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A sports-assisted educationmethod based on a support vector machine (SVM) is proposed to address the problem of complex and
variable sports actions leading to easy ghosting of target detection and high dimensionality of feature extraction, which reduces the
low accuracy of sports action recognition. �e ViBe target detection algorithm is improved by using Wronskian function and the
“4-linked algorithm” seed �lling algorithm, which e�ectively solves the ghosting problem and obtains clearer human sports
targets. By using the genetic algorithm to fuse the eight-star model with sports action features extracted by the Zernike moment,
redundant features are reduced and di�erentiability between di�erent classes is ensured. Sports action classi�cation was achieved
by using a one-to-one construction of an SVM classi�er. �e results show that the proposed method can e�ectively recognize
sports movements with an average recognition accuracy of more than 96%, which can assist physical education and has a certain
practical application value.

1. Related Work

With the popularity of arti�cial intelligence technology in
various industries, machine vision is playing an increasingly
important role in people’s lives. As a hot research direction
inmachine vision, sports action recognition is widely used in
sports analysis and sports-assisted education, which is based
on target detection. Sports action features are extracted to
analyze them, and an automatic classi�er is used for rec-
ognition. At present, commonly used target detection al-
gorithms mainly include hybrid Gaussian background
modeling, visual background extraction (ViBe), and average
background model. [1]. For example, Farag Wael detected
autonomous vehicles by hybrid Gaussian background
modeling to achieve fast real-time target detection. Zhao
Xiaolei et al. applied the ViBe algorithm to achieve multi-
scale target detection in high-resolution remote sensing
images [2]. Zhao Weidong et al. achieved the target de-
tection of steel defects by the average background model [3].
Compared with hybrid Gaussian background modeling and
the average background model, the ViBe algorithm has good
fault tolerance, high computing speed, and detection

accuracy [4]. �erefore, the ViBe algorithm is used as the
target detection algorithm in this paper for sports action
recognition. In terms of feature extraction, the main feature
extraction methods include the eight-star model, Zernike
moments, and other approaches. Liu Jing et al. extracted
hyperspectral remote sensing image features. An eight-star
model is used to improve the recognition e�ect of images [5].
Wang et al. used Zernike moments to extract MRI image
features and used SVM classi�cation to identify them for
rectal cancer T-stage prediction [6]. Sports actions are
complex, andmultifeature fusion is bene�cial to improve the
accuracy of subsequent action recognition. �erefore, in this
paper, a genetic algorithm is used to fuse the eight-star
model with features extracted from Zernike moments. For
image classi�cation recognition, it mainly includes a dy-
namic time regularization algorithm and probability-based
statistical recognition methods. Based on the former, it is
usually not used for complex sports action classi�cation
recognition due to its susceptibility to noise [7]. �e clas-
si�cation methods based on probability statistics include
hiddenMarkovmodels and SVMmodels.�e SVMmodel is
highly useable and generalizable in dealing with high-
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dimensional pattern recognition and nonlinear problems,
and it is applicable to this paper for sports action classifi-
cation [8]. 'us, SVM is selected as a classifier to classify
sports actions through target detection and multifeature
fusion, so as to achieve sports-assisted education.

2. Basic Algorithms

2.1. Target Detection Algorithm

2.1.1. An Introduction to ViBe Algorithm. A ViBe algorithm
is a pixel-level detection algorithm with the characteristics of
occupying a small hardware memory and a high recognition
rate, and its specific steps are as follows:

(1) Background modeling: let M(x) be the set of back-
ground pixel values v(x) of the pixel point x. 'en,
the background model can be obtained as

M(x) � v1, v2, . . . , vN􏼈 􏼉. (1)

(2) Foreground detection: the new pixel value v(x) with
M(x) is compared. If v(x) is close to the sampled
value inM(x), v(x) belongs to the background point.
Suppose SR(v(x))∩ v1, v2, . . . , vN􏼈 􏼉 is a sphere space
with v(x) as the center and R as the radius and
SR(v(x))∩ v1, v2, . . . , vN􏼈 􏼉 denotes finding the cross
section in the space. In Figure 1, C1 and C2 are the
components of (C1,C2) in the two-dimensional Eu-
clidean space, # is the number of intersecting ele-
ments of the set, and min is the decision threshold,
then the decision process is expressed as

v(x) ∈
foreground if# SRv(x)∩M(x)􏼈 􏼉<Min

background otherwise
.􏼨

(2)

If the number of M(x) in the space<min, x is a
foreground pixel point.

(3) Background model updating: PG is the pixel point in
the random point x eight neighborhood in the
background model, as in Figure 2(a), input Pt, as in
Figure 2(b), and PG needs to be updated when Pt(x)

is judged to be the background. Spatial randomness
is the random replacement of pixels PG(r) in the
PG(x) eight neighborhoods by Pt(x).

2.1.2. ViBe Algorithm Improvement. 'eViBe algorithm has
the advantage of constructing a background model from the
first frame of the video sequence, but at the same time, it also
has the problem of ghost regions. To solve this problem, this
paper improves it by the means of Wronskian function [9]
and the “4-linked algorithm” seed filling algorithm [10], as
shown in Figure 3. In addition, the steps of improvement are
as follows:

(1). After preprocessing the collected data, the ViBe
algorithm is used to detect the motion target

(2). 'e pixel values are judged according to equation
(3) to obtain the ghosting area:

|W| �
Ft
′(x, y)

F’
t− 1(x, y)

􏼠 􏼡

2

−
Ft
′(x, y)

F
’
t− 1(x, y)

⎛⎝ ⎞⎠ � 0, (3)

where Ft(x, y), Ft− 1(x, y) are the gray values of the
pixel point (x, y) at moments t and t − 1
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Figure 1: Pixel classification diagram in Euclidean space.
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Figure 2: background model update strategy. (a) 'e background
model randomly selects PG. (b) New frames in the video sequence.
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(3) 'e ghost region is filled with the “4-linked algorithm”
and acquire the moving target by median filtering

2.2. Feature Extraction Algorithm

2.2.1. Eight-Star Model. 'e process of extracting sports
action features from the eight-star model is as follows: we
assume that the silhouette pixel points are N, and we cal-
culate the sports pose silhouette centroid coordinates
(xc, yc).

xc �
1
N

􏽘

N

i− 1
xi,

yc �
1
N

􏽘

N

i− 1
yi.

(4)

According to (xc, yc), the motion target is divided into
four parts: top, bottom, left, and right, and the Euclidean
distance from the extreme value point of the silhouette
contour of each part to the center of mass is calculated as

di �

������������������

xi − xc( 􏼁
2

+ yi − yc( 􏼁
2

􏽱

, i � 1, 2, . . . , 8. (5)

We connect the center of mass of each part with the
contour extreme point, and we calculate the angle between
each line and the horizontal line as shown in

θi � arccos
xi − xc

di

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 ×

180
π

. (6)

By internalizing the sports action gesture silhouette in a
semicircle, the eccentricity is used to determine the am-
plitude of sports movements as shown in

e �

�����

1 −
a
2

b
2

􏽳

, (7)

where b is the short semiaxis of the ellipse, i.e., silhouette
height, and a is the long semi-axis of the ellipse, i.e., sil-
houette width. Based on the above information, the sports
action feature vector extracted by the eight-star model can be
obtained as

F � d1, d2, d3, d4, d5, d6, d7, dg, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θg, e􏼐 􏼑.

(8)

2.2.2. Zernike Moments. Zernike moments are calculated by
computing the orthogonal set of the projection of the image
f(x, y) on the set of complex-valued functions Vpq(x, y)􏽮 􏽯

on the unit circle x2 + y2 � 1 in the following form:

Vpq(x, y) � Vpq(ρ)e
jqθ

,

Rpq(ρ) � 􏽘

(p− |q|c2

s− 0
(− 1)

s (p − s)!

s!(p +|q|/2 − s)!(p − |q|/2 − s)!
ρp− 2s

,

(9)

where ρandθ are the length of the pixel point (x, y) in the unit
circle from the origin and the angle information with the x-
axis and Rpq(ρ) is the radial polynomial of (x,y).

From Zernike moment polynomial properties, it is
known that there exists a unique expression of f(x, y).

f(x, y) � 􏽘
∞

p− 1
􏽘

∞

q− 0
ZpqVpq(ρ, θ), (10)

where Zpq is the Zernike moment, which is defined in

Zpq �
p + 1
π

Bx2+y2 ≤ 1f(x, y)V
−
pq(ρ, θ)dxdy. (11)

'e eigenvectors corresponding to Zernike moments are
log|Z11|, log|Z20|, log|Z31|, log|Z33|, log|Z40|, log|Z42|, and
log|Z44|.

2.3. Classification Recognition Algorithm. SVM is a classi-
fication algorithm that performs nonlinear classification by a
kernel method. 'e core idea of the SVM algorithm is to use
mathematical methods to construct the optimal classifica-
tion surface in the original space or the projected high-di-
mensional space, so that the given binary categories can be
distinguished [11]. 'e specific procedure is as follows:

Suppose the input data is x and x is mapped to a high-
dimensional space by a nonlinear mapping function
ϕ(x): Rd⟶ F as shown in Figure 4. 'e estimation
function is then used to linearly estimate:

R(w) �
1
2
‖w‖

2
+ C 􏽘

n

i�1
J
ε

yi, di( 􏼁, (12)

where C is the penalty coefficient, and the larger its value, the
stronger the penalty; ε is the insensitive loss function; and di
is the true output of SVM. For finding the minimum value of
R(w), i.e., by introducing the dot product function K(xi, yi)

with the use of Wolfe pairwise solution [12], the dual so-
lution of equation (15) is

min
1
2
‖w‖

2
+ C 􏽘

n

i�1
ξi + ξi

∗⎛⎝ ⎞⎠. (13)

'e constraint of equation (16) is [13]

yi − w − xi( 􏼁 − b≤ ζ + ζ i, i � 1, 2, 3 . . . n, (14)

w − xi( 􏼁 + b − yi ≤ ζ + ζ∗i , i � 1, 2, 3 . . . n, (15)

ζ ≥ 0, ζ∗i ≥ 0, (16)

where ξ, ξ are relaxation variables.
Introducing the Lagrange multiplier method, the esti-

mated function f(x) can be transformed as [13]

f(x) � 􏽘
n

i�1
ai − a

∗
i( 􏼁K xi, x( 􏼁 + b. (17)

'e constraint is 0< ai <C, 0< a∗i <C, where K(xi, x) is
the kernel function of SVM.
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'e estimation function is then used to linearly estimate
in

R(w) �
1
2
‖w‖

2
+ C 􏽘

n

i�1
J
ε

yi, di( 􏼁, (18)

where C is the penalty coefficient, and the larger its value, the
stronger the penalty; ε is the insensitive loss function; and di
is the true output of SVM. For finding the minimum value of
R(w), i.e., by introducing the dot product function K(xi, yi)

with the use of the Wolfe pairwise solution [12], the dual
solution of (19) is

min
1
2
‖w‖

2
+ C 􏽘

n

i�1
ξi + ξi

∗⎛⎝ ⎞⎠. (19)

'e constraint of (20) is [13]

yi − w − xi( 􏼁 − b≤ ζ + ζ i, i � 1, 2, 3 . . . n, (20)

w − xi( 􏼁 + b − yi ≤ ζ + ζ∗i , i � 1, 2, 3 . . . n, (21)

ζ ≥ 0, ζ∗i ≥ 0, (22)

where ξ, ξ are relaxation variables.
Introducing the Lagrange multiplier method, the esti-

mated function f(x) can be transformed in [13]

f(x) � 􏽘
n

i�1
ai − a

∗
i( 􏼁K xi, x( 􏼁 + b. (23)

'e constraint is 0< ai <C, 0< a∗i <C, where K(xi, x) is
the kernel function of SVM.

Although SVM has a strong ability to be used and
generalized, it still has some limitations when facing com-
plex and changing sports. 'erefore, this paper selects SVM
as a classifier to build a classification model to identify sports
actions and then assist in sports education.

3. Multifeature Fusion-Based SVM Sports
Action Recognition Classification Method

3.1. Feature Fusion. Feature extraction is central to the
implementation of sports action recognition [14]. In this
paper, we combine the characteristics of sports action,

consider the comprehensiveness of feature extraction and
the description of local features, and use the eight-star model
and Zernike moments commonly used in sports posture
multifeature extraction to extract sports action multi-
features. In order to reduce the redundancy of features and
the dimensionality of the feature vector, this paper uses a
genetic algorithm-based approach to fuse the above
extracted features [15]:

(1) We use the binary method with “0” and “1” code to
indicate the unchecked and selected features

(2) initialize the generated population and calculate the
fitness function of all features, randomly select in-
dividuals for inheritance, and eliminate unselected
individuals according to a predetermined strategy,
such as the random traversal sampling method

(3) We use crossover probability of 0.7 [16]and a vari-
ance probability of 0.5 [17] to generate new
individuals

(4) continue iterating until the algorithm satisfies ter-
mination condition

3.2. Recognition Model Construction. Using a one-to-one
approach, a multiclassifier with radial kernel function SVM
is constructed, and the specific implementation process is
shown in Figure 5, which indicates that six SVMs are re-
quired for the input of four classes of samples. Set class a as
positive samples and class b as negative samples and train to
get the classifier SVMab. When classifying votes, the test
samples are input to the classifier to get the cumulative
values of votes corresponding to the four categories, and the
maximum cumulative value corresponding to labels is used
as the classification result. Taking SVMab as an example, if
the output is determined to be class a, the voting score of a is
sum(i)� sum(i) + 1, and the maximum value corresponding
to the label is found from it.

'e above classifier is applied to human sports action
recognition to construct a feature fusion multiclass classifier
as shown in Figure 6. 'e training samples are input to the
model for training, the best model is saved and input to the
test samples, and the category corresponding to the maxi-
mum cumulative value is selected as the classification result
output, which is the model recognition result.

Figure 4: SVM classification principle.
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4. Simulation Experiments

4.1. Experimental Environment Construction. 'e experi-
ment runs on 64-bit Windows 7 operating system with
Inter(R) Core(TM) i5-2450M CPU@2.5GHz CPU, 8GB
RAM, Microsoft Visual Studio 2010+Opencv2.4.1 software
development environment, and Visual C++ as the devel-
opment language.

4.2. Data Source and Preprocessing. 'e test and competition
datasets are selected as the experimental datasets for evalu-
ating the target detection effectiveness of the proposed
method [18]. Among them, the test dataset contains 111 video
frames with a resolution of 320∗ 240 and a frame rate of 25

fps, and the competition dataset contains 396 video frames
with a resolution of 720∗ 480 and a frame rate of 29 fps.

KTH, Weizmann, and UCF-Sport datasets, which are
commonly used for human motion pose recognition, are
selected as experimental data [19, 20]. KTH contains
160∗120 resolution, 25 fps frame rate, 599 videos, and 6
kinds of actions; Weizmann contains 180∗144 resolution,
25 fps frame rate, 90 videos, and 10 kinds of actions; UCF-
Sport contains 720∗480 resolution, 10fps frame rate, 150
videos, and 10 kinds of actions.

Since videos in the above dataset usually contain clips
without human behavioral activities and video frames
without motion targets, which increase the model compu-
tation and recognition time, invalid video frames are

Training 
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feature sets

Multi-featur
e descriptors

Test sample

Fusion Descriptors

Fusion 
Descriptor 
Classifier 

Max
(Voting results) 

Recognition 
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Figure 6: SVM classification recognition model based on multifeature fusion.
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Figure 7: Video frame normalization results. (a) Original frame rate. (b) Motion target detection result map. (c) Normalized silhouette map.
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removed in this experiment. Taking the KTH dataset as an
example, we first calculate the area of the motion target
silhouette area in each frame of a video, set 1/2 of the
maximum area value as the threshold value, and then classify
the video frames smaller than the threshold value as invalid
video for deletion processing.

In addition, considering that the human motion changes
with the motion distance from camera position, there is a
difference in the size of the target detection motion area. To
eliminate this discrepancy, experiments are performed using
a bilinear interpolation method [21], as shown in (24), with
scale normalization for each video frame.

newR∗newC � M∗
n

m
× M, (24)

wherem∗ n is the motion target region,M is the height, and
newR∗ newC is the preprocessing result. 'e normalized
result of the original video frame is shown in Figure 7.

4.3. Evaluation Indexes. In this experiment, precious, recall,
false positive rate (FPR), and F-measure are selected as
evaluation metrics of the proposed method, which are
calculated as follows [22, 23]:

precision �
TP

TP + FP
,

recall �
TP

TP + FP
,

FPR �
FP

FP + TN
,

F − measure �
2 × precision × recall
precision + recall

,

(25)

where TP, TN, FP, and FN correspond to true positive, true
negative, false positive, and false negative, respectively.

4.4. Experimental Results

4.4.1. Target Detection Algorithm Verification. To verify the
results of the proposed method on target detection and the
suppression effect of ghosting, experiments are tested on test
and competition datasets, and the results are shown in
Figures 8 and 9. From figures, it can be seen that the
conventional ViBe algorithm detects the ghost shadow in the
background of the target, and there is an occluding reflective
shadow. 'e ViBe algorithm improved by the Wronskian
can eliminate the ghost shadow and reflective shadow well,
which has no effect on multimotion targets. 'is shows that
the proposed algorithm has a good detection effect in the
target detection process.

In order to quantitatively analyze the effectiveness of the
proposed method in target detection, the performance of the
algorithm before and after the improvement is experi-
mentally analyzed, and the results are shown in Table 1. As
can be seen from the table, compared with the traditional
ViBe algorithm and the Wronskian algorithm, the proposed
algorithm performs better in terms of precious, recall, false
positive rate, and F-measure indexes, which indicates that
the improvement of the algorithm in this paper is effective.

4.4.2. Multifeature Fusion Results. To verify the effect of the
proposed method on the multifeature fusion, the 39 feature
quantities of walking, running, and jumping movements
extracted from the eight-star model and Zernike moments
are experimentally fused with normalized and normalized
features, and the results are shown in Figure 10. As can be
seen from the figure, there is a certain interval between the
feature data of walking, running, and jumping after the

(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison of test dataset target detection results. (a) Frame 15 original image. (b) Frame 15 ViBe algorithm result. (c) Frame 15
result of the proposed algorithm. (d) Frame 64 original image. (e) Frame 64 ViBe algorithm result. (f ) Frame 64 result of the proposed
algorithm.
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multifeature fusion, which indicates that the differences
between different categories of sports actions after the
multifeature fusion are obvious and easy to classify.

4.4.3. Identification Results. To verify the effectiveness of the
proposed method, experiments are tested on the pre-
processed Weizmann and UCF-Sport data. Among them,
three common movement postures of walking, running, and

jumping are selected for testing on the Weizmann dataset,
with walking and running movements recorded by 10
volunteers individually and jumping by 9 volunteers; three
commonmovement postures of golf, diving, and gymnastics
are selected for testing on the UCF-Sport dataset. Figure 11
shows the test results of the proposed method on the
Weizmann dataset. From the figure, it can be seen that the
proposed method can effectively identify sports targets and
accurately classify the sports movements of walking and
jumping, but there is a classification error of misidentifying
running as walking. 'e reason for this is that some of the
key frames of running and walking are similar in posture
profile, so the separability of extracted features needs to be
improved, which in turn leads to classification errors.

Figure 12 shows the test results of the proposed method
on the UCF-Sport dataset. As can be seen from the figure, the
proposed method has good recognition results for videos
with a single background and can well recognize the sports
action of playing golf, but there are false recognition cases
for sports actions such as diving and gymnastics with
complex backgrounds, the cause of which is that sports such
as diving and gymnastics have more action transformations
that are not conducive to feature extraction, which in turn
leads to wrong recognition of individual video frames.

To further verify the effectiveness of the proposed
method, experiments compare the recognition results of the
proposed model with those of the commonly used sports
recognition methods on the experimental dataset. Table 2
shows the recognition results of different recognition

Table 1: Comparison of performance metrics of different algorithms.

Algorithm ViBe Precision Recall False positive rate Comprehensive evaluation
ViBe algorithm 0.721 0.812 0.020 0.764
Wronskian model 0.675 0.837 0 017 0.748
'e proposed improved algorithm 0.796 0.898 0 011 0.844
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Figure 10: Multifeature fusion results.

(a) (b) (c)

(d) (e) (f )

Figure 9: Comparison of target detection results for the competition dataset. (a) Frame 179 original image. (b) Frame 179 ViBe algorithm
result. (c) Frame 179 result of the proposed algorithm. (d) Frame 253 original image. (e) Frame 253 ViBe algorithm result. (f ) Frame 253
result of the proposed algorithm.
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methods on the KTH dataset for walking and running,
Table 3 shows the recognition results of different recognition
methods on the Weizmann dataset for walking, running,
and jumping, and Table 4 shows the recognition results of
different recognition methods on the UCF-Sport dataset. As
can be seen from the tables, compared with SIFTfeatures and
multifeatures recognition methods on different experi-
mental datasets, the recognition accuracy of the proposed
method has been improved to different degrees, and the
average recognition accuracy reaches more than 95%, which
has good recognition results.

4.4.4. Example Validation. To verify the generalization
ability of the proposed method, experiments are tested on
the above standard experimental dataset in addition to the
self-built video dataset. A 48-megapixel camera is used to
capture three sports postures of walking, running, and
striping in both indoor and outdoor scenes, and the pro-
posed method is used to test them. 'e average recognition
rate of the proposed method is shown in Table 5. As can be
seen from figures, the proposed method can detect the
complete motion target, and there is no shadow interference
and trailing shadow adhesion between the target and the
surrounding environment, which is conducive to the ex-
traction of physical signs, and the overall recognition effect is
good with an average recognition accuracy of more than
96%. However, due to the small difference between walking
and running movement transformation and posture, there is
still the problem of recognition error, but it has no effect on
the overall recognition effect and can better realize move-
ment recognition and then assist physical education.

5. Conclusion

In summary, the proposed deep learning-based sports-assisted
education method improves the ViBe algorithm by using
Wronskian function and the “ 4-linked algorithm” seed filling
algorithm, which effectively solves the ghosting problem and
can obtain clearer targets of human sports. By using the ge-
netic algorithm to fuse the eight-star model with sports action
features extracted by Zernikemoments, redundant features are
reduced, and differentiability between different classes is en-
sured. By using one-to-one construction of the SVM classifier,
sports action classification recognition is achieved with a
comprehensive recognition accuracy of more than 96%, which
can be used for actual sports action classification recognition.
'e innovation of this research lies in the systematic pro-
cessing of moving images from all links and the improvement
of classification algorithm, so as to comprehensively improve
the classification accuracy of moving images.

However, due to these conditions, there are some prob-
lems in this paper to be further deepened and improved.When
SVM is selected for classification, its kernel parameters and
penalty factors have a large impact on classification results and
affect the generalizability of the model, while the influence of
kernel function is ignored in this paper. 'erefore, in the
subsequent research, the SVM model should also be further
improved from the above aspects in order to enhance the
generalization ability and the classification effect of the model.

Data Availability

'eexperimental data used to support the findings of this study
are available from the corresponding author upon request.

test7,flag=3 Posture: jump

Figure 11: Test results on the Weizmann dataset.

test10,flag=6 Posture: Golf

Figure 12: Test results on UCF-Sport dataset.

Table 2: Comparison of identification results of different methods
on the KTH dataset.

Posture SIFT SIFT feature Multifeature 'is article algorithm
Walk 45.36 93.08 95.33
Run 60.28 90.73 95.01

Table 3: Comparison of identification results of different methods
on the Weizmann dataset.

Posture SIFT SIFT feature Multifeature 'is article algorithm
Walk 40.2 95.28 100
Run 48.21 89.43 95.04
Jump 63.52 97.92 100

Table 4: Comparison of identification results of different methods
on UCF-Sport dataset.

Video
library

SIFT
feature Multifeature 'is article

algorithm
'is article
algorithm

UCF-
sport 68.59 81.37 88.92 91.02

Table 5: Accuracy rate of sports posture recognition.

Moving posture Accuracy rate
Walk 97.36
Run 93.01
Jump 99.67
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