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Biologically inspired micropumps using the phenomena of peristalsis are highly involved in targeted drugging in pharmacological
engineering. (is study analyzed theoretically the transport of two immiscible fluids in a long flexible tube. (e core region
contains Johnson–Segalman non-Newtonian fluid, while the peripheral region is saturated by nanofluid. It is assumed that Darcy’s
porous medium is encountered close to the walls of the tube. A complex peristaltic wave is transmitted on the compliant wall
which induces the flow. Equations of continuity, momentum, energy, and nanoparticle concentration are used in modelling the
problem.(e modelled problem for both the regions, i.e., core and peripheral regions are developed with the assumptions of long
wavelength and creeping flow. Temperature, velocity, and shear stress at the interface are assumed to be equal. (e system of
equations is solved analytically.(e graphical results for different involving parameters are displayed and thoroughly discussed. It
is received that the heat transfer goes inverse with fluid viscosity in the peripheral region, but opposite measurements are obtained
in the core region. (is theoretical model may be considerable in some medical mechanisms such as targeted drug delivery,
differential diagnosis, and hyperthermia. Moreover, no study on non-Newtonian nanofluid is reported yet for the two-layered
flow system, so this study will give a good addition in the literature of biomedical research.

1. Introduction

(e transport of fluid in a channel or tube due to contraction
and relaxation of flexible walls are known as peristalsis. It
can be observed naturally in the human body for the
transport of food, some blood vessels, movement of sper-
matozoa and ovum in reproductive track, and many other
body systems. Phenomena inspired scientists and leads to
many biomedical instruments and other transport tech-
niques in machines such as a heart-lung machine and PDMS
peristaltic micropump [1, 2]. Other than biomedical devices,
it can be employed in devices such as sanitary transport.

Latham [3] experimentally elaborated the phenomena,
leading to numerous investigations [4–8] allocated in the
domain of peristaltic flow for different flow geometries and
under various assumptions. Jaffrin and Shapiro [9] initiated
the study of peristaltic transport with low Reynold’s number

approximation. Most recently, Zeeshan et al. [10] investi-
gated the rheological features of nanofluid in a rectangular
duct driven by a complex peristaltic wave. (e effect of
electrophoresis was focused and the analytic solution is
found. (ey revealed that the change in amplitude ratios of
complex waves affects the flow positively, that is, more bolus
are observed. Tripathi et al. [11] theoretically studied the
transport phenomena of a nanofluid due to complex peri-
staltic transportation with effects of electro-osmosis. (e
analysis focuses on nanofluids, and they observe the effects
of the rise in Joule’s heating, thermophoresis, Brownian
motion, Grashoff number, etc. Javid et al. [12] described the
peristaltic propulsion of viscous fluid in a channel with a
complex wave. (ey used numerical simulations to evaluate
the results. (e evaluation further focused on magnetohy-
drodynamics which enhances the worth of study. Further-
more, Tripathi et al. [13] added electrodynamical effects with
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a couple stress fluids in ocular flow. Bhatti et al. [14] argued
two-phase flow in a channel with a compliant wall.

Usually, in biological systems, such as the ureter, oe-
sophagus, or small veins, it became apparent that the walls
are lubricated with a film of fluid. (ese fluids may be
different in nature rheologically and continuously pumped
out. Recently, some researchers [15, 16] have shown ex-
perimentally that the blood flux in tiny veins has an outer
stratum made of plasma (which is usually Newtonian fluid),
whereas an inner stratum called core possesses red blood
(usually modelled as non-Newtonian fluid). (e fluid rhe-
ologies may vary in different transport ducts of the human
body. (e study motivated some recent literature in phys-
iological flow two-layer immiscible fluids’ flow analysis.

Maybe, the first mathematical analysis in this domain
was performed by Srivastava and Srivastava [17] back in
1982. (ey considered both Newtonian fluids with different
viscosities and compared the results with experimental re-
sults of Weinberg et al. [18].

Misra and Pandey [19] then use the model for the
transport of blood in small blood vessels. (ey use the
Casson model for core region flow and Newtonian fluid
close to the wall. (ey concluded the denser the peripheral
fluid is, the higher the flow rate of the core region is.

More recently, Vajravelu and Saravana [20] examined
the two-layered fluid model with non-Newtonian Jeffery
fluid in the core region, and Newtonian fluid is taken close to
walls in a channel with heat transfer and fluid slip effects. Ali
et al. [21] worked on peristaltic transport in an axisymmetric
tube with FENE-P fluid in the core region. (ey focused on
electro-osmosis effects. Again, Ali et al. [22] reported similar
flow with Ellis fluid in the core region. Rajashekhar et al. [23]
assumed the Herschel–Bulkley model for the flow in the core
region of so-called blood flow. Tripathi et al. [11] worked on
Bingham and power-law fluid in a channel. (e results are
extended for three-layer fluids by Tripathi et al. [24] and
were reported in 2017.

Mathematical simulations of many biologically inspired
systems are developed and produced effect outputs in
finding the cure or histories of many biologically inspired
systems. Since decades, these models and simulation are vital
in reducing animal experimentation [25–29]. So, major
contributions of the current work can be overviewed as

(i) (is article endures some novel applications of the
flow of two-layer fluid in a flexible tube.

(ii) (e complex peristaltic wave travels along the
surface of the tube. As described by Dobrolyubov
and Douchy [30] that the geometric form of a
peristaltic wave in the intestine is complex most of
the time, therefore, this study is an effort to describe
flow as close to the real physiological problem as
possible.

(iii) (e two-layer flow of nanofluid and John-
son–Segalman fluid in the flexible tube with a
compliant wall is evaluated analytically along with
the effects of the partial porous medium and
catheter.

(e creeping flow and long-wavelength approximation
are assumed and perturbation is employed to evaluate the
solution. Structure of the investigation is arranged as fol-
lows. Section 2 discusses the mathematical modelling of the
whole phenomenon through geometrical description and
derivations of the quantitative expressions from main
physical laws. Section 3 suggests the methodology of the
solution to handle the obtained systems of equations. In
Section 4, results are revealed in the form of graphs and
tables and discussed with profound depth. Lastly, a few
significant conclusions are drawn from the recent investi-
gation and are furnished in Section 5.

2. Theory and Mathematical Model

2.1. Geometry of the Problem. An infinitely long circular
axisymmetric co-centric cylinder, as illustrated in Figure 1, is
the area of interest in current communication. Furthermore,
a complex sinusoidal wave travels along z-axis on the outer
cylinder which is passing through the centre of pipe along
with wavelength λ, speed of wave c, amplitudes bi, and the
pipe radius a0. (e inner pipe has a radius of a∈ and is
considered stationary. (e motion of wave on a flexible wall
is mathematically defined as

R0(z, t) � ± a0 ± b1 cos
2π
λ

(z − ct) 

± b2 cos
4π
λ

(z − ct) .

(1)

Mathematically inner cylinder can be represented as

R∈(z, t) � a∈. (2)

Here, z designates the direction of propagation of the
wave, i.e., parallel to the z-axis.(e outer cylinder is kept at a
temperature T1, while the inner cylinder is at a temperature
T0 <T1 (e core region is also assumed to be saturated by
non-Newtonian Johnson–Segalman fluid. While region
close to the outer pipe wall is porous and is saturated by
Newtonian nanofluid. Both the fluids are immiscible and
separated at

R(z, t) � a1. (3)

2.2. Porous Media. A porous medium is a space defined by
solid with void space uniformly distributed in the whole
region, which allows fluid to transport but with some re-
sistive force called Darcy’s forces. (ese mediums help to
uphold the heat in porous systems. (e application and
usage of porous media in engineering can be underlined in
various fields such as petroleum engineering, rock and soil
mechanics, hydrogeology, and, more recently, in bioengi-
neering and biology. Many scientists have established their
interest in considering heat transfer biologically inspired
flow in permeable domains [31–35].

(e basic feature of the porous medium is porosity
which can be defined as the ratio of the volume of free space
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to the volume of the full body. Usually, the value of porosity
is 0.45, with dense materials and compact structure; it re-
duces to 0.25 and so.

(e velocity V of fluid flow hinges on permeability and
pressure gradient as defined by themodified Darcy equation:

−
dp

dy
� αμV + βρV

2
. (4)

Here, the coefficient α defines loss due to friction gen-
erated by the viscosity of fluid and shape of a porous me-
dium. (e inertial parameter β incorporates loss in inertial
due to bend in porous spaces and other factors; it is pro-
portional to ρV2.

(e modified Darcy equation is universal relation and
defines fluid flow in porous spaces.

At a low Reynolds number, the inertial term in equation
(1) can be neglected and becomes

−
dp

dy
�
μ
K

V. (5)

Here, K� 1/α is known as the Darcy permeability.

2.3. Nanofluids. A solid-liquid suspension is engineered in
such a way that nanosized particles are uniformly distributed
and do not agglomerate in a base fluid. (ese nanosized
particles are usually oxides and carbides of metal or carbon
nanotubes. Base fluid can be any liquid that is oils or water
with low thermal conductivity.(ese fluids exhibit enhanced
thermal conductivity which makes it imperative to gain
knowledge of the rheology of nanofluid before its usage.
Application of these fluids is in solar energy storage, mi-
croelectronics, fuel cells, pharmaceutical process, hybrid
engines, chillers, and other machines related to heat transfer.
Nanofluids also show special properties with the magnetic
field, acoustics and ultrasound, etc. [36–40].

Mathematical models of this fluid was described by
Buongiorno [41]. He observed an abnormal increase in
thermal conductivity, viscosity, and heat transfer rate co-
efficient. It is due to the nanofluid property of the ther-
mophoresis and Brownian motion.

If J is diffusion mass flux of the nanoparticle w.r.t. fluid
velocity, then it can be written as the sum of Brownian
motion and thermophoresis; if no external force is applied,

−
1
ρ
∇ · J �

zφ
zt

+ V · ∇φ � ∇ · DB∇φ + DB
∇T
T

 , (6)

where φ is the concentration of nanoparticles and DB and
DT are due to the slip velocity of particles caused by
Brownian motion and thermophoresis. (e energy equa-
tions for nanofluids are

ρc
zT
zt

+ V · ∇T  � − ∇ · q + hp∇ · J. (7)

Neglecting radiative heat transfer, q can be calculated as
the conduction heat flux, c is heat capacity, and hp is specific
enthalpy.

2.4. Constitutive Equation of Johnson–Segalman Fluid.
(e Johnson–Segalman fluid [42] defines nonmonotonically
related shear stress and rate of shear for some values of the
parameter of material. Spurt is an example of the property of
this model.

Johnson and Segalman initially suggested an integral
approach to the model, but rate type form can be derived.
Considering appropriate parameters, the mathematical form
of Johnson Segalman fluid [43] can be written as

S + λ

DS

Dt
+ S(W − a D)+

(W − a D)
T
S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 2μ D,

T � − 2μ D + S,

σ � − pI + T.

(8)

Here, W � 1/2[L − LT] is skew-symmetric and
D � 1/2[L − LT] is symmetric part of velocity gradient,
D/Dt is material derivative, λ is relaxation time, and a is
called slip coefficient. (e special case of this model can be
achieved if

(a) a � 1: it becomes Olyroyd-B model
(b) a � 1 and µ � 0: Maxwell model
(c) λ � 0: Newtonian fluid

2.5. Flow Problem. Modelling of flow in fluid transport
problems usually involves four equations each, i.e.,

(i) Continuity equation as a consequence of the law of
conservation of mass

(ii) Momentum equation due to law of conservation of
momentum

(iii) Energy equation as defined by the law of conser-
vation of energy

(iv) Nanoparticle concentration equation

In current communication, these equations are divided
into two regions so-called core and the peripheral region.

peripheral region

core region

z

r

a0

aE

a1

Figure 1: Geometry of the problem.
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(e core region is saturated with Johnson–Segalman fluid
and the porous peripheral region is filled with a nanofluid.

2.5.1. Peripheral Region
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2.5.2. Core Region
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Using the dimensionless parameters,
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r∗ �
r

R0
, z
∗

�
z

λ
, w
∗

�
w

c
, u
∗

�
u

cδ
, t
∗

�
ct

λ
,

Re �
ρac

μ
, δ �

a

λ
, H �

T − T0

T1 − T0
, M �

C − C0

C1 − C0
,

Gr �
ρfgαa

2

μfc
T0, p
∗

�
a
2
p

μfcλ
, ϕ1 �

b1

a0
, ϕ2 �

b2

a0
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Employing nondimensional variables in equations
(11)–(19) and using long wavelength and low Reynolds
number approximation, the equations for peripheral and
core region become as follows.

2.5.3. Peripheral Region in Dimensionless Form
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0 � −
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2
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2.5.4. Core Region in Dimensionless Form
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�
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2.

(22)

2.5.5. Boundary Conditions

r2 � 1 + ϕ1 cos 2 π(z − t) + ϕ2 cos 4 π(z − t),

w1 � − 1, H1 � 0, @r � r∈
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1 + We
2 1 − a

2
  zw2/zr( 

2 � zw1/zr, zH1/zr �
zH2

zr
, @ r � r1

w2 � − 1, H2 � 1, M � 1, @ r � r2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

In addition to these constraints, we are also imposing the
condition of compliant walls [14, 44, 45] on the outer surface
which is defined as the continuity of stress at r � r2:

dp

dz
� E1

z
3
r2

zz
3 + E2

z
3
r2

zt
2
zz

+ E3
z
2
r2

zt zz
. (24)
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By taking the Wissenburg number very small, i.e.,
O(We2), we get the following results from equation
(18)–(21) and B.Cs. (22):
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(25)

3. Solution Method

Mathematical modelling of the whole problem discussed
above suggests that the two systems (peripheral and core
regions) of coupled equations (21)–(27) are to be solved
along with the coupled boundary limitations defined in
equation (25). (e system of the core region has been solved
by an exact method, and the results are elaborated
underneath:

H2 � C6 +
1
4

−
C15Brr

2η C15r
2μr + 16C1 η + μr(  

16 η + μr( 
2 + 4C5Log[r] −

2BrC
2
1ηLog[r]

2

μr

⎛⎝ ⎞⎠,

w2 �
r
2μr

4 η + μr( 
C15 + C2 + C1Log[r].

(26)

On the contrary, the system of the peripheral region
cannot be solved exactly, so we adopted the scheme of
perturbation (HPM) [46–48] in which the same linear op-
erator is chosen for velocity, heat, and energy functions, i.e.,

H � z2/zr2 + 1/rz/zr. After using the routine calculation of
HPM, the final solutions have been composed in subsequent
forms:
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M1 �
1

768Nb
×,

H1 � C12 + C8 −
1
64

BrC15r
2 16C3 + C15r

2
  + C11 + C7( Log[r] +

1
2

Log[r]
2

− BrC3
2

+ C7 − C7Nt +
Nb

− Log r2  + Log rε 
  ,

+

r
2 − − 1 + C3 − C4( Da + − C7 + C8( Gr( 

Log r2  − Log rε (  + Br 1 + Log rε ( 
 

4 Log r2  − Log rε ( 
+
1
4
r
2
Log[r] C3Da − C7Gr +

Br

− Log r2  + Log rε 
 ,

w1 � C10 + C4 +
C15r

2

4
+
1/64Da C15

r
4 + C3Log[r] + C9Log[r],

(27)

where the constants Cn, n � 1, 2, 3, . . . 14, are found by
using B.Cs. (26) and are written in Appendix.

4. Results and Discussion

(is section involves some graphical discussion based on the
theoretical data achieved in the preceding section where we
have collected analytical readings of observable sections of
the study along with the compliant walls’ phenomenon. To
deal with this, we have captured some graphs of obtained
analytical statistics of velocity, temperature, nanoparticles’
fraction, and stream functions. Figures 2–8 reflect the
sketches for the velocity field, Figures 9–13 for temperature,
Figures 13–19 for nanoparticles, and Figures 20–23 for
streamlines. Above mentioned graphs contain the behaviour
of said profiles for both the peripheral and core regions.
From these plots, we imagine that how a quantity varies
against the including factor theoretically, and its matching
with the physical aspects are also being stated.

4.1. Velocity Variation. Figure 2 contemplates the impact of
the viscosity ratio parameter μr on the curves of velocity
function w plotted along the radial coordinate r. After
viewing this figure, we can state that velocity is showing
direct variance with the rising impact of the said parameter.
It is also to be mentioned here that blue lines carry the
information of the peripheral portion while red lines convey
the core region data. It is also noted that the peripheral
region gives more parabolic curves than the core region and
the velocity gets maximum in the central slab. On the
contrary, the core region contains the more flatter curves
which predict that velocity varies linearly with the radial
coordinate and becomes minimum at the walls. Figure 3
depicts the variation of velocity for the parameter E1 which
accounts for mass per unit area. It can be started from the
said graph that velocity is varying in increasing fashion when
we increase the values of the factor E1. It is also noted that
very smooth and similar behaviour can be concluded in both
regions. From Figures 4 and 5, we can visualize the effects of
viscous damping force E2 and flexure rigidity of the walls E3,
respectively, on the velocity envelop. It is found here that
velocity is minimum at the static walls due to no slip at the

boundaries, but it goes large in the middle lump of the
domain between the peripheral and core regions. From
Figure 6, it can be estimated that Brinkman number Br

exerts a direct impact on velocity in the peripheral region,
but the core region experiences no difference in velocity with
the variation of the said factor which can be observed by a
single bold red line in the figure. Figure 7 reveals the be-
haviour of fluid velocity under the variation of Darcy’s
number Da, and it can be suggested here that, in the pe-
ripheral region, velocity curves are suppressed with the
increasing amount of Darcy’s number, but on the core side,
we receive no variance which suggests that porosity factors
are only present on the outside walls and not on the inner
surface of the channel. (is variation can be physically
justified as that due to pores on the peripheral region velocity
of the fluid gets decreased as some molecules are resisted by
the porous wall and gets sucked into the boundary causing
the reduction in the flow speed. Figure 8 shows that velocity
is depending on Grashof number Gr directly in the pe-
ripheral region, but there is no effect of the said factor in a
core region which shows that the nanoparticles contribute
significantly only in the mainstream of the flow.

4.2. Mermal Exchange. Figure 9 implies the variation of
temperature distribution profile H under the variation of
Brinkman number Br along the radial axis. It is measured
from this plot that temperature goes direct with the
Brinkman number. It is physically found from the graph that
when we provide a large value to the Brinkman number, the
heat is transferred to a large extent in the peripheral region,
but in the core region, the variation remains direct but
consistent. It is also found that maximum thermal exchange
is reported at r � 0 · 3, and then, after that, it starts de-
creasing throughout the domain. Figure 10 suggests that
fluid dynamic viscosity factor η imposes inverse impact on
the profile of temperature difference in the peripheral region
which can be found in the graph through blue curves, but red
curves are showing that, in the core region, heat is trans-
ferred at a very small rate which depicts that there is a very
slight impact of fluid dynamic viscosity features in the core
region regarding a change in temperature. When we look at
Figure 11, we approach the fact that the Johnson–Segalman
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Figure 2: Variation in velocity vs. radius of pipe for both fluids
with changes in μr.
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Figure 3: Variation in velocity vs. radius of pipe for both fluids
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Figure 4: Variation in velocity vs. radius of pipe for both fluids
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Figure 5: Variation in velocity vs. radius of pipe for both fluids
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Figure 6: Variation in velocity vs. radius of pipe for both fluids
with changes in Br.
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fluid’s variable viscosity μr is contributing to heat transfer
indirect manner especially in the peripheral region which is
in the region adjacent to the core region; also, in the whole
core region, it puts inverse pressure on the thermal profile
but at a lesser rate which results in decreasing the thermal
transfer intensity. Figures 12 and 13 display the effects of
Brownian diffusion Nb and thermophoresis diffusion Nt,
accordingly on the heat exchange features. From both
graphs, we receive almost the similar characteristics that are
heat transfer curves rising in the peripheral region against
both the factors, but there is no contribution of these two
parameters in the core region as we have neglected their
effects in the considered flow problem in the core region.

4.3. Nanoparticles’ Phenomenon. As in the modelling sec-
tion, we have considered the nanoparticles’ phenomenon
only in the core region, so we will here discuss the behaviour
of nanoparticles’ distribution only in the peripheral region.

0.3 0.4 0.5 0.6
r

−1.0

−0.5

0.5

1.0

1.5

w

Solid line Gr = 0.10
Dashed line Gr = 05
Dotted line Gr = 10

Peripherial region

Core region

Figure 8: Variation in velocity vs. radius of pipe for both fluids
with changes in Gr.
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Figure 9: Variation in temperature vs. radius of pipe for both fluids
with changes in Br.
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Figure 10: Variation in temperature vs. radius of pipe for both
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Figure 11: Variation in temperature vs. radius of pipe for both
fluids with changes in μr.
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Figure 14 discloses the effects of Brinkman number Br on the
profile of nanoparticles’ distribution M. It is noted here that
Brinkman constant pushes back the nanoparticles’ distri-
bution. From Figure 15, it is concluded that rise in mass per
unit factor E1 results in decreasing nanoparticles’ distri-
bution which means that increase in mass of the compliant
walls puts an inverse impact on the distribution of nano-
particles.(e same behaviour is measured in front of viscous
damping forces E2 and flexure rigidity of the compliant walls
E3 which can be found in Figures 16 and 17, orderly, which
implies the resistive effects of compliant walls on the
nanoparticles’ profile. From Figure 18, we can judge that
viscosity μr shows inverse relation with the nanoparticles’
flow rate, but in the domain r> 0 · 55, almost constant
characteristics are noted regarding the magnitude of
nanoparticles’ volume fraction. When we look at Figure 19,
we come to the statement that Brownian diffusion factor Nb

is directly proportional to the profile of M, but on the
contrary, thermophoresis parameter Nt reflects opposite
readings which can be visualized in Figure 20.

4.4. Streamlines’ Discussion. Streamlines have been unveiled
to discuss the flow sketches under the effects of some
considerable features of the study. In Figure 21, the circu-
lating bolus mechanism has been included for the factor E1,
and we have obtained that there are four portions, namely,
1st, 2nd, 3rd, and 4th quadrants taken in anticlockwise di-
rections to discuss the flow pattern. In the first quadrant, the
bolus volume increases for the value of E1 < 1, but for E1 > 1,
the size is decreased, while in the 2nd portion, the size is
continuously increasing. On the contrary, the 3rd and 4th
quadrants reveal that bolus dimensions are decreasing. It is
concluded here that an increase in mass/unit area of the
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Figure 13: Variation in temperature vs. radius of pipe for both
fluids with changes in Nt.
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Figure 14: Variation in nanoparticles’ concentration vs. radius of
pipe for both fluids with changes in Br.
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Figure 17: Variation in nanoparticles’ concentration vs. radius of pipe for both fluids with changes in E3.
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Figure 21: Variation in streamlines with E1.
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Figure 22: Variation in streamlines with E2.
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Figure 23: Continued.

Mathematical Problems in Engineering 13



compliant walls puts pressure on the flow and in-response
flow gets faster resulting decrease in the size of the boluses.
Figure 22 describes the variation of stream boluses by the
increasing variety of viscous damping force E2. It can be
decided here that most of the size of the space of the cir-
culating contours is increasing, resulting in decrease in the
flow rate which may be due to the large viscous damping
forces pressure producing large boluses due to the lesser
speed of the fluid. Figure 23 directs that in the 1st and 3rd
quadrant, more boluses are produced with relatively lesser
sizes for E3 < 1, but for E3 > 1, the situation is the opposite.
On the contrary, the boluses in the rest of the quadrants are
broken with a large magnitude of the parameter resulting in
a decrease in the number of contours.

5. Concluding Remarks

Currently, we have discovered the theoretical analysis of the
bi-layered flow of Johnson–Segalman/nanofluid with peri-
staltic phenomenon through an infinitely long circular axis-
symmetric co-centric cylinder having flexible outer walls
under the constraints of long wavelength and low Reynolds
number. (e flow has been observed in two layers, namely,
peripheral and core regions. (e unknown quantities of the
core region have been achieved by exact solutions, but the
peripheral region has been tackled by HPM. (e developed
analytic solutions have been sketched on Mathematica and
discussed descriptively. From the above whole study, we
collected the following important points:

(i) (e velocity is an increasing function of fluid
viscosity μr in both the regions, but the profile is
much flatter in the core region as compared to the

peripheral region, depicting the result that fluid
viscosity affects the flow speed significantly in the
peripheral region than the core region.

(ii) It is finalized that compliant walls are executing
the same sort of effect on the flow characteristics
in both the peripheral and core portions, and
overall, the flow speeds up due to walls’
compliance.

(iii) It should be added that velocity is enhanced due to
the large intensity of Brinkman number and Gra-
shof number which is not in the case of wall’s
porosity effects.

(iv) It can be stated that the Brinkman number in-
creases the rate of thermal transfer in both the
regions.

(v) It can also be placed here that the heat transfer rate
is decreasing with increasing fluid viscosity η in the
peripheral region.

(vi) It is found that nanoparticles’ distribution goes
backwards due to compliant walls, fluid’s viscosity,
Brinkman number, and thermophoresis factor but
moves forward by the Brownian diffusion.

(vii) Due to the large mass per unit area of the compliant
walls, the circulating contours are squeezed.

More research on the topic can be made by taking dif-
ferent types of nanoparticles and by considering their
affective properties; also, the effects of magnetic field and
electro-osmotic mechanism can be described in future.
(e study can be made by inclusion of electro-osmotic
effects as well.
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Figure 23: Variation in streamlines with E3.
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Appendix
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