �

− d 0 0

− β2Λ
d

β2Λ
d

− (α + d) α

− β1Λ
d

β1Λ
d

− (δ + μ + d + η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J12 �

0 0 0

0 0 0

δ η μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

J21 �

0 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

J22 �

− (d + ε + k) ε 0

0 − (r + d) r

0 0 − d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

)e characteristic equation of P0(Λ/d, 0, 0, 0, 0, 0) is

(λ + d)
2
(λ + r + d)(λ + k + d + ε) λ2 + sλ + p  � 0, (16)

where s � δ + μ + η + 2 d + α − β2Λ/d,

p � (δ + μ + η+
d)(d + α − β2Λ/d) −

αβ1Λ/d � (d + α)(δ + μ + η + d)(1 − R0).

)e discriminant of equation λ2 + sλ + p � 0 is
(δ + μ + η − α + β2Λ/d)2 + 4Λαβ1/d> 0. )en, the eigen-
values of matrix (10) to the equilibrium point P0 are reel
roots, so λ1 � − (k + d + ε)< 0, λ2 � − (r + d)< 0, λ3 � λ4 �

− d< 0, λ5 + λ6 � − s, and λ5λ6 � p.
If s> 0 andR0 < 1, then λ5 + λ6 < 0 and λ5λ6 > 0. So, λ5 < 0

and λ6 < 0. )e proof is completed. □

Theorem 4. 7e endemic equilibrium point P∗ is locally
asymptotically stable if R0 > 1 and condition (12) are realized.

Proof 6. In the same way as the previous proof, let

J
∗

�
J
∗
11 J
∗
12

J
∗
21 J
∗
22

 , (17)

where

J
∗
11 �

− β1I
∗

+ β2E
∗

+ d(  β1I
∗

+ β2E
∗ 0

− β2S
∗ β2S

∗
− (α + d) α

− β1S
∗ β1S

∗
− (δ + μ + d + η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

J
∗
12 �

0 0 0

0 0 0

δ η μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

J
∗
21 �

0 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

J
∗
22 �

− (d + ε + k) ε 0

0 − (r + d) r

0 0 − d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(18)

From the Jacobian matrix J∗, the characteristic equation
at P∗ is

(λ+ d)(λ+ r + d)(λ+ k + d + ε) λ3 + a2λ
2

+ a1λ+ a0  � 0,

(19)

where

a0 � (δ + μ + η + d) β1I
∗

+ β2E
∗

+ d( (α + d) − dβ2S
∗

( 

− α dβ1S
∗
,

a1 � (δ + μ + η + d) α + 2 d + β1I
∗

+ β2E
∗

− β2S
∗

( 

+ β1I
∗

+ β2E
∗

+ d( (α + d) − β1α + dβ2( S
∗
,

a2 � β1I
∗

+ β2E
∗

+ 3 d + α − β2S
∗

+ δ + μ + η.

(20)

Using (13), we get
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a0 � dS
∗ αβ1 + β2(η + μ + d + δ)(  R0 − 1( > 0,

becauseR0 > 1,

a1 � (δ + μ + η + α + 2 d)dR0 −
β2Λ
R0

,

a2 � δ + μ + η + α + 2 d + dR0 −
β2Λ
dR0

.

(21)

Firstly, λ1 � − d<0, λ2 � − (r + d)<0, λ3 � − (k + d + ε)<0.
)en, |arg(λ1,2,3)| � π>βπ/2.

On the other hand, the discriminant of algebraic
equation λ3 + a2λ

2 + a1λ + a0 � 0 is this form (see [38]):

d(P) � 18a1a2a0 + a2a1( 
2

− 4a
3
1 − 4a

3
2a0 − 27a

2
0. (22)

)en, the equilibrium point P∗ is locally asymptotically
stable in one of the following cases:

(1) If d(P)> 0, P∗ is asymptotically stable if a1, a2 > 0
and a2a1 − a0 > 0 for all β ∈ 0, 1.

(2) If d(P)<0anda1, a2>0, P∗ is asymptotically stable if
β< 2/ 3anda2a1 − a0>0.

(3) If d(P)< 0, a1, a2 > 0 and a2a1 � a0, P∗

is asymptotically stable for all β ∈ 0, 1.

)en, P∗ is locally asymptotically stable if R0 > 1 and (12)
are realized. □

6. Sensitivity Analysis

Sensitivity analysis shows us the impact of each pa-
rameter on the transmission of the disease. It is used to
understand which parameters have a high impact on the
R0 threshold. More specifically, sensitivity indices allow
us to measure the relative change in a variable when a
parameter changes. If this variable is differentiable with
respect to the parameter, the sensitivity index is defined
as follows [39]:

S
R0
a �

zR0

za

a

R0
, (23)

where a represent the contribution to the basic reproductive
number R0.

For Λ, S
R0
Λ � zR0/zΛ(Λ/R0) � 1.

For β1, S
R0
β1

� zR0/zβ1(β1/R0) � αβ1/αβ1 + β2(δ+ μ+

η + d).
For β2, S

R0
β2

� zR0/zβ2(β2/ R0) � β2(δ + μ + η + d)/αβ1+
β2(δ + μ + η + d).

For μ, S
R0
μ � zR0/zμ(μ/R0) � − (β1αμ/(αβ1+ β2(δ + μ+

η + d))(δ + μ + η + d)).
For η, S

R0
η � zR0/zη(η/R0) � − (β1αη/(αβ1+ β2(δ + μ+

η + d))(δ + μ + η + d)).
For δ, S

R0
δ � zR0/zδ(δ/R0) � − (β1αδ/(αβ1 + β2(δ+

μ + η + d))(δ + μ + η + d)).
For α, S

R0
α � zR0/zα · (α/R0) � (α(β1d− β2(δ + μ + η+

d))/(α + d)(αβ1 + β2(δ + μ + η + d))).

For d, S
R0
d � zR0/zd · (d/R0) � − (β1((d+ α)(d + η+ μ +

δ) + d(d + α) + d(d + η + μ + δ)/(d+ α)(d + η + δ + μ)

(β1α + β1(μ + δ+ η + d))) + (β2(2 d + α)(d + μ + η + δ)/
(d + α)(β1α + β1(μ+ δ + η + d)))). Using the values of pa-
rameters (14), we get the following table.

)e sensitivity index can depend on the system pa-
rameters, but it can also be constant. For example, SR0

Λ means
that an increase (decrease) in Λ by a given percentage will
result in an increase (decrease) of R0 by the same percentage.
Concretely, an increase of the values Λ, β1, β2 will increase
the basic reproduction number by 100%, 15.23%, and
84.77%, respectively, and an increase of the values μ, η, δ, α, d
will decrease R0 by 6.3%, 2.53%, 6.4%, 22.52%, and 94.01%,
respectively (see Table 2).

7. Simulations

In this section, we include a numerical analysis of model (4).
)e parameters are estimated. We will study the impact of
certain parameters (α, μ, η and ε) on the solutions and the
impact β of the fractional derivation order.

For this reason, we take some hypothetical data in order
to illustrate the results that we have already established in the
previous sections.

Λ� 105,

β1 � 3.8×10− 6
,

β2 � 7×10− 6
,

α� 0.2657,

δ � 0.3352,

μ� 0.33029,

η� 0.13266,

ε� 0.1259,

k � 1.1975×10− 5
,

r � 0.0149,

d � 3.051×10− 5
,

(S(0),E(0), I(0),Q(0),H(0),R(0)) � 11×104,0,102,102,0,0 .

(24)

To resolve our fractional system (4), we have used the
function “fde12″ in MATLAB. It is an implementation of
Adams–Bashforth–Moulton prediction correction described

Table 2: Sensitivity index of the basic reproduction number.

Parameters Sensitivity index
Λ +1
β1 +0.1523
β2 +0.8477
μ − 0.063
η − 0.0253
δ − 0.064
α − 0.2252
d − 0.9401
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in [40]. �e convergence and accuracy of this method are
studied in [41]. �e implementation of several iterations of
the corrector has been proposed in [42]. In this imple-
mentation, the discrete convolution is evaluated using the
FFT algorithm described in [43], which makes the com-
putational cost proportional to N∗ log (N)2 instead of N2

in the classical implementation; N is the number of points in
time for evaluating the solution.

Figure 2 shows the impact of order fractional derivative β
as a function of time t. We remark in Figure 2 that the
increase of β leads to the growth of the speed of convergence
for E and I. Also, we observe that the increase of β leads to a
decrease in the speed of convergence for Q and H.

Figure 3 illustrates the impact of incubation rate α
according to time t. We observe that the number of sus-
ceptible, exposed, and infected individuals will initially
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Figure 2: Impact of β according to time of endemic equilibrium P∗.
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increase, but after a period of time it will decrease. We notice
that the number of susceptible cases S and recovered cases R
increases when α increases. Contrarily, the cases infected I,
quarantinedQ, hospitalizedH, and exposed E are decreased.
Indeed, by increasing the rate of incubation, the number of
exposed cases decreases, which reduces the number of
susceptible cases who will pass into the category exposed and
then will be infected. �is leads to a decrease in the number

of infected and hospitalized cases. As a consequence, the
number of recovered cases increases.

In addition, Figure 4 shows that when the value of μ
increases, the number of suspected S and recovered R
cases increases. Contrarily, the infected cases I, quar-
antined cases Q, and hospitalized cases H are decreased.
�is explains why if the rate μ increases, many of the
infected cases will recover, causing the number of
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Figure 3: Impact of α according to time of endemic equilibrium P∗.
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infected individuals to decrease and the recovered cases
to increase. �erefore, the number of hospitalized cases
will decrease.

We can observe in Figure 5 that when the value of η
increases, the number of quarantined Q and hospitalized
H cases increases. On the other hand, the infected cases I
and recovered cases R decrease. �is implies that if the
percentage of infected individuals becomes severe, they

must be hospitalized. As the number of hospitalized cases
grows, the number of infected cases decreases. As a result,
the number of recovered cases is reduced. Moreover, in
Figure 6, when the value of ε increases, the number of
quarantined cases Q increases. On the other hand, the
hospitalized cases H and recovered cases R decrease.

Figure 7 illustrates the impact of δ according to time t.
We notice that the number of susceptible cases S,

x 104

μ=0.3
μ=0.7
μ=1

500 1000 1500 2000 2500 30000
t

2

4

6

8

10

12

14
S 

(t)
x 104

μ=0.5
μ=1
μ=1.7

500 1000 1500 2000 2500 30000
t

0

1

2

3

4

5

6

E 
(t)

x 104

μ=0.5
μ=1
μ=1.7

500 1000 1500 2000 2500 30000
t

0

0.5

1

1.5

2

2.5

I (
t)

x 104

η=0.2
η=0.5
η=1.1

100 200 300 400 500 600 700 800 900 10000
t

2

4

6

8

10

12

14

S 
(t)

x 104

η=0.2
η=0.5
η=1.1

100 200 300 400 500 600 700 800 900 10000
t

0

1

2

3

4

5

6

E 
(t)

x 104

η=0.2
η=0.5
η=1.1

100 200 300 400 500 600 700 800 900 10000
t

0

0.5

1

1.5

2

2.5

I (
t)

Figure 4: Impact of μ according to time of endemic equilibrium P∗.
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quarantined cases Q, and hospitalized cases H increases
when δ increases. Contrarily, the cases infected I and re-
covered R are decreased, but it has little impact on the cases
exposed E. �is is explained by the fact that a signi�cant

number of infected (noncritical cases) must be quarantined.
Among these con�ned cases, some individuals may be
hospitalized at a constant ϵ rate. Consequently, the number
of hospitalized cases is increasing.
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Figure 5: Impact of Η according to time of endemic equilibrium P∗.
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8. Conclusion

In this paper, we have modeled the COVID-19 epidemic
according to susceptible, exposed, infected, quarantined,
hospitalized, and recovered compartments. An operator
Caputo of fractional derivatives was used to evaluate the
memory e�ect on the epidemic behavior. We developed a
mathematical approach to prove the boundedness,
uniqueness, and the existence of solutions and to demon-
strate a local stability of equilibrium points.

Sensibility analysis revealed that the epidemic evolution
is a�ected by the di�erent model parameters. Furthermore, a
numerical simulation illustrates the e�ect of memory in a
fractional derivative, and the increase of the fractional
derivation order speeds up the decrease of E, I and increase
of Q, H, and R. Consequently, the calibration of this pa-
rameter provides a correct adjustment of the real data. On
the other hand, they show that the susceptible cases increase
with an increase in the incubation rate α, and when the rates
μ and η increase, the number of infections and the exposed
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cases considerably decreases. Consequently, these results can
help to reduce the spread of the virus and to control the
epidemic. In future work, the role of the vaccination on the
expansion of this disease can be incorporated into themodel.
)us, we will study a fractional model using the new defi-
nition of the fractional derivative with a non-singular kernel
in the sense of Caputo [27].
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[19] M. Riesz, “L’intégrale de Riemann-Liouville et le problème de
Cauchy,” Acta Mathematica, vol. 81, no. 0, pp. 1–222, 1949.

[20] B. Ross, S. G. Love, and E. R. Love, “Functions that have no
first order derivative might have fractional derivatives of all
orders less than one,” Real Analysis Exchange, vol. 20, no. 1,
p. 140, 1994.

[21] S. Samko, A. Kilbas, and O.Marichev, Fractional Integrals and
Derivatives :7eory and Applications, p. 1, 1993.

[22] E. Elgazzar and A. Elgazzar, “On fractional order differential
equations model for nonlocal epidemics,” Physica A: Statis-
tical Mechanics and Its Applications, vol. 379, no. 2,
pp. 607–614, 2007.

[23] N. D. Cong, T. S. Doan, S. Tuan, and H. T. Tuan, “Linearized
asymptotic stability for fractional differential equations,”
Electronic Journal of Qualitative 7eory of Differential
Equations, vol. 39, no. 39, pp. 1–13, 2016.

[24] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[25] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279,
pp. 57–66, 2015.

[26] A. Ben Makhlouf, O. Naifar, M. A. Wu, and B. W. Wu, “FTS
and FTB of conformable fractional order linear systems,”
Mathematical Problems in Engineering, vol. 2018, pp. 1–5,
2018.

[27] K. Hattaf, “On some properties of the new generalized
fractional derivative with non-singular kernel,”Mathematical
Problems in Engineering, vol. 2021, pp. 1–6, 2021.

[28] K. Hattaf, “Stability of fractional differential equations with
new generalized hattaf fractional derivative,” Mathematical
Problems in Engineering, vol. 2021, pp. 1–7, 2021.

[29] K. Hattaf, “On the stability and numerical scheme of frac-
tional differential equations with application to biology,”
Computation, vol. 10, no. 6, p. 97, 2022.

Mathematical Problems in Engineering 13

https://arxiv.org/abs/2005.01820
https://arxiv.org/abs/2005.01820


[30] J. J. Wang, J. Z. Jin, and Z. Jin, “Analysis of an SIR model with
bilinear incidence rate,” Nonlinear Analysis: Real World
Applications, vol. 11, no. 4, pp. 2390–2402, 2010.

[31] I. Podlubny, Fractional Differential Equations: An Introduc-
tion to Fractional Derivatives, Fractional Differential Equa-
tions, to methods of their Solution and Some of their
application, vol. 198, Elsevier, Amsterdam, Netherlands, 1998.

[32] Y. Li, Y. Podlubny, and I. Podlubny, “Stability of fractional-
order nonlinear dynamic systems: lyapunov direct method
and generalized Mittag-Leffler stability,” Computers &
Mathematics with Applications, vol. 59, no. 5, pp. 1810–1821,
2010.

[33] E. Ahmed, A. El-Sayed, and H. A. El-Saka, “Equilibrium
points, stability and numerical solutions of fractional-order
predator-prey and rabies models,” Journal of Mathematical
Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.

[34] D. Matignon, “Stability results for fractional differential
equations with applications to control processing,” Proceed-
ings of the Computational Engineering in Systems and Ap-
plication Multiconference, vol. 2, pp. 963–968, 1996.

[35] M. A. Khan, Q. Badshah, S. Islam, I. Khan, S. Shafie, and
S. A. Khan, “Global dynamics of SEIRS epidemic model with
non-linear generalized incidences and preventive vaccina-
tion,” Advances in Difference Equations, vol. 2015, no. 1, p. 88,
2015.

[36] M. A. Khan, Y. Islam, and S. Islam, “Complex dynamics of an
SEIR epidemic model with saturated incidence rate and
treatment,” Physica A: Statistical Mechanics and Its Appli-
cations, vol. 493, pp. 210–227, 2018.

[37] X. Yang and L. Yang, “Stability analysis of an SEIQV epidemic
model with saturated incidence rate,”Nonlinear Analysis: Real
World Applications, vol. 13, no. 6, pp. 2671–2679, 2012.

[38] E. Ahmed, A. El-Sayed, and H. AA. El-Saka, “On some Routh-
Hurwitz conditions for fractional order differential equations
and their applications in Lorenz, Rössler, Chua and Chen
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