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Due to the nonlinearity of the imaging of sonar equipment and the complexity of the underwater sound field environment, the gray
level of the target area of the acquired underwater sonar image is relatively small. These characteristics are the target of the subsequent
sonar image. Work such as detection and location tracking has brought great challenges. It has brought great challenges to solving the
work of positioning and tracking, which makes the research of sonar image target detection based on deep learning very important.
This article aims at studying the use of sonar to detect image targets based on deep learning technology. This article proposes a variety
of sound image denoising methods based on multiresolution tools. The purpose of this article is to divide the natural image into
blocks at an appropriate rate according to the change of the sampling matrix and measure the underwater natural image. The sound
image defines an information model. These methods have greatly changed the image and period of using remote and temporary
information. The translation results of these methods are all valid. The sharpening separation method based on filtered image and
bidirectional detection should be published through a solution algorithm and different frames, and the expected algorithm can be
reused and extracted as an action to improve the similarity of the image and should be saved and separated in detail. The result is
correct. This article studies the application of deep learning methods in sonar image target detection and designs corresponding
algorithms for improvement and functional realization in view of the current deficiencies and needs in this field. The experimental
results show that the improved scheme and applied algorithm proposed in this article can achieve good results, the verification
sample set includes 184 remote-sensing aircraft targets, and the resolution of remote-sensing images is unified to 1644 x 971 size. The
accuracy of the target detection algorithm has been significantly improved, reaching 74.6%, and the detection speed has also been
greatly improved. Compared with the RNN algorithm, the speed has been increased by 7 times. The detection results confirmed that
the improved algorithm has higher positioning accuracy and faster detection speed.

1. Introduction

1.1. Background. My country’s sea area is large, covering an
area of about 3 million square kilometers. Due to historical
reasons, the 3 million sea areas related to China have many
disputes in the field of marine environment and maritime
rights; however, maritime security is also closely related to
China’s territorial security. However, there are two tradi-
tional methods for determining and determining shipping
goals: incentive and noninspiration; the other inactivity is to
use the physical field information related to the sound field
generated around the ship to analyze the ship, but these
traditional methods of ship target recognition are not ap-
plicable. This study proposes a new global learning algorithm
to recognize ship images [1]. At present, many traditional
target detection methods perform well for a certain type of

fixed target or a detection task in a specific scene, but they are
not suitable for multiple target detection in a complex en-
vironment. At the same time, detection speed is also an
important indicator. In many applications, real-time per-
formance is required for target detection, which cannot be
met by traditional target detection algorithms. Deep
learning, especially the excellent performance of the con-
volutional neural network in image recognition, makes the
target detection and recognition based on deep learning a
research hotspot in recent years.

1.2. Significance. The specific image of the sonar is com-
posed of three parts: the shadow area, the seabed review area,
and the high target area. In order to process some image
content and then move the target partition, and reach the
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shadow area from the complex bottom-up inspection of the
seabed, eliminate the separation of the target and the
background, and minimize the distortion, the accurate
specific image distribution is the prerequisite for extracting
the main underwater target elements, and the parameter
measurement of the underwater target and analysis and
identification. The purpose of target recognition, position-
ing, and tracking is to determine the main characteristics of
the target by assigning the moving target and the back-
ground, and compare the system capability images of
multiple targets to match the target with high similarity.
Since the nonlinear image is composed of specific equipment
and has a complex underwater acoustic environment, the
characteristic of a specific underwater image is that the
specific image has a higher gray level in the background
noise. The gray level of the target area in the image is rel-
atively small [2, 3]. These target characteristics are very
difficult. Questioning the limitations of signal processing is a
high-tech subject of signal processing. These contradictions
can be resolved in the fields of image design, image sepa-
ration, image coordination, and image recognition. In ad-
dition, the huge amount of calculation and huge model file
storage occupies a serious obstacle to the popularization and
application of deep learning target detection. Therefore,
optimizing the deep learning target detection neural net-
work, reducing the amount of parameters, and reducing the
storage space occupation on the premise of ensuring that the
detection accuracy is not significantly reduced have im-
portant research value.

1.3. Related Work. Marine ship monitoring has always been
a research hotspot in countries all over the world, but due to
the difficulty of obtaining sea surface images and more
interference, the research on ship target detection has certain
limitations. Zhu et al. pointed out that the latest advances in
deep learning provide an effective method for the use of
optical images for machine vision research. This study uses
convolutional neural network to deal with the task of sonar
detection and compares the performance of each neural
network model in the task of underwater box and tire sonar
image detection and recognition. The simulation results
show that the neural network method proposed in this
article is better than traditional machine learning methods
and Single-Shot MultiBox Detector (SSD) network models.
The average accuracy of the proposed sonar image target
recognition method is 93%, and the detection time of a single
image is only 0.3 seconds. But only in a limited number of
application scenarios, deep learning algorithms cannot make
unbiased estimations of the laws of the data [4]. In order to
achieve good accuracy, a large amount of data is needed. This
requires a lot of manpower and material resources [5].
Tueller et al. pointed out that powerful target detection in
sonar images is an important task for underwater explo-
ration, navigation, and mapping. Current methods make
assumptions about the shape, highlights, or shadows of
objects, which may be invalid for certain environments or
targets. We focus on the detection field based on feature
extraction. The field does not rely on information about
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object shapes but is a robust framework aimed at object
detection for a variety of underwater world structures and
object types. The proposed framework first estimates the
seabed type according to the spatial distribution of the
features to determine the best parameter set and then obtains
a set of features, which are filtered according to the intensity
and distribution to produce detection decisions. The pro-
posed method also provides a method to determine the type
of seabed and a method based on machine learning to select
the parameters of the feature detector to match the type of
seabed evaluated, but the accuracy of the matching evalu-
ation result is not particularly high [6]. Lubis et al. proposed
an image denoising method based on two-dimensional
wavelet transform and applied it to the seabed recognition
data acquisition system. Two-dimensional Haar wavelet
proposes a unified framework in image processing, which is
used for wavelet image compression and combined with side
scan sonar image. There are 7 target detections in the side
scan sonar imaging results of the seabed recognition target.
Analyze the vibration signal to facilitate fault diagnosis. The
signal obtained is the time-domain signal. The experimental
results show that the application of the two-dimensional
wavelet transform image denoising algorithm can achieve
better subjective and objective image quality, which is
helpful to collect high-quality data and analyze the image of
the data center, which has the best time-domain signal
characteristics [7-9].

1.4. Main Content. After comprehensive analysis and
analysis of the above transformation methods and educa-
tional images, an acoustic image mechanism was established
to help illustrate the consequences of water. Without
comparison, it is difficult to distinguish garbage and details.
Then, three acoustic images based on multiple solutions are
provided. In the simulation research, the quality and ef-
fectiveness of these experimental methods are evaluated and
analyzed. The classic image segmentation method [10] is
evaluated and analyzed. The high-resolution subsequent
images are very random. The target area is not distance.
Train the acoustic image segmentation method to detect and
monitor the moving target in the changing sequence. The
monitoring performance of the algorithm is analyzed and
compared with the change mode. Many cameras are trained
to use them. The high resolution is rich in distribution and
noise sharing in the channel sequence, and it is difficult to
distinguish distance and detail from poverty.

2. Signal Detection Experiment Based on
Deep Learning

2.1. Preprocessing of Sonar Images. The imaging principle of
sonar images is different from ordinary optical images, and
the imaging environment is complex and changeable, often
accompanied by a lot of non-Gaussian noise. Therefore,
traditional target detection methods based on the assump-
tion of Gaussian noise cannot be applied to sonar images.
The image used before is not only the core of image seg-
mentation, but also the low-level image recognition [11]. The
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actual image used contains more and more technologies. The
following impact on images is to reduce the impact of
different sounds and to target different types of images.
Therefore, we must find a good preprocessing algorithm to
improve the authenticity of the segmentation. In this article,
the last image is processed in two steps: one is the pressure
processing of the image [12], and the other is the normal-
ization processing of the image. This indicates that the image
should be used first. Then, the image will reflect the sub-
sequent image segmentation and the degree of change of the
background image.

The performance of the system depends on the sound of
the background plan. In order to achieve long-term display,
the difference between the signal field and the sound field
should be fully utilized to achieve the visual indication
function. It is very important to understand the statistical
characteristics of the background sound field. The main
source of ocean sound is the result of very random factors.
According to the central theory, ocean sound is an influ-
ential signal with a Gaussian distribution to a certain extent,
and its echo is a special interface form in the rest wave
process. This is because there are many ignorant distributors
in the sea [12], which eventually exploded the distributor
signal from the signal end. This is part of the background
sound, which limits discovery at close range. The amplitude
around it follows the Rayleigh distribution and follows the
uniform distribution of certain characteristics. The high-
resolution image follows the high operating frequency and
low light, and has relatively good antireverberation ability,
but the sharp lens works late, so changing the level is very
uncomfortable. Then, due to the temperature and safety of
the ocean, the volume of the sound speed changes to cal-
culate the volume, which changes the volume of the sound
wave, and thus the volume of the sound wave. In fact, sound
waves are linear. High-gravity images are affected by fish and
marine life (such as water and marine life), so it produces
undesirable light spots. This is an influential message to
choose and define which can be seen as an influential voice.
According to the above analysis, before the subsequent
image segmentation and definition classification, in order to
maximize the retention of attribute information and in-
terface information on the image, these sounds, averaged in
the filtered and frequency domains, must be transformed
into adaptive soft filtering and waveforms in different ways
[13].

2.2. Traditional Target Detection Algorithm. The early mul-
tilayer perceptrons had fewer layers, and the connection
structure was relatively single, and most of them were fully
connected layers. The deep learning neural network is a
multilayer perceptron with multiple hidden layers. The deep
learning neural network can continuously combine and
process abstract low-level features to extract high-level
features, which greatly improves the learning ability of the
network.

Traditional target detection algorithms include de-
formable part model, which divides the object into multiple
parts and obtains a part template for each part [4].

Traditional target detection algorithms generally use a
multiscale sliding window frame [14]. The flowchart of the
traditional target detection framework contains the main
key steps: target location, feature extraction, and classifier
classification. Select the application area from the image
through sliding windows of different sizes to achieve the
visual effect of the application area; use the classified display
to optimize the window. Commonly used classifiers are
support vector machine (SVM), Adaboost, and so on. SVM
obtains the support vector of the classification plane by
maximizing the classification interval and has good classi-
fication accuracy on small linearly separable datasets. In
addition, by introducing the kernel function to map the low
dimensional to the high dimensional, it is widely used in the
detection scene.

2.2.1. Target Positioning. The position of the target in the
image is uncertain, and the size and shape of the target are
also uncertain. Therefore, the multiscale sliding window
operation is used to exhaust image blocks of different scales
and different aspect ratios [12, 15]. Detect and frame the
target location. Multiscale sliding window operation is es-
sentially an exhaustive method. The multiscale sliding
window contains all possible regions of the target to be
tested, which greatly reduces the missed detection rate, but at
the same time, it also makes the traversal time too long and
generates too many candidate regions, which changes the
time complexity of subsequent feature extraction and
classifier classification. The complexity of this method is too
high to meet the real-time needs of the detection field. In
addition to the typical multiscale sliding window method,
target localization methods also include regular block, se-
lective search, and other methods. In view of different sit-
uations, the choice of target location algorithm is very
flexible.

2.2.2. Feature Extraction. Various types of targets have their
own characteristics. To find out the common characteristics
between similar targets and different characteristics between
different types of targets, it is necessary to manually design a
feature with high robustness [16]. Therefore, the quality of
feature design and selection directly affects the accuracy of
subsequent detection. This article takes SIFT feature ex-
traction as an example to introduce the process of feature
extraction. The following details the process steps of the SIFT
algorithm.

First, use Gaussian blur to obtain the scale space of the
image L(x, y,0):

L(x,9,0) =G(x,y,0)*I(x,y). (1

The image is I (x, ), and the two-dimensional Gaussian
function [17] is set to G(x,y,0). The original image is
downsampled, and Gaussian filtering is performed to build
an image Gaussian pyramid. Subtract each group of two
adjacent layers of images in the image Gaussian pyramid to
obtain a Gaussian difference image, and traverse all scales to
form a Gaussian difference pyramid:



D(x, y,0) = (G(x, y,k 0) = G(x, y,0)) * I(x, y)

(2)
= L(x,y,k 0) — L(x, y,0).

The difference of Gaussian operator is used to detect the
extreme value, and the local features of the image are ob-
tained. After obtaining the Gaussian difference pyramid,
determine an extreme point by comparing the size of the
pixels in the same layer and the upper and lower neigh-
borhoods of the pixels. The extreme points of the discrete
space may have jumps, disturbances, etc., so it is not nec-
essarily a local area. Therefore, the extreme point is accu-
rately located by straight line fitting, so the extreme points
are accurately located by straight-line fitting, and the fitting
function is

T 2
D(x):D+2X+lXTgX. (3)
X 2 ¢X

Here, X = (x, y, 9)T; take the above formula to derive
the extreme point where the derivative is zero, and the offset
of the extreme point is
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The extreme value corresponding to the extreme point is

-1
D()A()=D+12)A(. (5)
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After the extreme points are obtained by fitting the curve
[18] by the above method, the extreme points still need to be
optimized to remove unstable edge points and low-contrast
points.

For the determined key point position, determine the
direction of the key point, and the reference direction of the
key point is determined by the neighborhood where the key
point is located. Draw the histogram of the pixel gradient
direction in the neighborhood of the feature point. The peak
of the gradient direction histogram represents the feature
point and the gradient direction of the neighborhood, and
the maximum value represents the main direction of the
feature point. The modulus m(x, y) of the gradient vector and
the direction 0(x, y) of the gradient are as follows:

m(x,y) = \/(L(x+ 1,y)—L(x-1,9)* +(L(x,y +1) = L(x, y - 1))’

(6)

0(x,y) = arctan(

2.3. Basic Theory of Deep Learning Algorithms. At present,
the convolutional neural network has the most excellent
performance in the target detection algorithm and image
recognition. This article uses the convolutional neural
network to improve the detection algorithm.

2.3.1. Principle of Convolutional Neural Network [19].
Convolutional neural network is composed of a convolu-
tional layer and a pooling layer [20, 21]. Pooling operation is
a special convolution process. Convolution and pooling
simplify the model complexity. The following briefly in-
troduces the principle of the convolutional neural network:
the constituent unit of neural network is called neuron, and
the corresponding formula is as follows:

hyp(x) = f(W'X) = f(ZW,»xi +b>. (7)

i=1

Combining multiple neurons is a neural network model,
as shown in Figure 1.

Use the back propagation algorithm to train the con-
volutional neural network. First, calculate the output a; of
the hidden layer node [22] and the output y; of the output
layer node in the network, and then calculate the error term
g; of each node. For the output layer node i,

&=y;(1-y)(t: = »)- (8)

L(x,y+1)-L(x,y—-1)
Lix+1Ly)-L(x-1,y%) )

Here, ¢; is the error term of node i, y; is the output value
of node i, and t; is the target value of the sample corre-
sponding to node i. For hidden layer nodes,

&=a,(1-a) Z Wri€- (9)

k outputs

Here, g, is the output value of node 7, and wy, is the node
connection weight. Finally, update the weight on each
connection:

Wi —wj; + 1E;x ;. (10)

Here, wj; is the weight from node i to node j, 7 is the
learning rate constant, and x; is the input passed by the
node to node j.

Confidence reflects whether the current bounding box
contains the target and the accuracy of the target position.
The calculation method is as follows:

confidence = P (object) * IOU. (11)

3. Signal Detection Experiment Based on
Deep Learning

3.1. Experimental Description and Conditions. The purpose
of the experiment is to prove the effectiveness of the pro-
posed method by using the same feature map to predict the
two tasks of location prediction and category prediction. In
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FIGURE 1: Schematic diagram of the traditional neural network structure.

this section, we will analyze the performance of the GC
signal design method proposed in this article [23, 24] and the
corresponding initial phase optimization search method. In
the simulation, we will change part of the experimental
conditions, including signal-to-noise ratio, signal mixing
ratio, and the radial velocity of the target to verify the de-
tection effect of the signal. The simulation of the primary
phase optimization method mainly compares the calculated
results with the PAPR values obtained by the two commonly
used optimization methods and simulates the number of
different line spectra to verify the effectiveness of this
method. The experimental condition is to consider a single-
transmit and single-receive active sonar system. The signal is
first narrow-band-filtered at the receiving end. The band-
width of the prefilter is (800, 2200) Hz, and then, the
multicopy correlation method is used to obtain the signal
detection and velocity estimation, the system sampling rate
is 10kHz, and the sound velocity in water is set to 1500 m/s;
regardless of the sound ray bending and the unevenness of
the sound velocity in the water, the direction of the target
away from the sound source is the positive direction of the
velocity, and the echo signal is simulated by interpolation
obtained legally.

Example 1. According to the idea of this article, design a
two-frame GC signal, the starting frequency of the signal is
1 kHz, the total bandwidth of the signal is about 1 kHz, and
the signal pulse width is 100 ms, and the target maximum
radial velocity is 20 m/s. The frequency points are calculated
at 8 m/s, and the antispeed ambiguity frequency interval df is
2 Hz and 1 Hz. The two frames of signals are denoted as SVH
and SVL, and the numbers of frequency points are 19 and 29,
respectively. The frequency spectrum of the signal is shown
in Figure 2.

The distance and velocity ambiguity diagrams of the two
frames of signals [25] are is shown in Figure 3.

According to Figure 3, the time delay resolution capa-
bility of the two frames of signals [26] is first analyzed.
Assuming that the radial velocity of the target is 6 m/s, the
echo signal appears at 10 ms, and the signal-to-noise ratio is
-5dB and —15dB. The matched filter output of the frame
signal is shown in Figure 4.

It can be seen from Figure 4 that when the signal-to-
noise ratio is high, both signals can get better time delay

peaks, but due to the different signal spectral widths, the
amplitude of the side lobes is different. When the signal-to-
noise ratio decreases, up to —15dB, the SVL signal can still
guarantee a high delay peak output, and although the signal
SVH can also have a maximum value at the target appearing
position, the larger side lobe has seriously affected the
number of echoes.

Example 2. The starting frequency of the signal is 1 kHz,
the number of frequency points is different, the initial phase
of the signal is optimized by the Newman method [11] and
the Narahashi method, and the PAPR is obtained, and the
Newman fast algorithm is actually an agglomeration algo-
rithm based on the idea of greedy algorithm. It can also be
regarded as a generalized clustering algorithm that can be
used to analyze complex networks with 1 million nodes. And
then the phases obtained by the two methods are used in this
article. The search method is optimized, the search step is
dg =T11/200, and the optimized phase is obtained and the
corresponding PAPR value is obtained. Calculate the value
of each frequency point according to the maximum speed
tolerance of v=10m/s, and the comparison result obtained
is shown in Table 1.

The frequency points are calculated according to the
maximum speed tolerance of v =25 m/s, and the comparison
results obtained are shown in Table 2. It can be seen from the
comparison of the two graphs that as the number of spectral
peaks increases, the peak-to-average power ratio of the
signal tends to a relatively stable value. Under the same
number of spectral peaks, the signal with a larger spectral
peak spacing has larger PAPR, and the results calculated by
the Newman method and Narahashi method are not much
different. Through comparative analysis, it can be seen that
the optimization method in this article can effectively reduce
the PAPR of the signal [27], and the average reduction is
about 1~2dB.

Next, we analyze the improvement of the calculation
speed of the optimization method and use the number of
searches as the criterion. The search step is d¢ =n/200.
Compare the results of the method in this article with the
number of searches required for direct phase search. The
results obtained are shown in Table 3.

As can be seen from Table 3, as the number of frequency
points increases, the calculation amount of the direct search
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TABLE 1: Year-end assessment form.

. Newman method Optimize search method Narahashi method Optimize search method
Number of frequency points
PAPR/dB

8 6.53 6.20 7.20 5.99
10 7.40 6.44 7.91 6.9
12 8.21 6.47 8.09 6.65
20 7.50 6.96 7.35 6.77
16 8.37 6.98 8.56 7.05
24 7.49 6.81 7.57 7.19
28 8.20 7.25 9.15 7.36
32 9.20 7.84 8.28 7.20
36 7.47 6.93 8.20 7.17
40 8.88 7.77 8.84 7.80

TaBLE 2: Comparison of PAPR results of different methods when v=25m/s.

. Newman method Optimize search method Narahashi method Optimize search method

Number of frequency points
PAPR/dB
8 8.65 7.63 8.59 7.92
10 8.37 7.15 8.58 7.53
12 8.68 7.88 9.09 7.56
16 9.01 7.64 9.04 8.01
20 9.49 8.24 9.97 7.83
24 10.06 8.39 9.68 7.73
28 10.49 8.55 10.69 8.88
32 9.69 7.97 10.22 8.06
36 9.32 8.66 9.71 8.64
40 9.12 8.05 10.35 8.51
TasLE 3: Comparison of search volume between optimization methods and direct methods.

Number of frequency points 8 15 20 25 30 35 40
Optimization 3200 7000 8000 1000 12000 14000 16000
Direct calculation 400° 400" 400*° 400% 400 400% 400"




method increases exponentially. When the number of fre-
quency points is large, the direct method requires a very
large number of searches, which is almost difficult to achieve
in real time.

4. Comparative Analysis of Results

4.1. Performance Analysis of Comb Spectrum Signal. The
comb spectrum signal [28] has better anti-low Doppler and
high Doppler performance than traditional signals. At the
same time, this signal combines the long CW signal speed
measurement ability and the LFM signal delay resolution
ability. With good advantages, better comprehensive reso-
lution of time delay and frequency shift can be obtained. The
ambiguity function graph is discretely distributed along the
Doppler axis, so that under low Doppler conditions, the
overlap area with the reverberation must be less than that of
the same length. The CW signal, because of its single sub-
lobe, has narrow-band signal characteristics, and under high
Doppler conditions, it can be separated from the rever-
beration band like a long CW signal and thus suffer less
reverberation interference.

4.2. Improved Comb Spectrum Signal Design. From the above
analysis of typical comb spectrum signals, it can be seen that
GC signals not only have good resistance to low Doppler
[29] and high Doppler reverberation, but also have better
time delay resolution capabilities. The key to good detection
capability of the GC signal is to increase the number of
spectral peaks as much as possible without producing ve-
locity ambiguity. If the frequency point interval is too small,
Doppler velocity measurement ambiguity will occur, and too
large interval means as the number of spectral lines within
the limited bandwidth decreases, this will affect its delay
estimation capability. When the relative velocity between the
sonar and the target is v, in order to prevent Doppler aliasing
from the adjacent frequency points of the GC signal, the
adjacent spectral peaks should satisfy the following equation:

fi-fia>&= 2f,-v' (12)

c+v

Simplification can get

2v

\1-——)>fi1 13

f’( c+ v> fio (13)

According to this method, the commonly used GC signal
frequency calculation formula is obtained as follows:

2

fizfi—1<1+&>~ (14)

€~ Viax

It can be seen from the above derivation that if the
frequency points are designed according to the traditional
method, when the velocity is v, the spectrum of the echo
signal will move in the opposite direction to the target and
the echo spectrum when the velocity is V ,,-v. There is only
one spectral line that does not coincide. At this time,
Doppler velocity measurement will be blurred. The signal
velocity interval is 30 m/s, and the target radial velocity is
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10m/s and =20 m/s. The echo signal spectrum is divided by
one spectrum. In order to prevent this situation, the max-
imum speed tolerance of the system is usually increased. If
the speed detection range of the system is —30~30m/s,
Vmax=60m/s should be used when calculating the fre-
quency. Although this can ensure that the speed measure-
ment ambiguity does not occur, it causes a great waste of
frequency bands, which is almost intolerable under the
condition of an underwater acoustic channel where fre-
quency band resources are already very limited.

4.3. Comparative Analysis of Experimental Results. In order
to further evaluate the effect of the detection algorithm in
this article, this section respectively analyzes the detection
algorithm based on the bag-of-words model and the Hough
location detection algorithm based on the bag-of-words
model in the third chapter. All experiments in this article are
carried out in the abovementioned hardware and software
experimental environment, using the same remote-sensing
image aircraft target sample database, and setting the
training and verification sample sets according to the ratio of
8:2. The verification sample set includes 184 remote-sensing
aircraft targets, and the resolution of remote-sensing images
is unified to 1644 x 971. The training process is given as
follows: extract the network in the training area to generate
candidate areas. Input the obtained candidate area frame
into the position and frame regression network. Initialize the
weights of the region extraction network using the pa-
rameters learned by the position and border regression
network, and the weights of the shared convolutional layer
remain unchanged, only minor adjustments are made to the
weights of the layers included in the region extraction
network, and the position and border regression are fine-
tuned. The fully connected layer in the network makes the
two networks share the same convolutional layer to form a
unified network. During the training process, observe the
change trend of the loss value. When the loss value is small
enough and tends to be stable, the network model is con-
sidered to converge and an effective target detection model is
obtained.

The SSD target detection algorithm is a detector based on
a fully convolutional network [30], using the features
extracted from multiple different layers to directly detect
areas of several sizes, which effectively reduces the amount of
calculation and further accelerates the speed of target de-
tection. It is characterized by an end-to-end detection
process and uses global characteristics, which use different
layers to detect objects of different sizes. There is a con-
tradiction in the improvement of the overall accuracy of
target detection. The previous feature layer image has a large
spatial resolution, but lacks the semantic information of the
latter several layers. There is more semantic information in
the latter several layers, but after too many pooling sampling
operations, the space resolution is too small. To detect small
objects, not only a large enough spatial resolution is needed
to provide finer features and denser sampling, but also
enough semantic information is needed to distinguish it
from the background. Small targets tend to rely more on
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FIGURE 5: Histogram of comparison of evaluation index results of target detection algorithm.

shallow features, because shallow features have higher res-
olution. Therefore, the SSD target detection algorithm leads
to poor detection of small targets.

As can be seen from Figure 5, the Hough voting posi-
tioning target detection algorithm based on the bag-of-
words model [28] and the Hough voting positioning target
detection algorithm based on the bag-of-words model have
similar computing times, and the improved Hough voting
positioning target detection algorithm based on the bag-of-
words model. The accuracy rate has been significantly im-
proved, reaching 74.6%. The fast r-cnn, SSD, and target
detection algorithms studied in this article are all target
detection algorithms based on convolutional neural net-
works. These three algorithms are far ahead of traditional
target detection algorithms in terms of accuracy and de-
tection speed. Although the algorithm based on deep
learning takes up a lot of time in the early training and
learning process, it takes less time in the later image de-
tection, and the detection accuracy has been significantly
improved. Fast r-cnn and the target detection algorithm
studied in this article have very close accuracy, but the
detection speed is about 7 times different. The fast r-cnn
algorithm is divided into two parts, which consumes a lot of
memory and time in storage and detection. This method
combines the area designation operation with the con-
volutional network, which simplifies the network structure
and improves the running speed. The deep learning target
detection algorithm based on region nomination has high
accuracy but slow speed. Although the speed can be in-
creased by reducing the number of salient area suggestions
or reducing the resolution of the input image, the speed has
not been improved qualitatively.

The SSD target detection algorithm does not require area
designation and is a direct regression location detection

algorithm. Due to the simple model, the algorithm is fast.
Because there is no area designation operation, it is easy to
miss the detection, so the accuracy is not as good as the deep
learning target detection algorithm based on area designa-
tion. SSD target detection network has the problem of
imbalance between positive and negative samples, which
leads to poor detection of small targets and serious missed
detection problems. The algorithm studied in this article
improves the accuracy of target detection by constructing a
multiscale feature network. By improving the VGG-Net
model, the detection accuracy is improved and the training
complexity of the model is reduced. Through the focus loss
function, the ratio of positive and negative samples in the
network is balanced, so that the detection performance of
small targets in remote-sensing images is improved, and the
overall missed detection rate of the algorithm is reduced. On
the basis of ensuring the running time, the overall accuracy
of the algorithm has been improved. In summary of the
above two aspects of performance parameter research and
analysis, the detection algorithm studied in this chapter has
significantly improved the detection performance and has a
clear advantage in the detection accuracy performance. At
the same time, the neural network algorithm is used to speed
up the processing speed through hardware equipment, and
the real-time performance of target detection is improved.

5. Conclusions

Due to the limitations of the underwater environment,
underwater navigation and positioning, target recognition,
and underwater communication are usually realized by
underwater acoustic information. Underwater sonar tech-
nology is one of the important technologies to be studied in
the future ocean engineering. In this context, this article
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conducts an in-depth study on the target segmentation
method of underwater sonar images based on deep learning.
Aiming at the sonar image’s own characteristics such as large
gray-scale distribution range, large amount of information,
fuzzy boundary, and complex structure, this article mainly
conducts an in-depth discussion from automatic threshold
algorithm, fractal dimension algorithm, and algorithm based
on Markov random field. This study discusses the advantages
of the algorithm based on Markov random field and im-
proves its segmentation algorithm. It proposes an automatic
segmentation algorithm based on Markov and uses the
measured sonar image to implement the algorithm. The
main work and conclusion of this article are the pre-
processing methods of sonar images, including denoising
and gray-scale normalization methods. In the part of sonar
image denoising, several commonly used denoising methods
are discussed. By analyzing the characteristics of the single-
side scanning sonar measurement image, the wavelet
method is used to denoise, the algorithm principle, the
closing value selection method, and the denoising steps are
given, and the sonar image gray-scale normalization algo-
rithm is given. The noise interference of the image is re-
duced, so that the gray-scale change range of the sonar image
is kept consistent, which is convenient for subsequent image
segmentation. This article discusses several commonly used
sonar image segmentation methods in detail and in depth.
Among several common target detection methods, for
several traditional target detection algorithms, summarize
their shortcomings in practical applications. The segmen-
tation results of various algorithms are given, and their
advantages, disadvantages, and existing problems are
analyzed.
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