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Neutrosophic sets are employed to be handled indeterminacy in a real-life situation.�us, neutrosophic approaches in themedical
domain prove their excellence. �e neutrosophic hidden Markov model is an inventiveness domain for uncertainty. �e existing
hidden Markov models are not able to consider the uncertainty information, but the neutrosophic hidden Markov model
e�ectively �nds the optimal path between the states where vagueness exists. �e proposed study comprises the idea of single-value
and interval-valued neutrosophic sets into the hidden Markov model and decoding the path using the Viterbi algorithm. It has
been used to determine the sequence of motility primitives for an a�orded time series.�emethod is to be handled without having
a lower membership function for falsity, and because of this advantage, one can save time signi�cantly during computation. �e
neutrosophic score helps to �nd the crisp value of the probability. Moreover, the proposed work highlights the main childhood
obesity risk in lockdown situations.

1. Introduction

Smarandache [1] introduced a neutrosophic set by �nding
the term degree of indeterminacy from the logical point of
view as an independent component to handle imprecise,
indeterminate, and unpredictable information in real-world
problems. Neutrosophic sets are de�ned by truth, indeter-
minacy, and false membership functions, which take values
in the real standard interval. �e abstraction of indeter-
minate value is explained in the neutrosophic environment
[2]. �e massive information only gives real-life application,
which is incomplete and fuzzy. Many techniques have been
adapted to manage such information, such as fuzzy theories
and probability theories. However, the measure exempli�es
potential e�ects in the neutrosophic environment that are
unprejudiced or overtoned, which can be regulated as
continuous, discrete, or mixed. For instance, the Viterbi
algorithm based on a fuzzy environment gives positive
properties, but when we consider the neutrosophic

environment, it can achieve indeterminacy (neutral) prop-
erties, which are not applicable in fuzzy sets.

Smarandache [3] presented the concept of single-valued
neutrosophic sets (SVN), assuming that truth, indetermi-
nacy, and false memberships are in a single-value in order to
overcome the limitations of neutrosophic sets. �is concept
addresses the neutrosophic tra�c �ow problems [4].
Moreover, some models are formed for accident situations
[5], algebraic structures [6], and COVID-19 [7]. Recently,
Chaw et al. [8] presented a decision-making method based
on SVN by considering complex neutrosophic numbers and
algebraic relations to determine the factors in�uencing the
oil price. Several new types of distances and similarity
measures are investigated by Chai et al. [9] and applied to
pattern recognition and medical diagnosis problems. Wu
and Fang [10] designed a multilevel evaluation framework to
assess the teaching quality in higher education with the help
of TOPSIS and SVN. Saber et al. [11] investigated a single-
valued neutrosophic soft set to describe the topological
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structure. Wang et al. [12] presented the idea of interval-
valued neutrosophic sets (IVN), which are more precise and
flexible than SVN.(e interval-values membership function
of measured form the truth, indeterminacy, and falsity.
Akram and Nasir [13] utilised the idea of IVN in the concept
of graph theory and also examined line graph in [14]. In the
aftermath, Siti Nurul Fitriah et al. [15] extended the interval-
valued neutrosophic sets to examine the incidence graph
structures and their operations. IVN has been used to de-
velop a sustainable supplier selection platform [16] that
allows decision makers to find a suitable supplier for their
supply chain industries in any preordained period. (e
concept of redefined IVN is an extension of IVN that Uluçay
[17] introduced in 2021, and further, he studied its algebraic
operators. Ebadi Torkayesh et al. [18] developed a sustain-
able municipal waste management system model based on
interval-valued neutrosophic sets and multidistance mea-
sures to measure the social indicators among Istanbul
citizens.

Markov Chain (MC) is a model to predict the future
depending on the present state. MC’s initial position state
vector uses the next position of the state used inMonte Carlo
problems [19]. Ponomarev et al. [20] explained the MC time
distribution. Hunter [21] showed that the MC in mixed
times and further determines the rate of convergence in the
MC network problem. Garcia [22] illustrated that the MC is
an uncertain situation. Mallak et al. [23] introduced max-
min in theMC ergodic process. Gerencsér [24] explained the
ranges in the MC using mixing time and also revealed that
the connectivity graph of a MC is a cycle. Kou et al. [25]
demonstrated the incidence of diseases using the MC. Chan
et al. [26] explained the distribution probability in the MC.
Adeleke et al. [27] define the academic score based on the
MC.

Garćıa et al. [28] utilised matrix analysis to identify the
behaviour of the fuzzy Markov chain (FMC). Garcia [22]
dealt with the MC in the interval type-2 fuzzy set. Vajargah
and Gharehdaghi [29] presented the membership value of
the FMC in Faure and Kronecker sequences. (e Transition
Probability (TP) matrix is explained by the state of the
matrix moving from one state to another state of a system.
(e fuzzy number is distributed by TP in a FMC [27]. Li and
Xiu [30] built the FMC model based on fuzzy triangular
numbers to identify the fuzzy transition probability matrix.
Lei et al. [31] investigated a new forecasting algorithm based
on combining the multi-aggregation prediction algorithm
and the FMC model. FMC is used to stabilize nonlinear
estimation of multidimensional [32]. Interval-value has been
deliberate for neutrosophic probability (NP) and used to
analyze the equilibrium of MC under IVN [33]. Nagarajan
et al. [34] studied the long-run behaviour of the world fi-
nancial year under the interval neutrosophic MC frame-
work. Kuppuswami et al. [35] investigated the MC model
based on neutrosophic numbers and, as an application, they
predicted traffic volume.

(e hiddenMarkovmodel is a probabilistic model under
uncertainty conditions that can be applied to determine a
representation sequence [36]. (e fuzzy hidden Markov
model is an efficient way of finding an optimized path

among the states where uncertainty exists. Darong et al. [37]
improved the initial value of the observation matrix of the
hidden Markov model for the motor drive system of urban
rail transit by considering a predictive neural network and
an intuitionistic fuzzy environment. Zeng and Liu [38]
investigated the type-2 fuzzy hidden Markov model, in
which the membership function of each hidden state is
modelled by Gaussian primary with an uncertain mean and
standard deviation. Moreover, they have derived the oper-
ators based on the type-2 fuzzy Viterbi algorithm and the
forward-backwards algorithm in order to study speech
recognition. Recently, Nagarajan et al. [39] derived the
aggregation operators and Frank triangular norms for the
interval type-2 fuzzy hidden Markov model and, based on
that and the Viterbi algorithm, established a decision-
making process to choose the best medicine company.

(e motivation of the present work is to consider
neutrosophic single-valued and interval-valued on the
hidden Markov model because the combination has not
been considered so far in the literature. (e hidden Markov
model cannot find uncertain information. (e fuzzy hidden
Markov model cannot find uncertain information with the
nonmembership function. (e interval-valued fuzzy hidden
Markov model cannot find out uncertainty information with
nonmembership function. (e intuitionistic hidden Markov
model cannot find the information during the addition of
membership and nonmembership degrees more significant
than one. (e interval-valued intuitionistic hidden Markov
model cannot find the information when adding member-
ship and nonmembership degrees greater than one. But the
neutrosophic hidden Markov model effectively finds the
optimal path between the states where vagueness exists. (at
is the cause of the neutrosophic hidden Markov model
considered for this present work.

(e structure of this paper is organized as follows:
Section 2 contains the basic notions of neutrosophic sets,
single-valued neutrosophic sets, interval-valued neu-
trosophic sets and their operations, and the neutrosophic
hidden Markov chain. In Section 3, we examine childhood
obesity in lockdown situation applications by using single
and interval-valued neutrosophic sets. Section 4 establishes
the comparative analysis of the given application with dif-
ferent hidden Markov models. In Section 5, we have pro-
vided the conclusion [30].

2. Preliminaries

2.1.MarkovChain. AMarkov chain is a sequence of random
variables X � X0, X1, X2, . . . ,􏼈 􏼉 with the following prop-
erties. For n ∈ 0, 1, 2, . . . ,{ }, Xn is defined on the sample
space [ and takes values from the finite set S. (us,
Xn: [⟶ S. Also for n ∈ 0, 1, 2, . . .{ } and
i, j, in−1, in−2, . . . , i0􏼈 􏼉⊆S,

P Xn+1 � j|Xn � i, Xn−1 � i − 1, Xn−2 � i − 2, . . . , X0 � i0􏼈 􏼉

� P Xn+1 � j|Xn � j􏼈 􏼉.
(1)

(e transition probabilities P Xn+1 � j |Xn � i􏼈 􏼉 � pij are
independent of n [30].
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2.2. Fuzzy Markov Chain. A fuzzy stochastic process
X(n): n ∈ Ν{ } is said to be a fuzzy Markov chain if it satisfies
the Markov property.

ϑ Xn+1 � j |Xn−1 � i, Xn � k, . . . , X0 � m( 􏼁

� ϑ Xn+1 � j|Xn−1 � i( 􏼁,
(2)

where i, j, k establish the state space S of the process.
Here, 􏽥Pij � ϑ(Xn+1 � j ||Xn � i) are called the fuzzy

probabilities of moving from state i to state j in one step.
Hence, 􏽥Pij � (μ􏽥Pij

), where μ􏽥Pij

is the membership of the

transition from state i to state j. (e matrix P � (􏽥Pij) is
called the fuzzy transition probability matrix.

2.3. Neutrosophic Set. Consider the space X consists of
universal elements characterized by x. (e neutrosophic set
is a phenomenon which has structure as
N � (TN(x), IN(x), FN(x) |x ∈ X􏼈 􏼉, where the three
grades of memberships are from X of the element x ∈ X to
the set X, with the criterion as follows:

−0≤TN(x) + IN(x) + FN(x)≤ 3+
. (3)

(e functions, the truth, indeterminate, and falsity
grades lie in real standard/nonstandard subsets of − 0, 1+[

[15].

2.4. Single-Valued Neutrosophic Set (SVNS). (e space of
objects contains global elements x. A SVNS is represented by
degrees of membership grades mentioned in Definition 2.1.
For all x ∈ X, TN(x), IN(x), FN(x) ∈ [0, 1]. An SVNS can
be written as N � x: TN(x), IN(x), FN(x)|x ∈ X􏼈 􏼉 [12].

2.5. Interval -Valued Neutrosophic Set. Let X be a space of
objects with generic elements in X is denoted by x. An
interval-valued neutrosophic set (IVNS) N in X is char-
acterized by truth-membership function, TN(x), indeter-
minacy-membership function IN(x), and falsity-
membership function FN(x). For each point x ∈ X, TN(x),
IN(x), FN(x) ∈ [0, 1], and an IVNS N is defined by N �

[TL
N(x), TU

N(x)], [IL
N(x), IU

N(x)], [FL
N(x), FU

N(x)] |x ∈ X􏼈 􏼉

where, TN(x) � [TL
N(x), TU

N(x)], IN(x) � [IL
N(x), IU

N(x)],
FN(x) � [FL

N(x), FU
N(x)] j [1].

2.6. Neutrosophic Markov Chain. (e NMC is a sequence of
neutrosophic random variables X0, X1, X3 . . . with the
property that the next neutrosophic state depends only on
the current state.

NP Xn+1 � j|Xn � i, Xn−1 � i − 1, Xn−2 � i − 2, . . . , Xo � i0􏼈 􏼉

� P Xn+1 � j |Xn � i􏼈 􏼉,
(4)

which is a neutrosophic mathematical system characterized
as memory less [1, 40].

2.7. Operations on Interval-Valued Neutrosophic Numbers.
Let N1 � [TL

1 , TU
1 ], [IL

1 , IU
1 ], [FL

1 , FU
1 ] and N2 � [TL

2 ,

TU
2 ], [IL

2 , IU
2 ], [FL

2 , FU
2 ] be two interval neutrosophic num-

bers then

Addition:

N1⊕N2 � T
L
1 + T

L
2 − T

L
1T

L
2 , T

U
1 + T

U
2 − T

U
1 T

U
2􏽨 􏽩, I

L
1I

L
2 , I

U
1 I

U
2􏽨 􏽩, F

L
1F

L
2 , F

U
1 F

U
2􏽨 􏽩. (5)

Multiplication:

N1 ⊗N2 � T
L
1T

L
2 , T

U
1 T

U
2􏽨 􏽩, I

L
1 + I

L
2 − I

L
1I

L
2 , I

U
1 + I

U
2 − I

U
1 I

U
2􏽨 􏽩, F

L
1 + F

L
2 − F

L
1F

L
2 , F

U
1 + F

U
2 − F

U
1 F

U
2􏽨 􏽩. (6)

Multiplication Neutrosophic probability:

x1, y1, z1( 􏼁. x2, y2, z2( 􏼁 � x1x2,, Min y1y2􏼈 􏼉,Max z1z2􏼈 􏼉􏼐 􏼑.

(7)

Addition Neutrosophic probability [34]:

x1, y1, z1( 􏼁. x2, y2, z2( 􏼁 � x1 + x2,Min y1y2􏼈 􏼉,Min z1z2􏼈 􏼉􏼐 􏼑.

(8)

2.8. Interval Neutrosophic Markov Chain. An interval neu-
trosophic stochastic process X(n): n ∈ Ν{ } is said to be an

interval neutrosophic Markov chain if it satisfies the Markov
property.

β Xn+1 � j |Xn−1 � i, Xn � k, . . . , X0 � m( 􏼁

� β Xn+1 � j |Xn−1 � i( 􏼁,
(9)

where i, j, k establish the state space S of the process.
Here, 􏽥Pij � β(Xn+1 � j|Xn � i) are called the interval-

valued neutrosophic probabilities of moving from state i to
state j in one step. Hence, 􏽥Pij � ([TL

􏽥Pij

, TU

􏽥Pij

],

[IL

􏽥Pij

, IU

􏽥Pij

], [FL

􏽥Pij

, FU

􏽥Pij

]), where TL

􏽥Pij

, TU

􏽥Pij

are the lower and

upper truth-membership of the transition from state i to
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state j, respectively, IL

􏽥Pij

, IU

􏽥Pij

are the lower and upper in-

determinate membership of the transition from state i to
state j, respectively, and FL

􏽥Pij

, FU

􏽥Pij

are the lower and upper

falsity-membership of the transition from state i to state j.
(e matrix P � (􏽥Pij) is called the interval-valued neu-
trosophic transition probability matrix.

2.9. Neutrosophic Hidden Markov Model. (e neutrosophic
hidden Markov chain (NHMC) is a neutrosophic Markov
chain Xn􏼈 􏼉1≤ n≤N, whose states are unobservable directly but
observed through a sequence of observations On, n≥ 1􏼈 􏼉

generated by the state Xn is conditional only on Xn. (e
NHMC is similar to fuzzy hidden Markov chain [41], where
the arithmetic operations are neutrosophic operations. (e
model is depicted in Figure 1.

(e NHMC, like any other HMC, consists of initial NP
distribution, neutrosophic transition probability matrix, and
the observation matrix giving conditional NP,
NP(vk at n |Xn � j), where vk ∈ V, the set of observation
symbols V � v1, v2, . . . , vm􏼈 􏼉. (e main problem of any
hidden Markov chain is the decoding part, which is finding

the best state sequence Xn􏼈 􏼉1≤ n≤N given the model 􏽥λ And
the observation sequence of length N. Traditionally Viterbi
algorithm is used to solve this problem. (is algorithm
consists of initialization, induction, termination, and path
backtracking. (e same algorithm is used for NHMC with
the operations mentioned in preliminaries.

2.10. Viterbi Algorithm for Neutrosophic Hidden Markov
Chain. Viterbi algorithm is to find the most likely sequence
of hidden states from the highest posterior probability
values. Viterbi algorithm consists of four steps:

(1) Initialization
(2) Induction
(3) Termination
(4) Path Backtracking

In the first three steps the values of η and φ are obtained.
(ese values are then backtracked in the final step to find the
best possible state sequence. Before getting into the algo-
rithm, it is necessary to understand the quantity 􏽥Υn(i) given
below.

􏽥Υn(i) �
max

X1, X2, . . . , Xn−1
σ X1, X2, . . . , Xn � i, o1, o2, . . . , on|􏽥λ􏼐 􏼑, 1≤ i≤ s, 1≤ n≤N. (10)

􏽥Υn(i) gives the highest possibility along the single path,
at time step n.

3. Application

In a pandemic situation, childhood obesity is a health issue
internationally as well as nationally. In this situation,
childhood obesity has raised. Overweight and obesity in
childhood lead to adverse health problems such as type -2
diabetes, cardiovascular diseases, and metabolic syndrome
[42]. We used a unique panel dataset acquired from Kwon
et al. [43] and converted the dataset into a Neutrosophic set
for this application. Childhood obesity is caused by calorie
burn and intake. Childers who was obese were a possibility
of obesity in adults. Adults’ obesity would possibly increase
morbidity and chronic diseases. Avoid these situations by
taking preventive and intervention efforts to focus on weight
gain in childhood. (is study aims to manage childhood
obesity in this pandemic situation. State H is represented by
overweight, and C is characterized by obesity. (e initial
probability of overweight obesity is

π � [〈[0.05 0.1 0.05]> , <[0.4 0.3 0.1]〉]. (11)

It reveals that the initial single-value neutrosophic of
overweight [0.05 0.1 0.05] is and obesity is [0.4 0.3 0.1]. It
shows that the single-valued neutrosophic value of
overweight is lesser than the obesity value. (e transition
probability diagram of the states in Figure 2.

Single-valued Neutrosophic transition probability value
is

H

C

H

[0.4, 0.2, 0.1]

[0.3, 0.1, 0.1]

C

[0.2, 0.05, 0.05]

[0.4, 0.1, 0.0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Observing state is like 1 represents mood, 2 represents
physical activity and 3 represents food intake. (e emission
probability of the state is in Figure 3.

H

C

1

[0.2, 0.1 , 0.0]

[0.3, 0.2 , 0.1]

2

[0.3, 0.1, 0.05]

[0.1, 0.05, 0.0]

3

[0.1, 0.05 , 0.1]

[0.2, 0.05 , 0.0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)
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(e number of hidden states is 2 and the number of
observations is 3. (e combination of the sequence is 23 is 8.

Joint probability method.

P(O, Q)) � 􏽙 P
O

Q
􏼠 􏼡P(Q). (14)

Most of the children depend on mood, food intake and
physical activity, so choose a sequence 132 the probability
value as follows:

3.1. Case I: Single-Valued Neutrosophic Hidden Markov
Model.

P(132, HHH) � P
1
H

􏼒 􏼓P(3/H)P
2
H

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

H

H
􏼒 􏼓 � [0.000048, 0.05, 0.1],

P(132, HHC) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

C

H
􏼒 􏼓 � [0.000008, 0.05, 0.1],

P(132, HCH) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓 � [0.000036, 0.05, 0.1],

P(132, CHH) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

H

H
􏼒 􏼓 � [0.0000432, 0.05, 0.1],

P(132, CCC) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(CH)P
C

C
􏼒 􏼓P

C

C
􏼒 􏼓 � [0.000384, 0.05, 0.1],

P(132, CCH) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
2
H

􏼒 􏼓P(C)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓 � [0.000864, 0.05, 0.1],

P(132, CHC) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

C

H
􏼒 􏼓 � [0.000072, 0.05, 0.1],

P(132, HCC) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

C

C
􏼒 􏼓 � [0.000016, 0.05, 0.05].

(15)

(e probability value of sequence 132 is the maximum
probability value of the above values is [0.000864, 0.05, 0.1]
and the maximum probability of the combination is
P(132, CCH).

Similarly, find the probability of any interval combi-
nation. Verification of this probability of sequence 132 using
the Viterbi algorithm in Figure 4.

Hidden States : X1 X2 X3 Xn

Observations : O1 O3O2 On

…

…

B̃ B̃B̃B̃

P̃P̃ P̃ P̃

Figure 1: A schematic representation of NHMM.

H C[0.4,0.2,0.1]

[0.2,0.05,0.05]

[0.4,0.1,0.0]

[0.3,0.1,0.1]

Figure 2: Single-value neutrosophic transition diagram.
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H C

1 2 3 1 2 3

[0.2, 0.1, 0.0]

[0.3, 0.1, 0.05]

[0.1, 0.05, 0.1] [0.3, 0.2, 0.1] [0.2, 0.0.05, 0.0]

[0.1, 0.05, 0.0]

Figure 3: Single-valued neutrosophic emission probability diagram.

H H H

C C C

[0.08, 0.1, 0.1]

[0.12, 0.2, 0.1]

V1
V2=

[<0.0036, 0.0096>]
V3=

[<0.0001728, 0.000154>]

1 2 3

Figure 4: Single-valued neutrosophic viterbi algorithm diagram.

H C[(0.2, 0.2), (0.05, 0.05), (0, 0)]

[(0.2, 0.1), (0.05, 0.05), (0.05, 0.05)]

[(0.2, 0.2), (0.1, 0.1), (0.05, 0.05)]

[(0.1, 0.1), (0.25, 0.25), (0.25, 0.25)]

Figure 5: Interval-valued neutrosophic transition diagram.

H C

1

2

3

1

3

2

[(.05, .05), (.25, .05), (.05, .05)][(.05, .05), (.025, .025), (0, 0)]

[(.05, .05), (.025, .025), (.05, .05)][(.05, .05), (.025, .025), (0, 0)]

[(.1, .1), (.05, .05), (0, 0)][(.2, .1), (.1, .1), (.05, .05)]

Figure 6: Interval-valued neutrosophic emission diagram.
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H H H

C C C

.31135

.4175

V1
V2=

0.4375
V3=

0.40334

1 2 3

Figure 7: Interval-valued neutrosophic viterbi diagram.
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Figure 8: A comparison study on hidden Markov models.

Table 1: Comparison study on hidden Markov model.

Various types of HMM Advantages Disadvantages
Hidden Markov model [43] Exact findings Cannot find in uncertainty information
Fuzzy hidden Markov model
[41] Finding including uncertainty information Cannot find in uncertainty information with

nonmembership function
Interval-valued fuzzy hidden
Markov model [39] Can find the decision using interval data Cannot find in uncertainty information with

nonmembership function

Intuitionistic hidden Markov
model [41]

Cannot find in uncertainty information with
membership and nonmembership function

Cannot find the information during addition of
membership and nonmembership degree more

significant than one

Interval-valued intuitionistic
hidden Markov model [41]

Can find the decision using interval data with
membership and non-membership function

Cannot find the information during addition of
membership and nonmembership degree greater than

one
Neutrosophic hidden Markov
model Can find the solution in indeterminacy Cannot find the solution in interval-values

Interval-valued neutrosophic
hidden Markov model

Can find the optimized solution using interval
data Unable to get the solution in incomplete value.
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3.1.1. Calculation for Single-Valued Neutrosophic Hidden
Markov Model.

P(1, H) � P
1
H

􏼒 􏼓P(H) � [0.08, 0.1, 0.1],

P(1, C) � P
1
C

􏼒 􏼓P(C) � [0.12, 0.2, 0.1],

P 3,
H

H
􏼒 􏼓 � P

3
H

􏼒 􏼓P
H

H
􏼒 􏼓 � [0.04, 0.05, 0.1],

P 3,
H

C
􏼒 􏼓 � P

3
H

􏼒 􏼓P
H

C
􏼒 􏼓 � [0.03, 0.05, 0.1],

P 3,
C

H
􏼒 􏼓 � P

3
C

􏼒 􏼓P
C

H
􏼒 􏼓 � [0.04, 0.05, 0.05],

P 3,
C

C
􏼒 􏼓 � P

3
H

􏼒 􏼓P
C

C
􏼒 􏼓 � [0.08, 0.05, 0],

P 2,
H

H
􏼒 􏼓 � P

2
H

􏼒 􏼓P
H

H
􏼒 􏼓 � [0.12, 0.1, 0.1],

P 2,
C

H
􏼒 􏼓 � P

2
C

􏼒 􏼓P
C

H
􏼒 􏼓 � [0.02, 0.05, 0.05],

P 2,
H

C
􏼒 􏼓 � P

2
H

􏼒 􏼓P
H

C
􏼒 􏼓 � [0.09, 0.01, 0.01],

P 2,
C

C
􏼒 􏼓 � P

2
C

􏼒 􏼓P
C

C
􏼒 􏼓 � [0.04, 0.05, 0],

V2 � [0.0036, 0.0096],

V3 � [0.0001728, 0.000154].

(16)

(e probability is verified through the Viterbi algorithm.
It shows the probability of sequence 132 is 0.0001728. (e
maximum probability of the combination is P(132, CCH)

and the path is C-C-H. It reveals that the sequence path of
the children’s mood, food intake, and physical activity is
overweigh-overweight-obesity. It reveals that the children’s
mood, food intake, and physical activity the sequence path is
obesity -obesity -overweight. It shows depends on the food
habit and physical activity; children avoid obesity.

3.2. Case II: Interval-Valued Neutrosophic Hidden Markov
Model. (e initial probability of overweight, obesity in
interval data:

π � [[(0.2, 0.2) (0.1, 0.2) (0.05, 0.05)],

[(0.025, 0.025) (0.05, 0.05) (0.025, 0.025)]].
(17)

Interval-valued transition probability diagram of the
states in Figure 5.

H

C

H C

[(0.2, 0.2), (0.05, 0.05), (0, 0)] [(0.2, 0.1), (0.05, 0.05), (0.05, 0.05)]

[(0.1, 0.1), (0.25, 0.25), (0.25, 0.25)] [(0.2, 0.2), (0.1, 0.1), (0.05, 0.05)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)

(e Interval-valued Neutrosophic emission value in
Figure 6.
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H

C

1 2 3

[(0.2, 0.1), (0.1, 0.1), (0.05, 0.05)] [(0.05, 0.05), (0.025, 0.025), (0, 0)] [(0.05, 0.05), (0.025, 0.025), (0, 0)]

[(0.1, 0.1), (0.05, 0.05), (0, 0)] [(0.05, 0.05), (0.025, 0.025), (0.05, 0.05)] [(0.05, 0.05), (0.25.0.05), (.05, .05)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P(132, HHH) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

H

H
􏼒 􏼓

� [(0.0000004, 0.0000002), (0.305, 0.38228), (0.0975, 0.0975)],

P(132, HHH) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

H

H
􏼒 􏼓

� [(0.0000004, 0.0000002), (0.305, 0.38228), (0.0975, 0.0975)],

P(132, HHC) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

C

H
􏼒 􏼓

� [(0.0000008, 0.0000002), (0.28678, 0.38228), (0.14206, 0.14206)],

P(132, HCH) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓

� [(0.0000006, 0.0000001), (0.28678, 0.36603), (0.16406, 0.16406)],

P(132, CHH) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

H

H
􏼒 􏼓

�� [(0, 0), (0.20533, 0.20533), (0.04938, 0.04938)],

P(132, CCC) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(CH)P
C

C
􏼒 􏼓P

C

C
􏼒 􏼓

�� [(0.0000006, 0.0000007), (0.3228, 0.3228), (0.14206, 0.14206)],

P(132, CCH) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
3
H

􏼒 􏼓P(C)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓

� [(0.000000013, 0.000000013), (0.24716, 0.24716), (0.1, 0.3)],

P(132, CHC) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

C

H
􏼒 􏼓

� [(0.00000005, 0.00000013), (0.24507, 0.24507), (0.11948, 0.11948)],

P(132, HCC) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

C

C
􏼒 􏼓

� [(0.00000016, 0.0000002), (0.35853, 0.4298), (0.24556, 0.24556)].

(19)

3.2.1. Score Function Value. Use the following score func-
tion to convert the crisp value to use to find out the crisp
probability [44].
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S N1
•

􏼒 􏼓 �
1
2

T
L
x + T

U
x􏼐 􏼑 − I

L
x.I

U
x􏼐 􏼑 + I

U
x − 1􏼐 􏼑

2
+ F

U
x􏼐 􏼑􏼔 􏼕,

P(132, HHH) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

H

H
􏼒 􏼓 � [0.181236],

P(132, HHC) � P
1
H

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
H

H
􏼒 􏼓P

C

H
􏼒 􏼓 � [0.20701],

P(132, HCH) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
H

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓 � [0.23051],

P(132, CHH) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
H

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

H

H
􏼒 􏼓 � [0.31936],

P(132, CCC) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(CH)P
C

C
􏼒 􏼓P

C

C
􏼒 􏼓 � [0.24814],

P(132, CCH) � P
1
C

􏼒 􏼓P
3
C

􏼒 􏼓P
2
H

􏼒 􏼓P(C)P
C

H
􏼒 􏼓P

H

C
􏼒 􏼓 � [0.40284],

P(132, CHC) � P
1
C

􏼒 􏼓P
3
H

􏼒 􏼓P
2
C

􏼒 􏼓P(C)P
H

C
􏼒 􏼓P

C

H
􏼒 􏼓 � [0.33185],

P(132, HCC) � P
1
H

􏼒 􏼓P
3
C

􏼒 􏼓P
2
C

􏼒 􏼓P(H)P
C

H
􏼒 􏼓P

C

C
􏼒 􏼓 � [0.20831].

(20)

3.2.2. Calculation for Interval-Valued Neutrosophic Hidden
Markov Model.

P(1, H) � P
1
H

􏼒 􏼓P(H) � [(0.2, 0.02), (0.19, 0.28), (0.0975, 0.0975)] � 0.31135,

P(1, C) � P
1
C

􏼒 􏼓P(C) � [(0.0025, 0.00252), (0.975, 0.0975), (0.025, 0.025)] � 0.4175,

P 3,
H

H
􏼒 􏼓 � P

3
H

􏼒 􏼓P
H

H
􏼒 􏼓 � [(0.01, 0.01), (0.7375, 0.07375), (0, 0)] � 0.43625,

P 3,
H

C
􏼒 􏼓 � P

3
H

􏼒 􏼓P(H/C) � [(0.005, 0.005), (0.49375, 0.049375), (0.0975, 0.0975)] � .46812,

P 3,
C

H
􏼒 􏼓 � P

3
C

􏼒 􏼓P
C

H
􏼒 􏼓 � [(0.01, 0.05), (0.07375, 0.07375), (0.0975, 0.0975)] � 0.4825,

P 3,
C

C
􏼒 􏼓 � P

3
C

􏼒 􏼓P
C

C
􏼒 􏼓 � [〈(0.01, 0.01), (0.1225, 0.1225), (0.0975, 0.0975)〉] � 0.43625,

P 2,
H

H
􏼒 􏼓 � P

2
H

􏼒 􏼓P
H

H
􏼒 􏼓 � [(0.01, 0.01), (0.07375, 0.07375), (0, 0)] � 0.43625,

P 2,
C

H
􏼒 􏼓 � P

2
C

􏼒 􏼓P
C

H
􏼒 􏼓 � [(0.01, 0.01), (0.0975, 0.0975), (0.07375, 0.07375)] � 0.4643,

P 2,
H

C
􏼒 􏼓 � P

2
H

􏼒 􏼓P
H

C
􏼒 􏼓 � [(0.05, 0.05), (0.049375, 0.049375), (0.025, 0.025)] � 0.46812,

P 2,
C

C
􏼒 􏼓 � P

2
C

􏼒 􏼓P
C

C
􏼒 􏼓 � [(0.02, 0.02), (0.55, 0.55), (0.0735, 0.0735)] � 0.421875,

V2 � 0.4375,

V3 � 0.40334.

(21)

10 Mathematical Problems in Engineering



Figure 7 above values reveals that the accurate
probability value is getting the IVNHMM. From the above
two analyses, IVNHMM gets an accurate probability of
the sequence. It reveals that the observation about the
children’s mood, food intake, and physical activity the
sequence path is obesity-obesity-overweight. It shows
depends on the food habit and physical activity children
avoid obesity.

4. Comparative Analysis

Figure 8 shows the comparison of SVNHMM and
IVNHMM on sequence 132. (e maximum probability of
sequence 132 is the C-C-H path of SVNHMM and
IVNHMM, which means the sequence path is obesity-
obesity-overweight. From this sequence, observation is the
children’s mood, food intake and physical activity; if they
choose the sequence activity regularly, they have a high
chance of avoiding obesity. Moreover, we have analysed the
advantages and disadvantages of our proposed method and
compared it with various existing types of hidden Markov
methods, which are given in Table 1.

5. Conclusion

Many real-world decision-making problems involve un-
certainty, vagueness, and indeterminacy. (e neu-
trosophic furnishes significant attention to rectifying
these problems. (e neutrosophic hidden Markov model
(NHMM) has been employed as the significant mathe-
matical mode for uncertainty, redundancy, inconsistency,
and ambiguity. NHMM explicitly quantifies indetermi-
nacy. Truth, indeterminacy, and falsity are independent.
(ese attributes are significant for biomedical to diagnose
the situation. NHMM is employed to construct decisions
in the medical field. (e proposed framework was in-
troduced for the childhood obesity problem in which
three components initially represent NHMM probability,
and three memberships perform the transformation.
Observing the children’s mood, food intake, and physical
activity reveals that the sequence path is obesity-obesity-
overweight. It shows that children have a high chance of
avoiding obesity depending on their food habits and
physical activity. However, the real-world application in
NHMM is from actual standard and nonstandard subsets.
(e above results reveal that SVNHMM or IVNHMM get
the same sequence path. Consequently, NHMM is used
to diagnose childhood obesity in lockdown situations
accurately. Future works include HMM using picture
fuzzy HMM and Plithogenic (cf [45]) HMM in the
medical field.
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