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The Pythagorean fuzzy soft set (PFSS) is the most influential and operative tool for maneuvering compared to the Pythagorean
fuzzy set (PFS), which can accommodate the parameterization of alternatives. It is also a generalized form of intuitionistic fuzzy
soft sets (IFSS), which delivers healthier and more exact valuations in the decision-making (DM) procedure. The primary purpose
is to extend and propose ideas related to Einstein’s ordered weighted geometric aggregation operator from fuzzy structure to PFSS
structure. The core objective of this work is to present a PFSS aggregation operator, such as the Pythagorean fuzzy soft Einstein-
ordered weighted geometric (PFSEOWG) operator. In addition, the basic properties of the proposed operator are introduced,
such as idempotency, boundedness, and homogeneity. Moreover, a DM method based on a developed operator has been
presented to solve the multiattribute group decision-making (MAGDM) problem. A real-life application of the anticipated
method has been offered for a capitalist to choose the most delicate business to finance his money. Finally, a brief comparative

analysis with some current methods demonstrates the proposed approach’s effectiveness and reliability.

1. Introduction

MAGDM is considered the most appropriate technique to
find the most acceptable alternative from all possible al-
ternatives, following standards or attributes. Traditionally,
it is assumed that all information for accessing options
based on features and their corresponding weights are
expressed in precise numbers. On the other hand, most
decisions are made when goals and constraints are usually
uncertain or unclear in real life. Zaheh [1] introduced the
fuzzy set (FS) model to cope with the specified scenario,
making progress in multiple scientific and technical fields.
In traditional set theory, the elements of a set can be 0 or 1,
but in FS, the degree of membership ranges from 0 to 1.
Atanassov [2] extended the perception of FS and developed

the notion of the intuitionistic fuzzy set (IFS), which deals
with the uncertainty considering the membership (MG)
and nonmembership (NMG) grades. Xu [3] protracted the
IFS and introduced novel aggregation operators (AOs) for
IFS. Wang and Liu [4] proposed some AOs for IFS based on
Einstein operations and established a multiple attribute
decision-making (MADM) approach using their presented
operators. Atanassov [5] established the notion of interval-
valued IFS and discussed some essential operations with
their properties.

IES is an influential idea, and various scholars have
considered it since its development. However, the leading
concept of IFS has some shortcomings; for example, if the
sum of membership and nonmembership degree is 1, then
IFS cannot deal with such scenarios. To overcome such


mailto:ranazulqarnain7777@gmail.com
mailto:s.elmorsy@qu.edu.sa
https://orcid.org/0000-0002-2656-8679
https://orcid.org/0000-0003-0540-3864
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5199427

complications, Yager [6] introduced the PES, the most
generalized form of IFS. Rehman et al. [7] proposed some
AOQs for PFS and discussed its properties. They also planned
a DM approach using their developed AOs. Rehman et al. [8]
offered a Pythagorean fuzzy ordered weighted geometric AO
with necessary possessions. Wang and Li [9] introduced
a MADM approach for PFS using Bonferroni mean AOs.
Garg [10] established some novel AOs for PFES, considering
the interaction based on Einstein operations.

The abovementioned models and their conforming DM
approaches have been familiar and used by specialists in
numerous areas. But these models cannot accommodate the
parameterized values of the alternatives. Molodtsov [11]
developed the concept of soft sets (SSs) and discussed some
fundamental operations with their desirable properties. Maji
et al. [12] prolonged the notion of SS and stated various
elementary operations with its features and utilized it to
solve DM complications [13]. Maji et al. [14] combined SS
and IFS to grow IFSS and introduced necessary operations
with their properties. Zulqarnain et al. [15] introduced the
technique for order of preference by similarity to ideal
solution (TOPSIS) procedure for interval-valued IFSS
employing correlation coefficient (CC). Zulgarnain et al.
[16] proposed the robust AOs for the intuitionistic fuzzy
hypersoft set. They also constructed an MCDM model using
their developed operators to solve DM issues. Zulgarnain
et al. [17] proposed the TOPSIS method for intuitionistic
fuzzy hypersoft set based on CC to resolve MADM prob-
lems. Garg and Arora [18] prolonged the IFSS and projected
the generalized AOs for the IFSS.

Several scholars protracted SS ideas by engaging the
crucial sorting of FSS. Peng et al. [19] progressed the con-
dition of MG + NMG < 1 to MG* + NMG” <1 of IFSS and
established the PFSS with basic operations and possessions.
Athira et al. [20] planned the entropy measure for PESS.
Siddique et al. [21] proposed some novel operations for PFSS
and established a DM process based on a score matrix.
Naeem et al. [22] stretched the concept of PESS to linguistic
PESS and presented some necessary operations with their
possessions. Riaz et al. [23] protracted the PFSS to m polar
PESS and developed the TOPSIS technique to resolve the
multicriteria group decision-making (MCGDM) problem.
Zulqarnain et al. [24] introduced the Pythagorean fuzzy soft
Einstein-ordered weighted average operator of PFSS and
established the DM technique based on the operator de-
veloped by them. Zulqarnain et al. [25] introduced some
novel operational laws for PFSS and settled some AOs for
PESS. Zulqarnain et al. [26] developed the TOPSIS method
for PFSS based on CC and used their planned approach to
resolve the MADM problem. Zulqarnain et al. [27] offered
some novel operational laws for PFSS considering the in-
teraction and developed the interaction AOs for PFSS. They
also presented an MCDM technique using their proposed
interactive AOs. Garg [28, 29] introduced several Einstein
AOs under the PFS environment and established the DM
techniques based on settled operators to resolve complex
difficulties. The existing Einstein AOs and Einstein-weighted
ordered AOs are just a weighted Pythagorean fuzzy argu-
ment. These PFS Einstein AOs cannot accommodate the
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parameterized values of alternatives. To overcome the above
shortcomings, we focus on developing some novel Einstein
AOs for PESS.

To solve these shortcomings, we indicated the finest
alternate with PFSS. Pythagorean fuzzy soft numbers sup-
port to conform with inexact statistics in the difficulties of
everyday life. In this study, the PFSS operator and steering
mechanism of PESEOWG are based on the assumption of
Pythagorean fuzzy soft number (PFSN). Therefore, com-
pared to IESS, IFS, and FS, it is better to maintain inaccurate
and imprecise information flexibility. The core objective of
this article is to focus on the development of the new AO for
PESS. It is expected that the operational laws of the proposed
operations will be followed to solve the DM problem, and
numerical example will be used to prove the effectiveness of
the introduced DM method. The main benefit of the pro-
posed operator is that the proposed operator can reduce the
number of IFSS and fuzzy soft set (FSS) operators under
certain confidence limits. The rest of the research is ordered
as follows: Section 2 discusses fundamental concepts such as
FS, IES, PES, SS, ESS, IESS, and PESS. In Section 3, we settled
the PFSEOWG operator. Section 3 also discusses some
desirable properties of the suggested operator. Section 4
develops the MAGDM method based on the proposed
operator and provides a numerical example for selecting the
most suitable vehicle. In Section 5, a comparison with some
popular methods has been given. Section 6 gives the
conclusion.

2. Preliminaries

This section contains some basic definitions, such as SS, IFS,
PFES, IFSS, and PESS, which will form the following man-
uscript’s structure.

Definition 1 (see [11]). Let X be a universal set and N =
{ti,ty,t5, .. ., 1,,} be the set of attributes and Q) is a mapping
such as Q:N — KX, where KX represents the subsets
collection of X. Then, (Q, N) is called a SS over X.

Definition 2 (see [30]). Let X be a collection of substances,
then a PFS A over X is defined as

A={(t,a,(£),b, (1)t € X}, (1)

where a,(t),b,(t): X — [0,1] represents the MG and
NMG functions, respectively. Furthermore, 0<a,
() + b, ()’<landI=1-a(t)’ - b, (t)* is called degree
of indeterminacy.

From the above definition, we can see that the only
difference lies in the condition, that is, in IFS, what we deal
with is the state 0<a,(t)+b, ()<l and I=1-
a,(t)—b,(t), whereas in PFS, we have condition
0<a, (1) +b,(t)*<land I=1-a,(t)* -b,(t)%

Definition 3 (see [14]). Let X be a universal set and N be set
of attributes and Q is a mapping such as Q:N — IK%,

where IKX is a collection of intuitionistic fuzzy subsets.
Then, (Q, N) is named an IFSS over X.
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(Q,A) ={t, (a, (1), b, (1)It € A}, (2)
where a, (¢),b, (t): A — [0,1] are MG and NMG func-
tions respectively with 0<a, () +b,(t)<1 and A c N.

Definition 4 (see [14]). Let (Q, A) and (Q, B) be two IFSS.
Then, some basic operations for IFSS are defined as follows:

(1) (€, A) is said to be an intuitionistic fuzzy soft subset
of (O,B).If Ac Band a,(t)<ag(t), by (t)=bg(t)

for all t € A.
(2) Complement of (£, A) is denoted by (£, A°) and is
defined as
(Q,A%) ={t, (b, (1), a, ()|t € AL (3)

(3) Union of two IFSS is defined as follows:
(Q,A) U (Q,B) ={t, max(a, (t),a5(2))IVt € A}. (4)

(4) The intersection of (€, A) and (€, B) can be defined
as follows:

(Q, A)N (Q, B) ={t, min(a, (), az (1))IVt € A}  (5)

Definition 5 (see [19]). Let X be a universal set and N be set
of attributes and Q be a mapping such as Q:N — KX,
where K¥ is a collection of Pythagorean fuzzy subsets.
Then, (Q,N) is called a PFSS over X.

(Q,A) ={t, (a,(£),b,(1))It € A}. (6)

where a,(¢),b,(t): A—> [0,1] represents the MG and
NMG functions, respectively, with 0<a, (t)* +b, (t)*<1,
degree of independency I =1-a,(t)*-b,(t)%, and
AcCN

The PFSN can be expressed as #;; = a;;, b;; for readers’
convenience. Zulgarnain et al. [25] presented the score and
accuracy functions for PFSN such as

S(H;;) = aj; - B 7)

PFSEOWG (H,,H 5, . ..

where S(Hij) € [-1, 1]. Sometimes, score function cannot
differentiate the PFSNEs. For example, let
H,,=0.3162, 0.4472 and H,, =0.5477, 0.6324, then equa-
tion (7); we have S(H,;)=-0.1 and S(H,) =-0.1. So, it is
difficult to decide which alternative is most suitable in this
case. An accuracy function has been developed to overcome
the limitations mentioned above.

A(H,) = o + B2, (®)

where A(%;;) € [-1,1]. The following comparison laws
have been presented for PFSN.

(@) If S(H;;) >S(R;)), then H;; > H;;.
2) 1f S(Hi]-) = S(Rij), then

(i) If A(H;j) > A(R;)), then H;; > R;;.

(ii) If A(H,j) = A(R;;), then Hj; = R;;.

3. Einstein-Ordered Weighted Geometric
Operator for Pythagorean Fuzzy Soft Set

The subsequent section will develop the Einstein-ordered
weighted geometric operator for PFSS with some funda-
mental properties.

Definition 6. Let H;; = (a;;,b;;) be a collection of PFSNs,
where (i=1, 2, ..., n) and (j=1, 2, ..., m), then the Py-
thagorean fuzzy soft Einstein-ordered weighted geometric
(PFSEOWG) operator is defined as

H,,) = $;n=1fj(®?=1@th(i)§(j))’
(9)

where O; and 7. represent the weight vectors such that

0,>0, Zl 1 0; —landj >0,and 3}, .7;=1and 1,8 are

permutations of (i = ..,n)and (] 1 2 .., m) such that

H.;jzH andH 1y 2 Hig(j)Vi, j.

PFSEOWG (H,;, Hy,, .. .,

r(i)j

Theorem 1. Let H;; = (a;;,b;;) be a collection of PFSNs,
where (i=1, 2, ..., n) and (j=1, 2, ..., m), then the ag-
gregated value obtained by equation (9) is given as

JHyw) = @;’ilfj(@?ﬂ @iHr(i)g(j))

\/2 [T (Hll (aﬁ(i)g(j))@iyj

=<Jn%(nﬁ

@, 75’
t(l)§(]) ) +H] 1(H t(z ) (10)

\/H]1 H =1 1"'5:(1 ) T:l

\/H]l H =1 1+br(1)§(]) ) + T:l

where O; and 7 ; represent the weight vectors such that 0;>0,
21"71@—1 and J;>0, and Z Fj=1 and 1,3 are

<H = »gw)@")]j
e

permutationsof (i=1,2,..,n)and (j=1, 2, ..., m) such that

H (i- IJZHr(l)j and ng(Jfl)Zng(J)Vl,]
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Proof. We will prove it by using mathematical induction.
For n=1, we get 0; = 1.

PFSEOWG (H,y, Hyy, ..., H,,) = ®7L,.7 H, (1)s)

:< \/ZH] 1 l)ﬁ(]))jj ,
\/HT:l (2 1)«,?,(])) +H] 1( A (1)s )jj

. VT (14 B en)” = T (1= Biey)” >

\/HT:I (1 + bi(l)@(j))jj + HT:1 (1 - bi(l)é(j))jj (11)
11

) 0\
< \/ZHJ 1<H (93 0ep) )

o2 0\ m m (2 0\
\jnjl [T (2= asip) ) + T (T (o20s )

-
—
L§
S
—
TE
—~
—
“+
=
5
S
SN—
S
N———
N
—
_|3
~/
=
I
~
—
|
<
2
\_/
E
N————
N

For m=1, we get jjz 1.

PFSEOWG( 1w Higs - - ’Hnm) = GB?:1@‘Hr(i)§(1)

< \/21—111 O (i)s 1))'
\/Hz 1 z)g(])) + [T 1( Ay (i)s )@i

>

o

. \/H?:1 (1+ bi(z‘)ﬁ(l))@i ~IT5 (1 - B ey) >
\/Hfll (1+ 53(:’)@»(1))@ +IT (1~ [’iﬁ)%(l))@

(12)

=< \/2 [T5 (H?zl (az(i)g(j))@[>jj
\/H?:l <H?=1 (2 - awz:(i)é(j))@i>jj +]1iL (H?:l (a%(z‘)é(i))@i>

7

\Fj \Fj
\/H?:l (H?:l (1 + b%(i)%(j))@> = [T%, (H?:l (1 - b%(i)é(j))@x> : >
. N\ n n i 7/
\]H?:l (H?:l (1 + Bi(i)ﬁ(j))@) + [T (Hi:l (1 - Bi(i)ﬁ(]’))@ ) }

So, equation (9) is true for n=1 and m=1.
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Suppose that equation (9) holds for n=46,, m=4§, +1
and for n=46, +1, m=46,

5, +1 (g
& J (921 0:H, s )

< \/2 I <H i (a 2(:)5(1))@i>]j
\/Hé1+1 H - a%(i)g(j))@i>jj + H?Sl

8,+1 @i i §,+1 s 2 o; 7

\/H (1482 s -1k <Hi:1(1_br(i)§(j)) > >
8,+1 o; 8+ [0 2 o1/’

\/1_[1 1+br(,)§(1)) ) + 14 <Hi:21(1_ 655 )

(13)
8, 5,+1
EBjzljj( i= Ir @Hr(l )

B 8,41 6,\7
< \/21_[1-1:1 <Hi=21 (CHE) )

) 5,+1 o; 7 6
\/Hj‘:l (Hizl (2= afos() ) 1l

8 +1 6\ 8, 8,+1 6.\
\/szl <H (1+ B30y ) - T4 (Hi:l (1~ Bsin) ) >

&, 0; jj § 5, Oi jj .
\jHFl (H . (1 + Br(z ) ) * =1 (Hi:fl (1 - bi(i)g(]’)) )

Now, we prove equation (9) form=6§, + landn=4, +1
5,41 5,41
& (1) OiH. s )
§,+1 6, §,+1
= (‘B L 82,0 H, z)g(]))<®j‘:1 jj@iHHr(BzH)Q(j))

8,+1 0; 7
< \/ZH <H— (ams(p) >

8,+1 6.\ 8,+1 s 6.\
\/H ! - a%(i)é(j)) ) + l_ljll (Hi=21 (a%(i)ﬁ(j)) )

Jzn“(( ) )
: j .
\jH?ljl <<2 ) ai(sﬁl)g(]’))%ﬂ)‘f " H‘S’“ (< f(62+1)5<1)>@52+1)j]
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1 1+Br(,

]

5 1 5 o\
M (H 1( - b; ;)g(j)) )

»)
)

\/Hs 41

2 i
1+bl)§(]) ) +

~7,
1! <H, (1= B e)’ ) J

\j o+l ( 1 + br(s +1)s<]>)@52+1) f T ((1 - 55(52“)@(1))@32“)% >
\]Hf +1< 1+bt(5 1)30) )@52”> j+l'[f +11< r(5 +1)§<;>)@62+1>]j
) \/2 IS (Hf N C) @'>]]
\/Hf‘; <H?21+1 (2 “3<i)s<j))@i>jj I <Hf=21+1 (aﬁmw)@)j) |
\/H?:{l <H5 1 (1 +b2 l)g(]))@’yj =11 (Hfﬁfl (1 - b%(i)é(j))@i>]j >
\/H‘;gl <H H(140] s, )@ )j) + Hfgl (Hfﬁfl (1- Bi(i)m))@i)]j

8, +1

_@Jlj

5+1
i=1 O; Ht (18 (j)

(@ )

So, it is valid for m=4, + 1 and n=4, + 1. O

Example 1. Let R = {R|, R,, R;} be a set of decision makers
with weigh vector 0, = (0.1,0.3,0.3,0.3)", who want to

(14)

First, we find the associated ordered position matrix by
using the score function, which is

(0.7,0.4) (0.7,0.5) (0.4,0.6) (0.5,0.8)

decide a bike under the set of attributes (Hyp A) = (0.9,0.1) (0.4,0.5) (0.3,0.7) (0.5,0.6)
A = {A, = fuel milage, A, = speed per hour, A; = 4xd (0.7,0.5) (0.4,0.6) (0.3,0.5) (0.4,0.8)
price, A, = comfortlevel, A; = design} with weight vector
7i= (02,02,02,04)". Then, (HypA) = (agb)y is (0.6,0.5) (0.5,0.4) (0.3,0.7) (0.5,0.7)
given as (16)
(0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4) as we know that
(0.5,0.6) (0.9,0.1) (0.3,0.7) (0.4,0.5)
(Hyp A) = | (0408) (07,05) (04,06) (03,05) |
(0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)
(15)
PESEOWG (H,,, Hyy, ..., H,,)
m n O; ff
\jz [T5 (Hi=1 (%) )

) <\/H;"1 (s

o \i
s () ) +H7:1(H71

>

N
(“3«)@(1))@‘) ]

2
(1453 s()

VI (I

)@,)fj _

17 (T (1= B

)@,.)fj

0\
\jl_lﬁ":l H7:1(1+53(i>§<j>) ) +

PFSEOWG (H,,,H,,,...,Hy,)

)

7

I3 (HL (1- Bi(nsu))@)
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< \/21_[; 1<H (a 5<z)§<j>)@i>jj

VI (118 = e)”) T (11 20))
VI f_1<1+bz<,->g<,»>>@">”‘ 1 (115 (1~ B2ey)” )””'>
\/H,1 ,11+5§<z )@')] < (1 B ep) i>jj)

, {(0.49)"! (0.81)** (0.49)* (0.36)0‘3}0'2{ (0.49)"! (0.16)"* (0.16)"* (0.25)**}"*
{(0.16)"1 (0.09)°* (0.09)** (0.09)**}*{ (0.25)"" (0.25)"* (0.16)"* (0.25)"*}"*
0.

_< {(sn®! (1.19)* (1.51)™ (1.64)°%} '2{(1 51)*" (1.84)"% (1.84)*° (1.75)0'3}0'2
{(1.89)°1 (LOD™ (1.91)** (1.91)**}*(1.75)™ (1.75)"3 (1.84)° (1.75)**} ™
+(0.49)*1 (0.81) (0.49)* (0.36)*%) **{ (0.49)** (0.16)"* (0.16)* (0.25)} "
\ {(0.16)" (0.09)™ (0.09)** (0.09)**} **{ (0.25)™ (0.25)"* (0.16)"* (0.25)**} *

(1.16)™ (1.01)* (1.25)%% (1.25)°31°%{ (1.25)*1 (1.25)*3 (1.36)" (1.16)*3 1"
(1.36)™ (1.49)*3 (1.25)°% (1.49)*1°] (1.64)*" (1.36)*3 (1.64)" (1.49)*1**

_{ (0.84)°1 (0.99)™ (0.75)"2(0.75)**}*{ (0.75)* (0.75)"* (0.64)* (0.84)**}
(0.64)! (0.51)"2(0.75)2(0.51)*}*{ (0.36)"" (0.64)™ (0.36)" (0.51)*}

{(116)01(001)03(125)03(125)03} {(125)‘”(125)03(136)03(116)03}
{(1.36)‘”(1.49)03(1.25)03(1.49)03} {(1.64)01(1.36)03(1.64)03(1.49)03}
+

[{ (0.84)1 (0.99)"* (0.75)"3 (0.75)*}"*{ (0.75)"" (0.75)" (0.64)" (0. 84)0‘3}0'2
{(0 64)"1 (0.51)** (0.75)* (0. 51)03} {(o 36)%1(0.64)** (0.36)*2 (0. 51)03}

0.4923, 0.5743 (17)

PESEOWG (H,,, H,, ..., H,,,) = H, (18)
3.1. Properties of PESEOWG Operator

where 0; and 7, represent the weight vectors such that

3.1.1. Idempotency. Let H;; = (a;;,b;;) be a collection of 550 Y 6. =1and #.>0, Y, 7. = 1.
PFSNs, where (i=1, 2, ..., n) and (j =1, 2, ..., m). If ' 200 0 1 2iat I

Hy(ya(j) = Hiy are 1dent1cal then Proof. We know that PESEOWG

PFSEOWG (H,,,H,,, ..., H

nm)

) < \/2 I <H?=1 (a%(i)é(j))@i)j]
\/H;n:l (H?:I (2- “i(:‘)ﬂj))@l)jj +[T7% (HL (afu)g(;‘))@f)]f (19)
: \jnﬁl (H (1 +bz<’)§(1>) i)jj - HTL (H ( 65(:)@»(1 )f’)jj

j} fj

[T} 1(H (14 B2 s )@) * H?ll(l'[?zl(l— 55(:‘)@(;‘))@‘)
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As H,;)3(j) = Hjj» s0 3.1.2. Boundedness. Let H;; = (a;;,b;;) be a collection of
PESNs, where (i=1,2, ..., n) and (j= ., m), where O;
YO Yin g and 7; represent the weight vectors such that 0;>0,
2((a,-j) : ) S 6/=1 and  7;>0, Y Fi=1 If
:< i H i =min(H,;5e(;) and Hmax—max(Hr(l (j)» then
2\2in1 O; i N2, O i g Hm‘“‘PFSEOWG (H“’le’ ~wo> Hyp) < Hing
<(2‘ ) ) * ((%) >
Proof. Let f(x)= V2 -x%/x2, x €1]0, 1], then
- - (d/dx) (f(x)) = —2/x*Vx2/2—x% <0. So, f(x) is de-
<(1 B )Z" @)Z]zljj - <(1 —b?)zﬁll @->Zf=‘ 7 creasing function on ]0, 1].

\ i 1 As amin Sat(i)é(j) < amax> Vl> j: SO f(amax) <f
’ Zm 7 zm 7 > (ar(i)é(j))<f(amin) and 2- afnax/agnax =

\((1+6f)21 @,.) =, ((1_ 02) 2 @,,> e V2= a8 S 2~ @il

Let O; and j represent the weight vectors such that
0,;>0, Zl 1 0; —land] >0, 7, F; =1, then we have

o\ 0\ 7i o\
- (22— aiﬂax ' ' < = L 2- at(i)g(] < - (2- a%nin X '
H L a? - H L a?,, - \U . a2,
j= i=1 max j=1 i=1 ()3 (j) j=1 i=1 min

2
ﬁ 2 -0
j=1

(11

2
-1 s ()

0; fj
() )
0; fj
2- a7
C[

(%

2—a?

o
)
at

i 21
()8 - (21)

H3(j) a

min

(D)3 ()
)jj
1

Sa

A, < :
W (1 = ) 10 (10 e)”)

min =

VI (T (-

5 5 0\
ar(i)é(j)/at(i)ﬁ(j))

2

<

I+ H;n:l (H?:l (2

<a

max

0\
s /“rméu)))

j.
m n 2 Oi !
\jz Hj:l (Hizl (ar(i)é(j)) )

<a

max-*
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Let gy)=~1-»*1+y%  y€l0,1], then
(d/dy) (g () = =29/ (1 + y*)* [T+ y2/T - y2 <0, which

shows that g(y) is decreasing function on ]0, 1]. So,
bmm = b1:(1)§(j) < I)max
Hence, g( Bmax) = g( t(i)3 ])) < g([)mm)
2
1- bfnax 1- b ()3 (j) < 1- bfmn (22)
2
1+b, . 1+ r)8())j 1467,

Let 0; and 7; represent the weight vectors such that
0,>0, Zl 1 0; —1andj >0, Y., f; =1, Then, we have

6.\ 7j 2 6\7i 6.\ 7j
m n 1_52 i m n 1_br(z)§(j) m n 1_524 i
=\l (1 b <\I 1+ 6 <\1 Tl ’
=1 \i=1 \1 T Diax j=1 \i= MO0 j=1 \Ui=1 \1 T Dhin
D D
i=1 0. I i=1
1-b’ o uNyREAE A 1-b2, J
max | i=1 eAY) min | i=1
{:)\ (1+)52 ) <\l 1+ b? : (1+b2 ) %) 7
max j=1 i=1 t (D)3 (j) min
O\ 7
1_p2 m n f1-9%.., .\ 1- b2,
e 1+( ;““)g 1+]] 7;(’)'8’(]) <AL+ —Rin ),
I+ bmax =1 \i=1 I+ Bt(i)ﬁv(]') 1+ bmin
2 6:\7i
2 1+ ﬁ (= s < |2
2 2 = 2
L+ . =1 izt \ 1+ bye(j) 1+ b,
2 2
R 1+b,, < 1 ‘1 + b0
V 1+ T2 (T (1 - 83 (j)/1 + B3 ) - V
j=1 r(i)8 r(i)8 (23)
2
2 2
o1+ bmin < R o, 7 <yl+ bmax’
m
1+Hj:1 <Hz 1( br(x /1+B 1)3(])) )
b’ 2 b’
e\l+b,, —1< @;j_IS 1+b..-1
m n i
1+ Hj:1 <Hi:1 (1 z)ﬁ(])/l + Bt(z ) )
2
2 2
eqb . < T 1<\bl
m n i
1+Hj:1 <Hi:1(1 tl)fv(] /1+B‘c(l ) >
2
<:"bmin < 7. 1< E)max’
L+ T2 (T (1= B2 e /1 + Boey)” )
j=1 i=1 r(1)3()) ()8 (j)
S Jj
2 0; J 2 0; j
\/HJ 1 1 1 1+br(l ) ) _HTI<H ( B 1)§(j)) >
Sb]’l’laX'

n
i

mm . \/H] 1

@Y
1 1+[’ z)g(j)) ) +H]1<H

N7
1( b1:(1 )@1) :
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Let PFSEOWG(H,;, Hyy, ..., H,yy) = #.
Then, inequalities (21) and (23) can be written as

<a<ag,andb; <b<b_ .,
Thus, S (H)=a?-b* <a?_ - b2, =S (H,,) and S
(H) = a2 B [)2 = afnin - E)?nax =§ (Hmin)'

IfS (H) < S (H,,,,)and S (H) > S (H,,,), then we have

Mathematical Problems in Engineering

PFSEOWG (H,;,Hyp- .-, Hpp) = Hye (26)
Hence, H_;, <PFSEOWG ((Hy;, Hys -
H ) <H . O

3.1.3. Homogeneity. Prove that PESEOWG (H,;, H,,. ..

>

H,;, <PFSEOW (H,,H 5, ..., Hyp) < Hpoy (24)  H,,_)=0 PFSEOWG (H,,, H,,,...,H,,, for any positive
1 ber 0.
If S (H)=S (H,,), then we have a®*=a2  and real number
b> =02 . Thus, A (H)=a?>+b*=a2 + b2 =A (Hp,)
Therefore Proof. Let Hj; be a PFSN and 0>0.T, then we know that
PFSEOWG (Hyy iy Hon) = Hoe (25 < V2(a?)’ V(1 +8) -(1-8%) >
ij = 2 3 3 3
IfS (H)=S (H,yy,)- Then we have a® - b% = a2, — b2, , \/(2 - a’) +(a?) \/(1 +6%)" +(1- b°)
a?=a%, ,and B> =02 . (27)
Thus, A (H)=a’>+b0=a2, + b2, =A (Hyy).
Therefore, So,
PFSEOWG = (H,,,H,,,...,H,,,)
m n 0; 7i
_< \/2 [T (Hi:l (a%(i)é}(j)) )
- o\ o
\/H;‘il (HL (2= aiep) ) + [T (HL (CHP) >
m n 0; 7 m n 0 7
\/Hj:l <Hi:1 (1 + Bi(z‘)g(])) ) - I (Hi:l (1 - bn(i).e,(j)) ) >
' 7 7
m n 2 0;\7J m n 2 0;\7 i
\/Hj:l (Hi:l (1 * br(i)ﬁ(])) ) + H]’:l (Hi:l (1 - Br(i)ﬁ(j)) )
3
m n @i ]’
< \](2 [T (Hi=1 (aZsch) ) ) (28)
] 3’
o\ " o\
\/(H;’rll <H?:1 (2_ a%(i)@(j)) > + (H;'n—l <Hi:1 (az(i)ﬁ(j)) > )

= OPFSEOWG (H,,H,s, ..., H,y,)

4. Multiattribute Group Decision-
Making Approach
This section develops a DM technique to resolve the

MAGDM complication using our proposed PESEOWG
operator and a numerical example.

4.1. Proposed Approach. Let S = {S',8% §%,..., $°} be the
set of s alternatives, W = {W, W,, W,..., W,} be the set

J(HT‘I (HL (1+ bi(iB(j))@)]j)a _ (H?—l <H7:1 (1- bi(ng(j))@)]j)a >
\/(HT_1 <H?:1 (1+ bg(")g("))@jﬁ)a " (1—[7_1 (H?’:l (1- 5§<i>g<j>)@i>]j)a

O
of r experts (decision makers), and N = {t,, t,, t5,..., t,,}
be the set of m attributes. Let weighted vector of experts
W(i=1,23,...,r)be 0= (0,,0,,0,,...,0,)" such that
0;>0, Y, 0;=1. Let weight vector of attributes t; (i =
1,2,3,...,m) be F=(F,F0»F5..>5,)" such that
J;>0, Z;’zljj = 1. Team of experts O;(i =1,2,3,...,7)
consider the alternatives §' (i = 1,2, 3, ..., s) for attributes in
the form of PFSNs such as F = (Z),.m = (00,7,
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TaBLE 1: PFS decision matrix for S!.

tl t2 t3 t4
o' (0.8,0.5) (0.7,0.5) (0.6,0.4) (0.7,0.4)
0? (0.6,0.5) (0.9,0.1) (0.7,0.3) (0.4,0.5)
0} (0.8,0.4) (0.7,0.5) (0.6,0.4) (0.3,0.5)
o! (0.7,0.3) (0.6,0.5) (0.4,0.5) (0.5,0.7)

TaBLE 2: PFS decision matrix for S%.

tl t2 t3 t4
o! (0.7,0.5) (0.8,0.5) (0.6,0.4) (0.8,0.4)
0? (0.6,0.3) (0.9,0.2) (0.8,0.3) (0.7,0.5)
0? (0.5,0.4) (0.6,0.5) (0.6,0.3) (0.3,0.6)
o* (0.7,0.4) (0.6,0.4) (0.7,0.5) (0.5,0.7)

TaBLE 3: PFS decision matrix for S°.

tl t2 t3 t4
o' (0.7,0.5) (0.7,0.4) (0.6,0.4) (0.8,0.4)
0? (0.6,0.6) (0.9,0.1) (0.6,0.3) (0.4,0.5)
0} (0.8,0.3) (0.7,0.2) (0.6,0.5) (0.4,0.5)
ot (0.7,0.6) (0.3,0.5) (0.4,0.5) (0.5,0.6)

TaBLE 4: PFS decision matrix for S*.

tl t2 t3 t4
o! (0.8,0.5) (0.7,0.5) (0.7,0.4) (0.6,0.4)
0? (0.6,0.4) (0.8,0.1) (0.7,0.3) (0.4,0.7)
0? (0.7,0.4) (0.7,0.5) (0.6,0.4) (0.3,0.5)
o* (0.6,0.3) (0.6,0.3) (0.8,0.5) (0.5,0.6)

TaBLE 5: PFS decision matrix for S°.

tl t2 t3 t4
o' (0.6,0.5) (0.6,0.5) (0.6,0.4) (0.5,0.4)
o2 (0.6,0.4) (0.8,0.1) (0.8,0.3) (0.7,0.5)
o3 (0.6,0.4) (0.7,0.3) (0.6,0.4) (0.6,0.5)
0! (0.7,0.4) (0.7,0.5) (0.4,0.5) (0.5,0.8)
where 0<a;;,b;;<1 and 0 < a,b}; <1 Vi, j are given in

Tables 1-5.
We will apply the proposed PESEOWG operator to solve
the MAGDM problem, which has the following steps:

Step-1: obtain decision matrices F = (Hj),,,,, for al-
ternatives relative to attributes in the form of PFSNs.

Step-2: find the associated ordered position matrix by
using the score function.

Step-3: by using the normalization formula, normalize
the decision matrix to convert the rating value of cost
type parameters into benefit type parameters.

M- %fj = (bij, ocij) cost type parameter, (29)
K F = (Hij)n*m benefit type parameter.
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Step-4: use the developed PESEOWG operator to ag-
gregate the PFSNs H; for each alternative
S={8.,8%8%...,8} into the decision matrix H;.
Step-5: calculate the score values of H for all alterna-
tives by using equation (7).

Step-6: select the alternative which has the maximum
score value and examine the ranking.

4.2. Numerical Example. Suppose a rider has to choose
a bike, and he has five alternatives such as S!, Jawa Perak £
$?, KTM 390 Duke; $°, Honda CBR 250R; S*, Bajaj Avenger
Cruise 220; and S°, Royal Enfield Himalayan. There are
four considered attributes, according to which rider
must have to take decision such as t,, size; t,, com-
patibility; £;, maintenance; and t,, aesthetics, with the
weight vector # = (0.2,0.2,0.2,0.4)". Here, t,, t, are
cost type parameters and t,, t, are benefit type pa-
rameters. Businessmen hire a team of four experts
O,(r =1,2,3,4) for decision-making with the weight
vector 0 = (0.1,0.3,0.3,0.3)".

Step-1: according to the expert’s opinion, Pythagorean
fuzzy soft decision matrices for all alternatives are given
in Tables 1-5.

Step-2: according to experts’ opinions, the ordered
Pythagorean fuzzy soft decision matrix for finding all
alternatives is shown in Tables 6-10.

Step-3: because t, and f; represent the cost type pa-
rameters. Therefore, the normalized ordered Pythag-
orean fuzzy soft decision matrix is obtained using the
normalized formula in Tables 11-15.

Step-4: the proposed PFSEOWG operator was applied
to the acquired data, and then we obtain the opinions of
decision makers on each alternative in the form of
PESNs such as H, =0.3203,0.8382, H,=0.4912,
0.6112, H,=0.4675,0.5801, H,=0.5421,0.6512, and
H;=0.4821,0.5994.

Step-5: use the score formula $ = af; — b}, to calculate
the score values for all alternatives.

$(H,) =-0.5999,
$(H,) =-0.1322,
9 (H;) =-0.1179, (30)
$(H,) =-0.1301,
$(Hs) = —0.1068.

Step-6: after calculation, we get the ranking of alternatives

D(Hs)>D(H3)>D(H)>D(H,)>H(H,). So,
$>83>8>8>8L

Hence, the best alternative is S°.

5. Comparative Studies

It is compared with some existing PFS and PESS to dem-
onstrate the efficiency of the anticipated model.
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TaBLE 6: Ordered PFS decision matrix for S'. TasLE 12: Normalized ordered PFS decision matrix for S2.
tl t2 t3 t4 tl t2 t3 t4
o! (0.8,0.5) (0.7,0.5) (0.6,0.4) (0.7,0.4) o! (0.5,0.7) (0.8,0.5) (0.4, 0.6) (0.8,0.4)
0? (0.6,0.5) (0.9,0.1) (0.7,0.3) (0.4,0.5) o? (0.3,0.6) (0.9,0.2) (0.3,0.8) (0.7,0.5)
0 (0.8,0.4) (0.7,0.5) (0.6,0.4) (0.3,0.5) 0 (0.4,0.5) (0.6,0.5) (0.3,0.6) (0.3,0.6)
ot (0.7,0.3) (0.6,0.5) (0.4,0.5) (0.5,0.7) o* (0.4,0.7) (0.6,0.4) (0.5,0.7) (0.5,0.7)
TasLE 7: Ordered PFS decision matrix for S°. TaBLE 13: Normalized ordered PFS decision matrix for S°.
tl t2 t3 t4 tl t2 t3 t4
o' (0.7,0.5) (0.8,0.5) (0.6,0.4) (0.8,0.4) o! (0.5,0.7) (0.7, 0.4) (0.4,0.6) (0.8,0.4)
0? (0.6,0.3) (0.9,0.2) (0.8,0.3) (0.7,0.5) 0? (0.6,0.6) (0.9,0.1) (0.3,0.6) (0.4,0.5)
o3 (0.5,0.4) (0.6,0.5) (0.6,0.3) (0.3,0.6) o? (0.3,0.8) (0.7,0.2) (0.5,0.6) (0.4,0.5)
ot (0.7,0.4) (0.6,0.4) (0.7,0.5) (0.5,0.7) ot (0.6,0.7) (0.3,0.5) (0.5,0.4) (0.5,0.6)
TasLE 8: Ordered PFS decision matrix for S°. TaBLE 14: Normalized ordered PFS decision matrix for S*.
tl t2 t3 t4 tl t2 t3 t4
o! (0.7,0.5) (0.7,0.4) (0.6,0.4) (0.8,0.4) o! (0.5,0.8) (0.7,0.5) (0.4,0.7) (0.6,0.4)
0? (0.6,0.6) (0.9,0.1) (0.6,0.3) (0.4,0.5) 0? (0.4,0.6) (0.8,0.1) (0.3,0.7) (0.4,0.7)
ok (0.8,0.3) (0.7,0.2) (0.6,0.5) (0.4,0.5) ok (0.4,0.7) (0.7,0.5) (0.4, 0.6) (0.3,0.5)
ot (0.7,0.6) (0.3,0.5) (0.4,0.5) (0.5,0.6) ot (0.3,0.6) (0.6,0.3) (0.5,0.8) (0.5,0.6)
TaBLE 9: Ordered PFS decision matrix for S*. TaBLE 15: Normalized PFS ordered decision matrix for S°.
tl t2 t3 t4 tl t2 t3 t4
O! (0.8,0.5) (0.7,0.5) (0.7,0.4) (0.6,0.4) o! (0.5,0.6) (0.6,0.5) (0.4,0.6) (0.5,0.4)
0? (0.6,0.4) (0.8,0.1) (0.7,0.3) (0.4,0.7) 0? (0.4,0.6) (0.8,0.1) (0.3,0.8) (0.7,0.5)
o3 (0.7,0.4) (0.7,0.5) (0.6,0.4) (0.3,0.5) o’ (0.4,0.6) (0.7,0.3) (0.4,0.6) (0.6,0.5)
ot (0.6,0.3) (0.6,0.3) (0.8,0.5) (0.5,0.6) ot (0.4,0.7) (0.7,0.5) (0.5,0.4) (0.5,0.8)
progressive values in MAGDM difficulties. The merger
TasLE 10: Ordered PFS decision matrix for $°. model is multipurpose and familiar to accommodate po-
p : ; " tential variations, involvement, and efliciency. Different
: ! 2 } ! models have specific ranking measures, so there are in-
02 (0.6,0.5) (0.6,0.5) (0.6,0.4) (0.5,0.4) cidental alterations among the grades of the projected
6} (0.6,0.4) (0.8,0.1) (0.8,0.3) (07,05 (hnique to b bl based on their deliberati
pest (0.6, 0.4) (0.7.03) (0.6, 0.4) (0.6.0.5) echnique to be reasonable based on their deliberations.
o (0.7.0.4) (0.7.0.5) (0.4.0.5) (0.5.0.8) Based on this scientific study and estimation, we now

TaBLE 11: Normalized ordered PES decision matrix for S'.

t t ty t
o! (0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)
0? (0.5,0.6) (0.9,0.1) (0.3,0.7) (0.4,0.5)
0? (0.4,0.8) (0.7,0.5) (0.4,0.6) (0.3,0.5)
o* (0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)

5.1. Advantages of the Proposed Method. The predictable
procedure is practical and reasonable; we have an in-
novative approach under the PFSS setting over the
PFSEOWG operator. Our expected model is more talented
than conventional structures and can carry the most

accomplish that the consequences attained from standing
approaches are impulsively associated with hybrid struc-
tures. In addition, due to some prosperous environments,
numerous hybrid assemblies of FS and IFS have to convert
infrequently for PFSS. Thus, it is a modest method to
combine inadequate and inexact information in the DM
technique. Therefore, our planned technique will be more
competent, more significant, improved, and healthier than
the numerous other mix structures of FS. Table 16 shows
the characteristic analysis of the anticipated technique and
some current models.

5.2. Comparative Analysis. To confirm the effectiveness of
the proposed method, we compared the results obtained
with some existing techniques in the PFSS setting. All results
are summarized in Table 17. In this work, a new aggregation
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TaBLE 16: Characteristic analysis of different approaches.

Fuzzy Aggregated parameters Aggregated parameters information considering the Einstein
information information norm
IFWA [3] v x x
IFEWG [4] v x v
PFWG [8] v X X
PFEWG ([31] v X v
PFEHA [32] v x v
IFSWG [33] v v x
PFSWG [25] v v x
Proposed " v v
operator
TaBLE 17: Comparison of the planned operator with some prevailing operators.
Approach St s? s? st s° Alternatives ranking
Proposed operator -0.5999 -0.1322 -0.1179 -0.1301 -0.1068 $>8>8>858!
PEFSWA [25] 0.0293 0.0369 0.0783 —-0.0938 0.0858 $>8>8 >8> 82
PESWG [25] -0.3306 -0.1383 -0.1092 -0.1661 -0.5957 $>$>8>8>82
PFSEWA [32] 0.0039 -0.0376 0.0433 -0.0179 0.0644 $5>83>8 >8> 82
PFSEWG [31] —0.4975 —0.1204 -0.1775 —0.0778 —0.1211 §F>8>8>8>8

operator, the PESEOWG operator, is recommended to fuse
indicative information and then use the score function to
evaluate the classification of alternatives. Also, if only one
parameter is assumed instead of one, then the PESS theory
becomes easier in PFS. Therefore, PESS theory is a general
form of PFS theory. Consequently, it is true that based on the
above facts, the operator proposed in this work is more
robust, more reliable, and more successful.

It is also a suitable tool for outrageous wrong and er-
roneous information in the DM procedure. Compared with
contemporary approaches, the benefit of the intended
technique and associated dealings is to avoid implications
based on detested reasons. So, it is an appropriate tool for
merging erroneous and imprecise data in the DM.

6. Conclusion

The PFSS is more operative than IFSS and PFS because they
resolve incomplete and uncertain information using MG
and NMG. AO is a mathematical tool that actively reduces
fuzzy numbers to a single fuzzy number. This paper develops
the novel AO for PFESS, such as the PESEOWG operator. In
addition, some basic properties are also proposed, such as
the idempotency, homogeneity, and boundedness of the
developed PESEOWG operator. Moreover, a DM technique
has been offered to resolve the complications of MAGDM
using the projected operator. A comprehensive mathe-
matical illustration is prearranged to choose the best bicycle
for the rider to confirm the effectiveness of the recognized
technique. A comparative analysis with some existing
methods is introduced. Finally, based on the results ob-
tained, the planned method has been determined to be the
most feasible and successful for the MAGDM problem.
Future research focuses on developing more decision-
making methods, such as Einstein’s hybrid AOs in the PFSS
environment, using other operators. We are confident that

these significant growths and prospects will help consider
organizational research areas centered on the world’s
climate.

Data Availability

No data were used in this article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The researchers would like to thank the Deanship of Sci-
entific Research, Qassim University, for funding the pub-
lication of this project.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338-353, 1965.

[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87-96, 1986.

[3] Z. Zeshui Xu, “Intuitionistic fuzzy aggregation operators,”
IEEE Transactions on Fuzzy Systems, vol. 15, no. 6,
pp. 1179-1187, 2007.

[4] W. Wang and X. Liu, “Intuitionistic fuzzy geometric aggre-
gation operators based on Einstein operations,” International
Journal of Intelligent Systems, vol. 26, no. 11, pp. 1049-1075,
2011.

[5] K. T. Atanassov, “Interval valued intuitionistic fuzzy sets,” in
Intuitionistic Fuzzy Sets, pp. 139-177, Physica, Heidelberg,
Germany, 1999.

[6] R. R. Yager, “Pythagorean membership grades in multi-cri-
teria decision making,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 4, pp. 958-965, 2013.



14

(7]

[9

[10

(11]

(12]

[13

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

K. Rahman, A. Ali, M. Shakeel, M. A. Khan, and M. Ullah,
“Pythagorean fuzzy weighted averaging aggregation operator
and its application to decision making theory,” The Nucleus,
vol. 54, no. 3, pp. 190-196, 2017.

K. Rahman, S. Abdullah, F. Husain, and M. S. A. Khan,
“Approaches to Pythagorean fuzzy geometric aggregation
operators,” International Journal of Computer Science and
Information Security, vol. 4, no. 9, pp. 174-200, 2016.

L. Wang and N. Li, “Pythagorean fuzzy interaction power
Bonferroni mean aggregation operators in multiple attribute
decision making,” International Journal of Intelligent Systems,
vol. 35, no. 1, pp. 150-183, 2020.

H. Garg, “Generalised Pythagorean fuzzy geometric in-
teractive aggregation operators using Einstein operations and
their application to decision making,” Journal of Experimental
and Theoretical Artificial Intelligence, vol. 30, no. 6,
pp. 763-794, 2018

D. Molodtsov, “Soft set theory—first results,” Computers and
Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31,
1999.

P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,”
Computers and Mathematics with Applications, vol. 45, no. 4-
5, pp. 555-562, 2003.

P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft
sets in a decision making problem,” Computers and Mathe-
matics with Applications, vol. 44, no. 8-9, pp. 1077-1083, 2002.
P. K. Maji, R. Biswas, and A. Roy, “Intuitionistic fuzzy soft
sets,” Journal of Fuzzy Mathematics, vol. 9, pp. 677-692, 2001.
R. M. Zulqarnain, X. L. Xin, M. Saqlain, and W. A. Khan,
“TOPSIS method based on the correlation coefficient of in-
terval-valued intuitionistic fuzzy soft sets and aggregation
operators with their application in decision-making,” Journal
of Mathematics, vol. 2021, pp. 1-16, 2021.

R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar,
D. Marinkovic, and D. Bozanic, “Robust aggregation oper-
ators for intuitionistic fuzzy hypersoft set with their appli-
cation to solve MCDM problem,” Entropy, vol. 23, no. 6,
p. 688, 2021.

R. Muhammad Zulqarnain, X. L. Xin, X. Long Xin, and
M. Saeed, “Extension of TOPSIS method under intuitionistic
fuzzy hypersoft environment based on correlation coefficient
and aggregation operators to solve decision making problem,”
AIMS Mathematics, vol. 6, no. 3, pp. 2732-2755, 2021.

H. Garg and R. Arora, “Generalized intuitionistic fuzzy soft
power aggregation operator based on t -norm and their ap-
plication in multicriteria decision-making,” International
Journal of Intelligent Systems, vol. 34, no. 2, pp. 215-246, 2019.
X. Peng, Y. Yang, and J. Song, “Pythagoren fuzzy soft set and
its application,” Computer Engineering, vol. 41, no. 7,
pp. 224-229, 2015.

T. M. Athira, S. J. John, and H. Garg, “A novel entropy
measure of pythagorean fuzzy soft sets,” AIMS Mathematics,
vol. 5, no. 2, pp- 1050-1061, 2020.

1. Siddique, R. M. Zulgarnain, R. Ali, A. Alburaikan,
A. Tampan, and H. Abd El-Wahed Khalifa, “A decision-
making approach based on score matrix for pythagorean
fuzzy soft set,” Computational Intelligence and Neuroscience,
vol. 2021, pp. 1-16, Article ID 5447422, 2021.

K. Naeem, M. Riaz, X. Peng, and D. Afzal, “Pythagorean fuzzy
soft MCGDM methods based on TOPSIS, VIKOR and ag-
gregation operators,” Journal of Intelligent and Fuzzy Systems,
vol. 37, no. 5, pp. 6937-6957, 2019.

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Mathematical Problems in Engineering

M. Riaz, K. Naeem, and D. Afzal, “Pythagorean m-polar fuzzy
soft sets with TOPSIS method for MCGDM,” Punjab Uni-
versity Journal of Mathematics, vol. 52, no. 3, pp. 21-46, 2020.
R. M. Zulqarnain, I. Siddique, S. Ahmad et al., “Pythagorean
fuzzy soft Einstein ordered weighted average operator in
sustainable supplier selection problem,” Mathematical
Problems in Engineering, vol. 2021, Article ID 2559979,
16 pages, 2021.

R. M. Zulqarnain, X. L. Xin, H. Garg, and W. A. Khan,
“Aggregation operators of pythagorean fuzzy soft sets with
their application for green supplier chain management,”
Journal of Intelligent and Fuzzy Systems, vol. 40, no. 3,
pp. 5545-5563, 2021.

R. M. Zulqarnain, X. L. Xin, I. Siddique, W. Asghar Khan, and
M. A. Yousif, “TOPSIS method based on correlation co-
efficient under pythagorean fuzzy soft environment and its
application towards green supply chain management,” Sus-
tainability, vol. 13, no. 4, p. 1642, 2021.

R. M. Zulqarnain, X. L. Xin, H. Garg, and R. Alj, “Interaction
aggregation operators to solve multi criteria decision making
problem under pythagorean fuzzy soft environment,” Journal
of Intelligent and Fuzzy Systems, vol. 41, no. 1, pp. 1151-1171,
2021.

H. Garg, “A new generalized Pythagorean fuzzy information
aggregation using Einstein operations and its application to
decision making,” International Journal of Intelligent Systems,
vol. 31, no. 9, pp. 886-920, 2016.

H. Garg, “Generalized pythagorean fuzzy geometric aggre-
gation operators using Einsteint-norm andt-Conorm for
multicriteria decision-making process,” International Journal
of Intelligent Systems, vol. 32, no. 6, pp. 597-630, 2017.

R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the
2013 joint IFSA world congress and NAFIPS annual meeting
(IFSA/NAFIPS), pp. 57-61, IEEE, Edmonton, AB, Canada,
June 2013.

K. Rahman, S. Abdullah, R. Ahmed, and M. Ullah, “Py-
thagorean fuzzy Einstein weighted geometric aggregation
operator and their application to multiple attribute group
decision making,” Journal of Intelligent and Fuzzy Systems,
vol. 33, no. 1, pp. 635-647, 2017.

K. Rahman, S. Abdullah, A. Ali, and F. Amin, “Pythagorean
fuzzy Einstein hybrid averaging aggregation operator and its
application to multiple-attribute group decision making,”
Journal of Intelligent Systems, vol. 29, no. 1, pp. 736-752, 2020.
R. Arora and H. Garg, “Robust aggregation operators for
multi-criteria decision-making with intuitionistic fuzzy soft
set environment,” Scientia Iranica Transaction E Industrial
Engineering, vol. 25, no. 2, pp. 931-942, 2018.



