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Most nonlinear difference equations have exact solutions that are not always possible to obtain theoretically. As a result, a large
number of researchers investigate several qualitative aspects of difference equations in order to predict their lengthy behavior.-e
goal of our research is to obtain the solutions of a tenth-order difference equation Un+1 � Un− 9Un− 5Un− 1/Un− 7Un− 3( ±
1 ± Un− 9Un− 5Un− 1), n≥ 0, where the initial values are positive real numbers. Stability and periodicity are also investigated.

1. Introduction

Solving the difference equation is one of the problems that is
difficult to determine the solvability. -e aim of this study is
to solve difference equation of the tenth order and solve four
specific cases of the following difference equation:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 ±1 ±Un− 9Un− 5Un− 1( 􏼁
, n≥ 0, (1)

where the initial conditions U− 9,U− 8,U− 7,U− 6,U− 5, U− 4,U− 3,

U− 2,U− 1,U0 are the arbitrary positive real numbers. We also
provide some properties of solutions such as periodicity in
two cases and stability in the other two cases. Difference
equations are used in a variety of probability problems such
as hypergeometric, binomial, and poison distribution. Dif-
ferential equations are related to difference equations in the
same way that discrete mathematics and continuous
mathematician are related. Difference equations are of
importance to computer scientists for a variety of reasons.
For example, when estimating the cost of an algorithm in
big-O notation, converting a difficult differential problem to

a nearly equivalent difference equation is the first step in
solving. -e study of asymptotic stability of nonlinear ra-
tional difference equations of high order is a difficult but
rewarding task. It is particularly beneficial for analyzing the
characteristics of mathematical models using different ap-
plications such as biological systems.-emain topic in study
is that the difference equations theory has been the as-
ymptotic behavior of rational form of difference equation.

In addition, various nonlinear trends in science and
engineering can be modeled by this type of equation, and the
solution of this type of equation provides a prototype for the
development of theory [1]. In the literature, many applica-
tions theories’ differences equations have been investigated.
El-Dessoky [2] investigated the behavior properties of the
solutions of the rational difference equation:

Un+1 � aUn +
bUnUn− 3

cUn− 4 + dUn− 3
. (2)

Ghazela et al. [3] researched the analytic qualities of
sixth-order difference equations:
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Un+1 �
bUn− 5

cUn− 2Un− 5 + d
. (3)

Al-Matrafi and Al-Zubaidi [4] achieved global and local
stability and forms of positive periodic solutions for two
types of recursive equations:

Un+1 � aUn− 1 ±
bUn− 1Un− 4

cUn− 4 − dUn− 6
. (4)

Exploring some properties of the behavior of solutions
appropriate to the class of recursive equation:

Un+1 � aUn− 1 ±
bUn− 1Un− 3

cUn− 3 − dUn− 5
, (5)

was the prime objective for Alayachi et al. in [5]. Sadiq and
Kalim [6] studied solutions, equilibrium points, and peri-
odicity of four types of difference equations:

Un+1 �
Un− 20

±1 ±Un− 6Un− 13Un− 20
. (6)

Elsayed in [7] was able to get the solutions to this dif-
ference questions:

Un+1 �
UnUn− 2Un− 4

Un− 1Un− 3 ± 1 ± UnUn− 2Un− 4( 􏼁
. (7)

For more articles in this direction, we refer the reader to
[8–14] and references cited therein.

2. The First Case:
Un+1= � Un−9Un−5Un−1/Un−7Un−3(1+Un−9 Un−5
Un−1)

-e aim of this section is studying the solutions form of the
particular case:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 1 + Un− 9Un− 5Un− 1( 􏼁
, n � 0, 1, . . . . (8)

Theorem 1. Assume that (Un)∞n�− 9 are solutions of difference
equations. 0en, for n � 0, 1, 2, . . ., we see that all solutions of
equation (8) are given by the following formulas:

U12n− 9 �
A􏽑

n− 1
k�0(1 + 6kAEI)

􏽑
n− 1
k�0(1 +(6k + 2)AEI)

,

U12n− 3 �
G􏽑

n− 1
k�0(1 +(6k + 3)AEI)

􏽑
n− 1
k�0(1 +(6k + 5)AEI)

,

U12n− 8 �
B􏽑

n− 1
k�0(1 + 6kBFJ)

􏽑
n− 1
k�0(1 +(6k + 2)BFJ)

,

U12n− 2 �
H􏽑

n− 1
k�0(1 +(6k + 3)BFJ)

􏽑
n− 1
k�0(1 +(6k + 5)BFJ)

,

U12n− 7 �
C􏽑

n− 1
k�0(1 +(6k + 1)AEI)

􏽑
n− 1
k�0(1 +(6k + 3)AEI)

,

U12n− 1 �
I􏽑

n− 1
k�0(1 +(6k + 4)AEI)

􏽑
n− 1
k�0(1 +(6k + 6)AEI)

,

U12n− 6 �
D􏽑

n− 1
k�0(1 +(6k + 1)BFJ)

􏽑
n− 1
k�0(1 +(6k + 3)BFJ)

,

U12n �
J􏽑

n− 1
k�0(1 +(6k + 4)BFJ)

􏽑
n− 1
k�0(1 +(6k + 6)BFJ)

,

U12n− 5 �
E􏽑

n− 1
k�0(1 +(6k + 2)AEI)

􏽑
n− 1
k�0(1 +(6k + 4)AEI)

,

U12n+1 �
AEI􏽑

n− 1
k�0(1 +(6k + 5)AEI)

CG(1 + AEI)􏽑
n− 1
k�0(1 +(6k + 7)AEI)

U12n− 4 �
F􏽑

n− 1
k�0(1 +(6k + 2)BFJ)

􏽑
n− 1
k�0(1 +(6k + 4)BFJ)

,

U12n+2 �
BFJ􏽑

n− 1
k�0(1 +(6k + 5)BFJ)

DH(1 + BFJ)􏽑
n− 1
k�0(1 +(6k + 7)BFJ)

, (9)

where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. For n � 1, the result holds. Now suppose that n> 0
and that our assumption holds for n − 1, that is,

U12n− 21 �
A􏽑

n− 2
k�0(1 + 6kAEI)

􏽑
n− 2
k�0(1 +(6k + 2)AEI)

,

U12n− 15 �
G􏽑

n− 2
k�0(1 +(6k + 3)AEI)

􏽑
n− 2
k�0(1 +(6k + 5)AEI)

,

U12n− 20 �
B􏽑

n− 2
k�0(1 + 6kBFJ)

􏽑
n− 2
k�0(1 +(6k + 2)BFJ)

,

U12n− 14 �
H􏽑

n− 2
k�0(1 +(6k + 3)BFJ)

􏽑
n− 2
k�0(1 +(6k + 5)BFJ)

,

U12n− 19 �
C􏽑

n− 2
k�0(1 +(6k + 1)AEI)

􏽑
n− 2
k�0(1 +(6k + 3)AEI)

,

U12n− 13 �
I􏽑

n− 2
k�0(1 +(6k + 4)AEI)

􏽑
n− 2
k�0(1 +(6k + 6)AEI)

,
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U12n− 18 �
D􏽑

n− 2
k�0(1 +(6k + 1)BFJ)

􏽑
n− 2
k�0(1 +(6k + 3)BFJ)

,

U12n− 12 �
J􏽑

n− 2
k�0(1 +(6k + 4)BFJ)

􏽑
n− 2
k�0(1 +(6k + 6)BFJ)

,

U12n− 17 �
E􏽑

n− 2
k�0(1 +(6k + 2)AEI)

􏽑
n− 2
k�0(1 +(6k + 4)AEI)

,

U12n− 11 �
AEI􏽑

n− 2
k�0(1 +(6k + 5)AEI)

CG(1 + AEI)􏽑
n− 2
k�0(1 +(6k + 7)AEI)

,

U12n− 16 �
F􏽑

n− 2
k�0(1 +(6k + 2)BFJ)

􏽑
n− 2
k�0(1 +(6k + 4)BFJ)

,

U12n− 10 �
BFJ􏽑

n− 2
k�0(1 +(6k + 5)BFJ)

DH(1 + BFJ)􏽑
n− 2
k�0(1 +(6k + 7)BFJ)

. (10)

Now, we find from equation (8) that

U12n− 9 �
U12n− 19U12n− 15U12n− 11

U12n− 17U12n− 13 1 + U12n− 19U12n− 15U12n− 11( 􏼁

�
C􏽑

n− 2
k�0(1 +(6k + 1)AEI)/􏽑n− 2

k�0(1 +(6k + 3)AEI)G􏽑
n− 2
k�0(1 +(6k + 3)AEI)/C􏽑

n− 2
k�0(1 +(6k + 5)AEI)AEI􏽑

n− 2
k�0(1 +(6k + 5)AEI)/GC(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)

E􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 4)AEI)I􏽑
n− 2
k�0(1 +(6k + 4)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)

×
1

1 + C􏽑
n− 2
k�0(1 +(6k + 1)AEI)/􏽑n− 2

k�0(1 +(6k + 3)AEI)G􏽑
n− 2
k�0(1 +(6k + 3)AEI)/􏽑n− 2

k�0(1 +(6k + 5)AEI)AEI􏽑
n− 2
k�0(1 +(6k + 5)AEI)/CG(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)􏼐 􏼑

,

U12n− 9 �
AGCEI􏽑

n− 2
k�0(1 +(6k + 1)AEI)/GC(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)

EI􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI) 1 + AGCEI􏽑
n− 2
k�0(1 +(6k + 1)AEI)/GC(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)􏼐 􏼑

�
A􏽑

n− 2
k�0(1 +(6k + 1)AEI)/(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)

􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI) 1 + AEI􏽑
n− 2
k�0(1 +(6k + 1)AEI)/(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)􏼐 􏼑

�
A/(1 +(6n − 5)AEI)

􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)(1 + AEI/(1 +(6n − 5)AEI))
,

U12n− 9 �
A

􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)(1 +(6n − 5)AEI + AEI)

�
A

􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)(1 +(6n − 5)AEI + AEI)

�
A􏽑

n− 1
k�0(1 + 6kAEI)

􏽑
n− 1
k�0(1 +(6k + 2)AEI)

,

U12n− 8 �
U12n− 18U12n− 14U12n− 10

U12n− 16U12n− 12 1 + U12n− 18U12n− 14U12n− 10( 􏼁

�
D􏽑

n− 2
k�0(1 +(6k + 1)BFJ)/􏽑n− 2

k�0(1 +(6k + 3)BFJ)H􏽑
n− 2
k�0(1 +(6k + 3)BFJ)/􏽑n− 2

k�0(1 +(6k + 5)BFJ)BFJ􏽑
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)

F􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 4)BFJ)J􏽑
n− 2
k�0(1 +(6k + 4)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ)

×
1

1 + D􏽑
n− 2
k�0(1 +(6k + 1)BFJ)/􏽑n− 2

k�0(1 +(6k + 3)BFJ)H􏽑
n− 2
k�0(1 +(6k + 3)BFJ)/􏽑n− 2

k�0(1 +(6k + 5)BFJ)BFJ􏽑
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)􏼐 􏼑

�
DH BFJ􏽑

n− 2
k�0(1 +(6k + 1)BFJ)/DH(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)

FJ􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ) 1 + BFJ􏽑
n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)􏼐 􏼑

�
B􏽑

n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)

􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ) 1 + BFJ􏽑
n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)􏼐 􏼑

�
B/(1 +(6n − 5)BFJ)

􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ)(1 + BFJ/(1 +(6n − 5)BFJ))
,

U12n− 8 �
B

􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ)(1 +(6n − 5)BFJ + BFJ)

�
B

􏽑
n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ)(1 +(6n − 5)BFJ + BFJ)

�
B􏽑

n− 1
k�0(1 + 6kBFJ)

􏽑
n− 1
k�0(1 +(6k + 2)BFJ)

,
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U12n− 7 �
U12n− 17U12n− 13U12n− 9

U12n− 15U12n− 11 1 + U12n− 17U12n− 13U12n− 9( 􏼁

�
E􏽑

n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 4)AEI)I􏽑
n− 2
k�0(1 +(6k + 4)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)A􏽑
n− 1
k�0(1 + 6kAEI)/􏽑n− 1

k�0(1 +(6k + 2)AEI)

G􏽑
n− 2
k�0(1 +(6k + 3)AEI)/􏽑n− 2

k�0(1 +(6k + 5)AEI)AEI􏽑
n− 2
k�0(1 +(6k + 5)AEI)/CG(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)

×
1

1 + E􏽑
n− 2
k�0(1 +(6k + 2)AEI)/􏽑n− 2

k�0(1 +(6k + 4)AEI)I􏽑
n− 2
k�0(1 +(6k + 4)AEI)/􏽑n− 2

k�0(1 +(6k + 6)AEI)A􏽑
n− 1
k�0(1 + 6kAEI)/􏽑n− 1

k�0(1 +(6k + 2)AEI)􏼐 􏼑

�
􏽑

n− 1
k�0(1 + 6kAEI)/(1 +(6n − 4)AEI)􏽑

n− 2
k�0(1 +(6k + 6)AEI)

􏽑
n− 2
k�0(1 +(6k + 3)AEI)/C(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI) 1 + AEI􏽑

n− 1
k�0(1 + 6kAEI)/(1 +(6n − 4)AEI)􏽑

n− 2
k�0(1 +(6k + 6)AEI)􏼐 􏼑

�
1/(1 +(6n − 4)AEI)

􏽑
n− 2
k�0(1 +(6k + 3)AEI)/C(1 + AEI)􏽑

n− 2
k�0(1 +(6k + 7)AEI)(1 + AEI/(1 +(6n − 4)AEI))

�
C(1 + AEI)

􏽑
n− 2
k�0(1 +(6k + 3)AEI)/􏽑n− 2

k�0(1 +(6k + 7)AEI)((1 +(6n − 4)AEI) + AEI)

�
C􏽑

n− 1
k�0(1 +(6k + 1)AEI)

􏽑
n− 1
k�0(1 +(6k + 3)AEI)

,

U12n− 6 �
U12n− 16U12n− 12U12n− 8

U12n− 14U12n− 10 1 + U12n− 16U12n− 12U12n− 8( 􏼁

�
F􏽑

n− 2
k�0(1 +(6k + 2)BFJ)/􏽑n− 2

k�0(1 +(6k + 4)BFJ)J􏽑
n− 2
k�0(1 +(6k + 4)BFJ)/􏽑n− 2

k�0(1 +(6k + 6)BFJ)B􏽑
n− 1
k�0(1 + 6kBFJ)/􏽑n− 1

k�0(1 +(6k + 2)BFJ)

H􏽑
n− 2
k�0(1 +(6k + 3)BFJ)/􏽑n− 2

k�0(1 +(6k + 5)BFJ)BFJ􏽑
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)

× 1/ 1 +
F􏽑

n− 2
k�0(1 +(6k + 2)BFJ)

􏽑
n− 2
k�0(1 +(6k + 4)BFJ)

J􏽑
n− 2
k�0(1 +(6k + 4)BFJ)

􏽑
n− 2
k�0(1 +(6k + 6)BFJ)

B􏽙
n− 1
k�0(1 + 6kBFJ)/􏽙

n− 1
k�0(1 +(6k + 2)BFJ)􏼠 􏼡

�
􏽑

n− 1
k�0(1 + 6kBFJ)/(1 +(6n − 4)BFJ)􏽑

n− 2
k�0(1 +(6k + 6)BFJ)

􏽑
n− 2
k�0(1 +(6k + 3)BFJ)/D(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ) 1 + BFJ􏽑

n− 1
k�0(1 + 6kBFJ)/(1 +(6n − 4)BFJ)􏽑

n− 2
k�0(1 +(6k + 6)BFJ)􏼐 􏼑

�
1/(1 +(6n − 4)BFJ)

􏽑
n− 2
k�0(1 +(6k + 3)BFJ)/D(1 + BFJ)􏽑

n− 2
k�0(1 +(6k + 7)BFJ)(1 + BFJ/(1 +(6n − 4)BFJ))

�
C􏽑

n− 1
k�0(1 +(6k + 1)BFJ)

􏽑
n− 1
k�0(1 +(6k + 3)BFJ)

,

(11)

Also, we can prove the other relations. -e proof is
complete.

Theorem 2. Equation (8) has a unique equilibrium point
U � 0, which is nonhyperbolic.

Proof. To obtain equilibrium points of (8),

U �
U

3

U
2 1 + U

3
􏼐 􏼑

. (12)

-us,

U
3 1 + U

3
􏼐 􏼑 � U

3
,

U
3 1 + U

3
− 1􏼐 􏼑 � 0,

U
6

� 0.

(13)

Hence, U � 0 is the equilibrium point of equation (8).
Define a function h: (0,∞)5⟶ (0,∞), such that

h(r, s, t, u, v) �
rst

uv(1 + rst)
. (14)

-en,

hr(r, s, t, u, v) �
st

uv(1 + rst)
2,

hs(r, s, t, u, v) �
rt

uv(1 + rst)
2,

ht(r, s, t, u, v) �
rs

uv(1 + rst)
2,

hu(r, s, t, u, v) � −
rst

u
2
v(1 + rst)

,

hv(r, s, t, u, v) � −
rst

uv
2
(1 + rst)

.

(15)

-erefore,

hr(U, U, U, U, U) � 1,

hs(r, s, t, u, v) � 1,

ht(U, U, U, U, U) � 1,

hu(r, s, t, u, v) � − 1,

hv(U, U, U, U, U) � − 1.

(16)
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It follows the characteristic equation given by

λ10 − λ9 + λ8 − λ6 + λ4 − λ2 � 0. (17)

Hence,

λ8 − λ7 + λ6 − λ4 + λ2 − 1 � 0. (18)

Clearly, λ � 1 is one root of equation (17). -erefore, the
equilibrium point is nonhyperbolic.

We provide numerical examples for equation (8) in
order to confirm the results of this section.

Example 1. Assume the initial conditions are U− 9 � 7,
U− 8 � 15, U− 7 � 9, U− 6 � 5, U− 5 � 10, U− 4 � 8, U− 3 � 16,
U− 2 � 10, U− 1 � 6, and U0 � 11 (Figure 1).

Example 2. Suppose that U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3,
U− 6 � 0.4, U− 5 � 0.5, U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3,
U− 1 � 0.4, and U0 � 0.5 (Figure 2).

3. Second Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3
(1−Un−9Un−5Un−1)

-e solutions to difference equations

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 1 − Un− 9Un− 5Un− 1( 􏼁
, n � 0, 1, . . . , (19)

are investigated in this section.

Theorem 3. Assume that Un􏼈 􏼉
∞
n�− 9 are solutions of difference

equations. 0en, for n � 0, 1, 2, . . ., we see that all solutions of
equation (19) are given by the following formulas:

U12n− 9 �
A􏽑

n− 1
k�0(1 − 6kAEI)

􏽑
n− 1
k�0(1 − (6k + 2)AEI)

,

U12n− 3 �
G􏽑

n− 1
k�0(1 − (6k + 3)AEI)

􏽑
n− 1
k�0(1 − (6k + 5)AEI)

,

U12n− 8 �
B􏽑

n− 1
k�0(1 − 6kBFJ)

􏽑
n− 1
k�0(1 − (6k + 2)BFJ)

,

U12n− 2 �
H􏽑

n− 1
k�0(1 − (6k + 3)BFJ)

􏽑
n− 1
k�0(1 − (6k + 5)BFJ)

,

U12n− 7 �
C􏽑

n− 1
k�0(1 − (6k + 1)AEI)

􏽑
n− 1
k�0(1 − (6k + 3)AEI)

,

U12n− 1 �
I􏽑

n− 1
k�0(1 − (6k + 4)AEI)

􏽑
n− 1
k�0(1 − (6k + 6)AEI)

,

U12n− 6 �
D􏽑

n− 1
k�0(1 − (6k + 3)BFJ)

􏽑
n− 1
k�0(1 − (6k + 1)BFJ)

,

U12n �
J􏽑

n− 1
k�0(1 − (6k + 4)BFJ)

􏽑
n− 1
k�0(1 − (6k + 4)BFJ)

,

U12n− 5 �
E􏽑

n− 1
k�0(1 − (6k + 2)AEI)

􏽑
n− 1
k�0(1 − (6k + 4)AEI)

,

U12n+1 �
AEI􏽑

n− 1
k�0(1 − (6k + 5)AEI)

(1 − AEI) 􏽑
n− 1
k�0(1 − (6k + 7)AEI)

,

U12n− 4 �
F􏽑

n− 1
k�0(1 − (6k + 2)BFJ)

􏽑
n− 1
k�0(1 − (6k + 4)BFJ)

,

U12n+2 �
BFJ􏽑

n− 1
k�0(1 − (6k + 5)BFJ)

(1 − BFJ)􏽑
n− 1
k�0(1 − (6k + 7)BFJ)

,

(20)
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Figure 1: -e solution of equation (8) when U− 9 � 7, U− 8 � 15,
U− 7 � 9, U− 6 � 5, U− 5 � 10, U− 4 � 8, U− 3 � 16, U− 2 � 10, U− 1 � 6,
and U0 � 11.
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Figure 2: -e local stability of equilibrium point of equation (8)
when U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5,
U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5.
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where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. -e proof is identical to the method to prove -e-
orem 1.

Theorem 4. Equation (19) has a unique equilibrium point
U � 0, which is nonhyperbolic.

Proof. To obtain equilibrium points of equation (19),

U �
U

3

U
2 1 − U

3
􏼐 􏼑

. (21)

-us,

U
3 1 − U

3
􏼐 􏼑 � U

3
,

U
3 1 − U

3
− 1􏼐 􏼑 � 0,

U
6

� 0.

(22)

Hence, U � 0 is the equilibrium point of equation (19).
Define a function h: (0,∞)5⟶ (0,∞), such that

h(r, s, t, u, v) �
rst

uv(1 − rst)
. (23)

-en,

hr(r, s, t, u, v) �
st

uv(1 − rst)
2,

hs(r, s, t, u, v) �
rt

uv(1 − rst)
2,

ht(r, s, t, u, v) �
rs

uv(1 − rst)
2,

hu(r, s, t, u, v) � −
rst

u
2
v(1 − rst)

,

hv(r, s, t, u, v) � −
rst

uv
2
(1 − rst)

.

(24)

-erefore,

hr(U, U, U, U, U) � 1,

hs(r, s, t, u, v) � 1,

ht(U, U, U, U, U) � 1,

hu(r, s, t, u, v) � − 1,

hv(U, U, U, U, U) � − 1.

(25)

It follows the characteristic equation given by

λ10 − λ9 + λ8 − λ6 + λ4 − λ2 � 0. (26)

Hence,

λ8 − λ7 + λ6 − λ4 + λ2 − 1 � 0. (27)

Clearly, λ � 1 is one root of equation (26). -erefore, the
equilibrium point is nonhyperbolic.

Example 3. We consider the present numerical example for
equation (19) for confirming the results of this section where
the initial conditions are U− 9 � 4, U− 8 � 12, U− 7 � 6,
U− 6 � 2, U− 5 � 8, U− 4 � 3, U− 3 � 11, U− 2 � 5, U− 1 � 2, and
U0 � 7 (Figure 3).

Example 4. We provide another numerical example for
equation (19) with initial values U− 9 � 0.1, U− 8 � 0.2,
U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5, U− 4 � 0.1, U− 3 � 0.2,
U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5 (Figure 4).

4. Third Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3(− 1−Un−9
Un−5Un−1)

-e goal of this section is to obtain the solutions form of the
particular case:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 − 1 − Un− 9Un− 5Un− 1( 􏼁
, n � 0, 1, . . . .

(28)

Theorem 5. Every solution Un􏼈 􏼉
∞
n�− 9 of equation (28) is

periodic with period twelve, and it is in the form

A, B, C, D, E, F, G, H, I, J, −
AEI

CG(AEI + 1)
, −

BFJ

DH(BFJ + 1)
, . . .􏼨 􏼩

(29)

or

U12n− 9 � A,

U12n− 8 � B,

U12n− 7 � C,

U12n− 6 � D,

U12n− 5 � E,

U12n− 4 � F,

U12n− 3 � G,

U12n− 2 � H,

U12n− 1 � I,

U12n � J,

U12n+1 � −
AEI

CG(AEI + 1)
,

U12n+2 � −
BFJ

DH(BFJ + 1)
,

(30)
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where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. From n � 1,

U12n− 21 � A,

U12n− 20 � B,

U12n− 19 � C,

U12n− 18 � D,

U12n− 17 � E,

U12n− 16 � F,

U12n− 15 � G,

U12n− 14 � H,

U12n− 13 � I,

U12n− 12 � J,

U12n− 11 � −
AEI

CG(AEI + 1)
,

U12n− 10 � −
BFJ

DH(BFJ + 1)
. (31)

From equation (28), we see that

U12n− 9 �
U12n− 19U12n− 15U12n− 11

U12n− 17U12n− 13 − 1 − U12n− 19U12n− 15U12n− 11( 􏼁

�
CG(− AEI/CG(AEI + 1))

EI(− 1 − CG(− AEI/CG(AEI + 1)))

� A,

U12n− 8 �
U12n− 18U12n− 14U12n− 10

U12n− 16U12n− 12 − 1 − U12n− 18U12n− 14U12n− 10( 􏼁

�
DH(− BFJ/DH(BFJ + 1))

FJ(− 1 − DH(− BFJ/DH(BFJ + 1)))

� B,

U12n− 7 �
U12n− 17U12n− 13U12n− 9

U12n− 15U12n− 11 − 1 − U12n− 17U12n− 13U12n− 9( 􏼁

�
AEI

G(− AEI/CG(AEI + 1))(− 1 − AEI)

� C,

U12n− 6 �
U12n− 16U12n− 12U12n− 8

U12n− 14U12n− 10 − 1 − U12n− 16U12n− 12U12n− 8( 􏼁

�
BFJ

H(− BFJ/DH(BFJ + 1))(− 1 − BFJ)

� D,

U12n− 5 �
U12n− 15U12n− 11U12n− 7

U12n− 13U12n− 9 − 1 − U12n− 15U12n− 11U12n− 7( 􏼁

�
G(− AEI/CG(AEI + 1))C

IA(− 1 − G(− AEI/CG(AEI + 1))C)

� E,

U12n− 4 �
U12n− 14U12n− 10U12n− 6

U12n− 12U12n− 8 − 1 − U12n− 14U12n− 10U12n− 6( 􏼁

�
H(− BFJ/DH(BFJ + 1))D

JB(− 1 − H(− BFJ/DH(BFJ + 1))D)

� F,

0 10 20 30 40 50 60 70 80 90
n

-2

0

2

4

6

8

10

12

U
 (n

)

plot of U (n+1)=(U (n-9)*U (n-5)*U (n-1))/
((U (n-7)*U (n-3))*(+1-(U (n-9)*U (n-5)*U (n-1))))

Figure 3: -e solution of equation (19) when U− 9 � 4, U− 8 � 12,
U− 7 � 6, U− 6 � 2, U− 5 � 8, U− 4 � 3, U− 3 � 11, U− 2 � 5, U− 1 � 2,
and U0 � 7.
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Figure 4: -e local stability of equilibrium point of equation (19)
with U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5,
U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5.
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U12n− 3 �
U12n− 13U12n− 9U12n− 5

U12n− 11U12n− 7 − 1 − U12n− 13U12n− 9U12n− 5( 􏼁

�
IAE

(− AEI/CG(AEI + 1))C(− 1 − IAE)

� G,

U12n− 2 �
U12n− 12U12n− 8U12n− 4

U12n− 10U12n− 6 − 1 − U12n− 12U12n− 8U12n− 4( 􏼁

�
JBF

(− BFJ/DH(BFJ + 1))D(− 1 − JBF)

� H. (32)

Theorem 6. Every solution Un􏼈 􏼉
∞
n�− 9 of equation (28) is

periodic with period six, and it is of the form

A, B, C, D, E, F, A, . . .{ }, (33)

iff
A � G,

B � H,

C � I,

D � J,

AEI � − 2,

BFJ � − 2.

(34)
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Figure 5: -e solution of equation (28) with period twelve when U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11, U− 4 � 9, U− 3 � 17,
U− 2 � 11, U− 1 � 7, and U0 � 12.
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Figure 6: -e solution of equation (28) with period six when initial values satisfies the conditions in -eorem 6, that are U− 9 � 1, U− 8 � 2,
U− 7 � 3, U− 6 � 4, U− 5 � − 0.6667, U− 4 � − 0.25, U− 3 � 1, U− 2 � 2, U− 1 � 3, and U0 � 4.
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Example 5. We present numerical example for equation (28)
for illustrating the results of this section where the initial
conditions are U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6,
U− 5 � 11, U− 4 � 9, U− 3 � 17, U− 2 � 11, U− 1 � 7, and U0 �

12 (Figure 5).

Example 6. For confirming the results of this section, we
consider numerical example for equation (28) where the
initial conditions are U− 9 � 1, U− 8 � 2, U− 7 � 3, U− 6 � 4,
U− 5 � − 0.6667, U− 4 � − 0.25, U− 3 � 1, U− 2 � 2, U− 1 � 3, and
U0 � 4 (Figure 6).

5. Fourth Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3 (− 1+Un−9
Un−5Un−1)

-e solutions to difference equations

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 − 1 + Un− 9Un− 5Un− 1( 􏼁
, n � 0, 1, . . . ,

(35)

are studied in this section.

Theorem 7. Every solution Un􏼈 􏼉
∞
n�− 9 of equation (35) is

periodic with period twelve, and it is in the form

A, B, C, D, E, F, G, H, I, J, +
AEI

CG(AEI − 1)
, +

BFJ

DH(BFJ − 1)
, A, B, . . .􏼨 􏼩,

(36)

where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. -e proof is identical to the method to prove -e-
orem 5.

Theorem 8. Every solution Un􏼈 􏼉
∞
n�− 9 of equation (35) is

periodic with period six, and it is in the form

A, B, C, D, E, F, A, . . .{ }. (37)
iff

A � G,

B � H,

C � I,

D � J,

AEI � 2,

BFJ � 2.

(38)

We provide numerical examples of equation (35) for
confirming our results.

Example 7. Assume that the starting conditions are as
follows: U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11,
U− 4 � 9, U− 3 � 17, U− 2 � 11, U− 1 � 7, and U0 � 12
(Figure 7).

Example 8. Let the initial conditions be given by U− 9 � 1,
U− 8 � 2, U− 7 � 3, U− 6 � 4, U− 5 � 0.6667, U− 4 � 0.25,
U− 3 � 1, U− 2 � 2, U− 1 � 3, and U0 � 4 (Figure 8).

6. Conclusion

-is research discussed the structure and behavior of so-
lutions for four special cases of equation (1). In the second
and third sections, we proved the stability of the equilibrium
point. In the fourth and fifth sections, we obtained the
periodic solutions to the equations with periodicity twelve.
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Figure 7: -e solution of equation (35) with period twelve when
U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11, U− 4 � 9, U− 3 � 17,
U− 2 � 11, U− 1 � 7, and U0 � 12.
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Figure 8:-e solution of equation (35) with period six when initial
values satisfies the conditions in -eorem 8, that are U− 9 � 1,
U− 8 � 2, U− 7 � 3, U− 6 � 4, U− 5 � 0.6667, U− 4 � 0.25, U− 3 � 1,
U− 2 � 2, U− 1 � 3, and U0 � 4.
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In addition, we studied the conditions of existence of the
periodic solutions with period six.
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