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Vibration analysis is widely used as an e�cient condition monitoring (CM) tool for rotating machines in various industries. Fault
detection and diagnosis (FDD) models play an important role in the development of any CM system. �e use of arti�cial
intelligence (AI) has since gained recognition in the development of fault detection and diagnosis systems. In this paper, a
combination of principal component analysis (PCA) which is used for reducing the data dimensionality, and support vector
machine (SVM) which is adopted for classi�cation to carry out fault detection and diagnosis of faults in bearings using vibrations.
�e diagnostic feature design and machine learning toolbox in MATLAB are used to develop features and train the models,
respectively. Real data from the Mendeley data depository is used to test and evaluate the models. Model training is carried out
using data with varying speeds representing di�erent conditions of bearing making it di�erent from similar approaches involving
SVM. �e choice of data used proves that SVM can be able to classify faults with consideration of the varying operating speeds.
Results have shown that the combination of PCA and SVM is e�ective in fault diagnosis of bearing faults under varying speeds
such that a 97.4% classi�cation accuracy was achieved. �e result implies that PCA and SVM can be implemented in various
industrial setups where variable speeds can occur both intentionally or nonintentionally. Furthermore, the method was able to
di�erentiate between compounding faults and faults that occur at di�erent times. �e confusion matrix further proves the quality
and accuracy of the trained model. Future work will focus on the development of models that can carry out the prognosis of faults
in bearings as well as to model for other faults other than bearing faults.

1. Introduction

Condition monitoring abbreviated as CM is a form of
predictive maintenance. It is a tool for estimating the current
health of rotating equipment using techniques such as vi-
bration analysis, motor current analysis, oil or wear debris
analysis, and temperature analysis. Out of all these tech-
niques, vibration analysis is well studied and has been ac-
cepted in most CM processes [1]. CM involves fault
detection and diagnosis of machines in various industries.
Before CM, time-based maintenance (TBM) was adopted
through various industries. TBM leads to a waste of man-
power, time, and money as maintenance is done based on
prede�ned time [2].�e adverse conditions of industries and

the need for continuous production put a strain on rotating
machines making them susceptible to faults [3]. Bearings are
common parts found in most rotating machines such as
motors, turbines, engines, and pumps; they are very much
susceptible to faults thus making their maintenance sig-
ni�cant especially that their failure leads to machine failure
causing disturbances in production [4]. Condition of
bearings are categorized into the following: healthy bearing,
inner race or ring damage fault, outer race or ring damage
fault, and ball bearing damage fault. �e faulty conditions
are due to various factors such as overloading machines,
misalignment, and improper mounting. Bearings are gen-
erally made of two concentric rings: an outer ring and an
inner ring. In between the two rings, there are ball bearings
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or roller bearings which reduce rotational friction in rotating
equipment.&e various parts of a bearing that usually fail are
ball bearings, inner races, outer races, and cage faults, which
are fully illustrated in Figure 1.

In this work, real vibration data is analyzed to detect and
diagnose bearing faults using PCA and SVM techniques. It
should be noted that the data used in the paper is of various
speeds. Traditionally, fast Fourier transform (FFT) tech-
niques are applied to infer faults from vibration data. FFT
struggles to reveal the faults in the signal, hence the in-
troduction of order tracking technique was introduced.
&ese aforementioned techniques require a trained person
to further analyze the signals to detect and diagnose faults
using the fault characteristic frequencies. &is leads to time-
wasting and an increased likelihood of human errors. In
recent years, intelligent approaches ranging from machine
learning approaches to more advanced deep learning ap-
proaches have since been researched. However, most of the
research surrounding the field does not cater for the changes
in speed and load conditions of rotating equipment which
have an effect in the equipment diagnosis. Furthermore, the
effects of compounding faults or more than one fault oc-
curring at the same time are somehow neglected. &e ap-
plication of PCA and SVM adopted in this work automates
the fault detection and diagnosis process hence eliminates
the need for trained personnel, avoid time-wasting, and
reduce human errors. Even though the approach has been
researched before, the method has not been tested for cases
in which the data is of various speed conditions such as an
increase in speed, a decrease in speed, increasing the speed,
decreasing the speed, and lastly decreasing the speed of
increasing speed. Note, the changes occur during the
measuring or sampling period hence the purpose of this
paper is to test the performance of PCA-SVM with K-fold
cross validation on fault detection of bearing fault with
various operating speed conditions and for a compounding
faults.

&is remainder of the paper structure is as follows:
Section II presents the review of the related literature
sources, section III presents the methods and techniques
used, sections IV present the results, and lastly, the con-
clusion is reported in section V.

2. Related Work

FDD based on vibration analysis has been extensively
studied and developed, from simple models to more com-
plex mathematical algorithms. FFT is commonly adopted as
a preprocessing technique for vibration data. Order tracking
has been the most used technique for analyzing non-
stationery signals to reveal the order characteristics neces-
sary for fault diagnosis [6, 7]. In recent years, the
autoregressive integrated moving average (ARIMA) has
gained recognition [8]. An extended version of ARIMA has
also been used [9] to solve the complexity in the modelling of
multisensor condition monitoring. &e use of artificial in-
telligence (AI) has also gained popularity in developing
models and algorithms for fault detection and diagnosis.
Various models have been developed in recent years. One

notable tool that is globally accepted is the use of machine
learning models or algorithms in fault detection and clas-
sification. Most utilized ML models include K-nearest
neighbor [10], Näıve Bayes, artificial neural network, and
support vector machines (SVMs). Kumar et al. used the
novel convolutional neural network for bearing defects. &e
approach is unique as it can be able to cope with insufficient
data unlike other convolutional neural networks, while
creating the deep learning effect [11]. SVM has been used [8]
to solve change detection problems in a gearbox. Multiple
measurement vector compressive sampling, a combination
of geodesic minimal spanning tree, stochastic proximity
embedding, and neighborhood component analysis, and
multiclass SVMs are used in [4] for condition monitoring of
roller bearings in rotating machines using vibration signals.
&e approach has been proven to have reached high-bearing
health classification accuracy while outclassing existing
methods. Chowdhury adopted multiclass SVM’s, Naı̈ve
Bayes, binary decision tree, discriminant analysis, nearest
neighbour, and ensemble classifiers to test time-windowed
extracted features in nonintrusive loadmonitoring [12]. As it
has been stated, AI methods are the recent advances in the
FDD field. One of the most used and studied AI methods in
the field is SVM. Ahmed et al. [13] proposed a fault detection
and diagnosis approach based on SVM for fault classifica-
tion. Furthermore, the approach was incorporated with
compressive sampling and Laplacian score to generate
compressively sampled data from raw vibration data signals
and to rank the sampled signals, respectively. &e method
was tested on bearing data sets and proved to be able to
classify faults surpassing the other AI-based approaches.
Fault diagnosis depends greatly on features and greatly
depends on feature extraction. &e separation of the two
processes create inferior fault diagnosis accuracy. Zhang
et al. [14] proposed a two-phase approach aiming to syn-
chronously extract features and optimize SVM parameters
for improved fault diagnosis. A hybrid filter and wrapper
method were adopted for this purpose. &e proposed
method was trained and tested for bearing fault diagnosis
and rotor fault diagnosis, while at it, the method proved to be
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Figure 1: Exploded diagram of a ball bearing [5].
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able to perform fault classification tasks perfectly. Amir et al.
[15] did a study comparing the accuracy of the classical SVM
and one class SVM (OC-SVM) for fault detection and di-
agnosis in bearings. Classical SVM tends to just create a
hyperplane across two classes, whereas OC-SVMmaximizes
the distance between the origin and positive values in the
absence of negative values. Furthermore, OC-SVM has the
ability to learn given little data. &e authors found that OC-
SVM classification accuracy is higher than that of classical
SVM and this is also affirmed by [16]. More research on the
application of SVM in fault detection and diagnosis prob-
lems can be found in [17].

SVMs are also adopted for fault classification in [15, 16]
and other classification problems in [18]. In [1], principal
component analysis (PCA) is used on FFTdata to reduce the
dimensionality of the data. PCA can distinguish between
various motor faults and provide an inexpensive and simple
alternative [19]. &e application of PCA in fault detection
and diagnosis problems is also explored in [20–22]. Another
well-researched approach is the extension of artificial neural
networks including deep normalized convolutional neural
networks [23] and deep neural networks with batch nor-
malization (BN) [24] for the classification of bearing faults.
Other neural network approaches are reported in [25–29]. In
[26], they proposed a fault detection and diagnosis based on
deep convolutional neural network (DCNN) with a mandate
to combine the feature extraction and fault classification into
a single stage. &e approach is different from most methods
such that it depends on feature learning rather than manual
feature engineering hence eliminating the reliance on an
individual’s knowledge for feature extraction and selection.
With raw data, the approach achieved 98% accuracy for the
training sample and 91% for the test sample. In comparison
with other approaches based on manual feature engineering,
the approach is well on par. &e approach seems to reserve
most features as raw signals are used and there is less signal
processing. Another notable insight about the approach is
the ability to reflect on the unknown information relating to
the bearings. However, the approach does not seem to cater
for changes in speed rotating and situations where 2 more
faults exist are not covered in the context. Proposed in [30] is
the meta learning method which aims to learn prior from
relevant tasks without learning from the start. &e method is
named meta learning fault diagnosis (MLFD) and the au-
thors achieved an average classification accuracy of 97.28%
for complex working conditions on case western data. Deep
learning techniques which have a dependency of larger
datasets are discussed in the following publications: [30–35].

In this paper, the capabilities of ML are tested in a
combination of PCA and SVM with K cross-validation
techniques are employed to detect and diagnose bearing
faults using vibration analysis methods.

3. Methodology

&is section presents the methods, tools, and techniques
used in this research work. &e whole process from data
processing to model training is carried out in MATLAB.
Since the fault labels are known already from the data

publisher, order tracking was not done. A combination of
SVM and PCA is adopted for the fault diagnosis of speed-
varying bearing data. PCA is adopted to reduce the data
dimensions as well as to reduce computation time, and SVM
is used to classify the bearing faults using PCA data. As it is
shown in Figure 2, raw time-domain vibration data is
prepared using MATLAB. &is includes labelling the data
according to the type of fault they represent and creating an
ensemble of the data to treat the data as a whole. &e data is
then taken through the preprocessing stage where the order
spectrum and power spectrum are created. &is enables the
extraction of the features which follow next in both the time
and frequency domains. &e diagnostic feature designer
toolbox in MATLAB is employed for the extraction and
selection of the features which are then used in the classi-
fication learner to train and verify the PCA and SVM
models.&e PCA and SVM parameters are optimized for the
desired results of high accuracy. &e evaluation criteria are
based on the performance of the algorithm on the classi-
fication of the various faults or classes.

3.1.DataSpecification. Raw experimental data in the form of
vibration signals from a bearing is used for training the
model. &e data is available through the Mendeley data
repository andmore information on the data can be found in
[36].&e setup for the collection of data is shown in Figure 3.
&e sampling frequency is 200 kHz for 10 seconds. &e
bearing type is ER16K with 9 balls, a ball diameter of
7.94mm, and a pitch of 38.52mm.

&e data used in the method covers a wide range of
different rotating speed conditions hence the effects of
changes in speed during the sampling period on the bearing
vibrations are taken into consideration. &e operating speed
conditions include increasing speed, decreasing speed, in-
creasing speed then decreasing speed, and lastly, decreasing
speed then increasing speed. &e various speeds can be seen
in [36]. &e data represent various health conditions, in-
cluding healthy bearing, ball damage fault, combined faults,
an inner ring or race fault, and outer race or ring faults. In
this paper, the health conditions are represented as follows:
0–healthy, 1–ball fault, 11–combined faults, 111–inner ring
fault, and 1111–outer race fault. A total of 40 samples in the
dataset were used, each class or fault represented by 8
samples. A combined fault is defined as a case in which ball
fault, inner race fault, and outer race fault occur at the same
time.

3.2. Preprocessing and Feature Extraction. Firstly, the data is
preprocessed to ensure that it is ready for the extraction of
condition indicators. &e signals were prepared into an
ensemble to process them all at once. Preprocessing of data is
carried out using both signal-based functions and model-
based functions. &e time synchronous average (TSA) signal
of the data is deduced from the original data to filter out
noise and disturbances. Spectral analysis of vibration signals
has been proven to be the most widely used for rotating
machines. Spectral analysis allows for easy detection of the
resonance frequency or the fault frequency [37]. &e order
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Figure 2: Process flow chart for the model training.
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Figure 3: &e setup used to collect the vibration data [36].

4 Mathematical Problems in Engineering



and power spectrums of the signals are extracted from the
resulting TSA signal, as it is free from disturbances. &e power
spectrum allows for the characterization of frequency content
and resonances within a system. Faults cause changes in the
spectral signature making it easy for the extraction of features
using the power spectrum. &e order spectrum, similar to the
power spectrum provides an extended understanding of har-
monically interrelated systems in rotating machinery. Features
are extracted from both the frequency and time series domains.
&e features are ranked according to their significance; less
important features are not selected for classification.&e data is
then exported to the classification learner for model training.
With PCA active, the optimized Gaussian SVM model is
trained. Upon completion of training, a confusion matrix is
generated which is used to check how the trained model
performs for each class.

3.3. Condition Indicator Classification. PCA is used to re-
duce the dimensions of the training data features. SVM is
adopted as a classification model. Features that are less
significant in the preprocessed data are sidelined to increase
the accuracy of our model.

3.3.1. Principal Component Analysis (PCA). PCA is one of
the statistical learning algorithms used to reduce the features
extracted from a signal. It has always been adopted for pre-
diction, classification, and feature extraction problems [38, 39].
It changes a lot of related variables into new sets of uncorrelated
variables and, in the interim, holds most of the information on
the first signal. &e principal components (PCs) are acquired
from the uncorrelated variables to detect and confine process
anomalies in a vigorous way [40]. For simplicity, any given
normal data matrix X (N × m), X is transformed into a new
matrix T (N × r) where r is greater than m. &is is achieved by
using a transformation matrix P (m × r) [21].

TN×r � XN×mPm×r, (1)

where P and T represent the orthogonal loading matrix and
score matrix, respectively.

3.3.2. Support Vector Machine. Support vector machines
popularly known as SVM is a supervised machine learning
model used for both classification and regression problems,
defined by a separating hyperplane/line for a given training
set [41]. SVM has always been adopted for various classi-
fication problems such as Internet traffic classification [42].
Various hyperplanes separating the two or more classes
(Figure 4) exist, but the SVM classifier depends primarily on
the hyperplane or line that has the maximum separating
margin among the fault classes (Figure 5) [44, 45].&e larger
the separating or functional margin, the lower the classifi-
cation error [46]. Originally, SVMs were designed for binary
classification; however, they can also be used for nonlinear
classification problems with the help of kernels [47], hence
making them more versatile for classification problems [46].

Linear SVM is used since it is simple to implement. &e
linear classifier function equation (2) is expressed as follows:

f(x) � w
T
x + b, (2)

w and b are unknown coefficients that are determined
from the minimization cost function shown in the following:

min J(w, ξ) �
1
2
‖w‖

2
+ C 

N

i�1
ξi, (3)

Subject to

yi w
TΦ xi(  + b ≥ 1 − ξi,

ξi ≥ 0; i � 1, 2 . . . , l.
(4)

C is a user-specified, positive, regularization parameter
adopted for control of trade-off among the model com-
plexity and empirical risk [48].

To transform (4) for nonlinear classification, a kernel
notion shown in (5) is used.

K xi, xj  � ΦT
xi( Φ xj , (5)

where Φ is the nonlinear operator. &e following types of
kernels are usually adopted: linear kernel, polynomial kernel,
RBF kernel, and MLP kernel [49].
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Figure 4: Illustration of principle hyperplanes in SVM [43].
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Figure 5: SVM optimal hyperplane between two classes.
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&erefore, SVM is represented as follows:

f xi(  � 

Ni

k�1
yiakK xisk(  + b, (6)

where sk, k � 1, . . . , Ni represents support vectors that
correspond to the training data samples, set during the
training step, and yi is the class label. &e SVM parameters
are stated in Table 1.

3.3.3. K-fold Cross-Validation. Cross-validation involves
partitioning datasets into various equal k parts to reduce the
overfitting and under fitting of classification models. It al-
lows model training while reserving the kth fold or part for
the validation of the training accuracy. After model or al-
gorithm training, the fold is used to test the trained model
[50].

4. Results and Analysis

&is section presents the results from the preprocessing of
the data and the training of the SVM model. A total of 60
vibration datasets were available. 40 datasets were used for
the training purpose and 20 datasets were left for testing
purposes.

Figure 6 shows the original vibration signals before
preprocessing.&e health conditions represented by the data
are healthy, ball fault, combined faults, an inner ring or race
fault, and outer ring or race fault. &ese are labelled as 0, 1,
11, 111, and 1111. &e y-axis represents the vibration (peak
to peak amplitude) in m/s2 and the x-axis indicates the
timestamps (samples) of the vibrations. &e frequency-
domain plots are transformed from the time domain.

Figures 7 and 8, respectively, depict the power and order
spectrums of the vibration signals. Spectrum analysis is
adopted due to its ability to show the underlying feature
which cannot be seen in a simple time-domain signal and
allows for easy detection of the resonance frequency or the
fault frequency. &e order and power spectrums of the
signals are extracted from the raw vibration signal. &e
power spectrum allows for the characterization of frequency
content and resonances within a system. In the power
spectrum, the y-axis indicates the power of the signals in
decibels, and the x-axis represents the frequency of the
signals on a logarithmic scale. &e logarithmic scale allows
coverage of a wider range of frequencies. In the order
spectrum, the y-axis indicates the power of the signals in
decibels and the x-axis represents the orders, i.e., the fre-
quency expressed in multiples of the running speed. &e

order spectrum is necessary to reveal the order character-
istics of the signal [6].

Features are extracted from both the time-domain series
and the frequency-domain series. &e features are ranked
according to their significance using analysis of variance
(ANOVA). &e feature ranking can be seen in Figure 9. Less
important features were not selected for use in classification
model training through a manual feature engineering
process as seen in Table 2. A scatter plot was used to in-
vestigate the features by plotting the features against each
other to see the combinations which can give the best
classification results by showing variations in the classes.
Figure 10 shows that a combination of the peak frequency of
the order spectrum and skewness in time-domain features
can be great for the classification of bearing faults. &e
scatter plot suggests that overfitting may be present between
class 0 and class 1111 as they appear to be closer to each
other. &is may be a factor leading to the misclassification
error of the algorithm. Figure 11 shows the legend for the
scatter plot.

With the K-cross validation set to 10 to reserve a set of 10
data sets for the validation test, the PCA was set to keep 3
numeric components after training and a Gaussian kernel
was selected for the optimizable SVM (one vs all). PCA, as it
has been stated, it is used to reduce the dimensions of the
feature dataset by giving a direction to keep features with
maximum variance. &e model achieved a classification
accuracy of 97.4%with a training time of 88.315 seconds.&e
test accuracy was found to be 90% for the remaining 20 data
samples. Figure 12 displays the confusion matrix which is
used to check how the trained model performs for each class.
&e model can achieve at least 89% of positive predicted
values (annotated in green) and achieve at most 11% of false
discovery rates (annotated in pink) for some of the classes. A
false discovery rate occurred for class inner race fault class
where some of its data was predicted to be a combined fault
class. &is may be because class 11 represents inner race
faults and some of the value of the features may be greatly
present in the case of combined faults. &e analysis of the
results implies that PCA-SVM can be used to classify bearing
faults when there are changes in speeds while sampling, to
avoid representing changes in speed as faults.

&e comparisons based on accuracy are documented in
Table 3 [35, 51–54]. From Table 3, it can be taken that the
method performed fairly compared to other approaches.
However, SVM host an advantage of low computational
time and the ability to cope with limited data.

&e SVM model was tested on test vibration data
resulting in the confusion matrix in Figure 13. &e test
accuracy was 97.8% and the test results have shown that

Table 1: SVM parameter used when training the algorithm.

Parameter Detail
Kernel Gaussian or RBF
Kernel scale Automatic
Acquisition function Bayesian
Optimization Bayesian optimizer
Multiclass method One vs one
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Table 2: Selected features for model training.

Feature domain Features selected
Time domain Standard deviation, skewness
Frequency domain Order spectrum’s peak frequency and peak amplitude
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Table 3: Comparison of PCA-SVM method with K-fold cross-validation with recent related AI fault classification models.

Author Model Classification accuracy (%) Speed
Shuhui Wang, 2018 CNN based Markov model 98.125 Constant
Tang et. al, 2019 Adaptive learning rate deep belief network (ADDBN) 99.75 Constant
Sufi Tabassum Gul, 2018 SVM with 5 K-cross fold validation 91.95 Constant
Liu et al. 2018 1D-CNN 99.999 Constant
Our method SVM+PCA and 10 K-fold CV 97.4 Various speed condition
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SVM can indeed be greatly considered for fault detection
and diagnosis of rotating equipment using vibration data.

5. Conclusion

Vibration analysis has proven to be the most consistent
technique when it comes to conditionmonitoring of rotating
equipment. In this paper, a combination of PCA and SVM
with cross-validation is used for fault classification of
bearings using real data from the Mendeley data depository.
&e trained model achieves an accuracy of 97.4% with a
training time of 88.315 seconds. &e model shows an ac-
curacy of at least 89% for all the health condition classes.
&ese results imply that PCA and SVM can be combined to
detect and classify faults; however, more work needs to be
put into further optimization of the approach to improve the
classification accuracy and reduce the dependence of indi-
vidual knowledge on the feature selection process. &e
implication of the result based on the training and test
accuracies suggests that PCA and SVM can be successfully
employed for real engineering practice. &e main advantage
of the method is tied to the fact that SVM can achieve high
accuracy in cases where there is limited data as depicted in
most industrial setups. Industrial setups have limited data
since the industrial sites are not collecting and archiving
historical data. Hence, there is not enough data to train AI-
based algorithms. Additionally, SVM and PCA do not
provide computational complexity, hence they are suitable
for application in real engineering scenarios. Future work

includes testing the approach on other problems based on
acoustic waves and also to expand the research on com-
ponents with both bearings and gears.

Data Availability

&e vibration data, consisting of tacho signal and acceler-
ometer signals used in the research is found at [36]
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