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In this paper, we introduce the non-conformable double Laplace transform. Its properties are studied, and it is applied to solve
some fractional PDEs involving the nonconformable fractional derivative. Graphical representations of the obtained solutions are
shown in fgures. Te study shows that this transform is efective and easy to apply to create an exact solution for types of
fractional PDEs.

1. Introduction

Troughout the decades, mathematics has played an in-
fuential role in the developed civilization. Trough math-
ematical modelling, it has allowed to describe and predict
phenomena in real world. From this viewpoint, it is essential
to assure the importance of calculus to study many of the
laws of nature.

On September 30th, 1695, a generalization of calculus
was born in a letter between L’Hopltal and Leibniz in which a
question got raised about the meaning of taking a fractional
derivative such as d1/2y/dx1/2 [1]. Tis generalization is
called fractional calculus. In the last and present centuries,
the importance of the fractional calculus has been growing
because of its deep applications in all related felds of science
and engineering [2–5].

Actually, many defnitions of fractional derivative and
fractional integral have been proposed. Te most popular
ones are Riemann–Liouville, Caputo, Grunwald–Letnikov,
Hadamard, Erdely, Kober, Marchaud, and Riesz [6–9]. Most
of these fractional derivatives do not satisfy the classical
formulas of derivatives such as product, quotient, and chain
rules except Caputo [10, 11].

Recently, Khalil et al. [12] introduced an extension of the
ordinary limit defnition for the derivative of a function,
namely, the conformable derivative. More recently, Marti-
nez proposed a new nonconformable local derivative in [13].
One can see that the last two defnitions satisfy the classical
properties mentioned above. Many researchers solved
nonlinear fractional partial diferential equations in the
sense of conformable derivative and Caputo derivative
[14–31]. Tere is an important study [32], where the authors
treat the price adjustment equation in many senses of
fractional derivatives, such as truncated M-derivative in-
cluding the Mittag–Lefer function, beta-derivative, and
conformable derivative defned in the form of limit for α
-diferentiable functions.

In [13], Martinez introduced the nonconformable
Laplace transform local fractional derivative, and they
proved its existence beside main properties. Ozarslan et al. in
[33] presented Atangana–Baleanu fractional derivative in
the Caputo sense with the (n + α)th order and its Laplace
transform, and they studied that the wind infuenced pro-
jectile motion equations involving this sense of derivative. In
[34], Ozkan and Kurt introduced the conformable double
Laplace transform and used it to solve some fractional partial
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diferential equations that represent many physical and
engineering models.

In this manuscript, we establish the nonconformable
double Laplace transform and apply this new defnition to
solve a nonconformable fractional heat, wave, and telegraph
equations with sense of nonconformable fractional
derivative.

2. Preliminary

In this section, we present the defnition of nonconformable
fractional derivative and some important defnitions.

Defnition 1 (see [13]). Given a function h: [0,∞)⟶ R,
then the nonconformable fractional derivative Nα

3(h)(t) of
order α of h at t is defned by

N
α
3(h)(t) � limε⟶ 0

h t + εt− α
( 􏼁 − h(t)

ε
, α ∈ (0, 1), t> 0.

(1)

In addition, if the nonconformable fractional derivative
Nα

3 of h of order α exists, then h is N-diferentiable.

Defnition 2 (see [13]). Let α ∈ (0, 1) and c be a real number,
then the fractional exponential is defned in the following
way:

E
N3
α (c, t) � exp c

t
α+1

α + 1
􏼠 􏼡. (2)

Defnition 3 (see [13]). Let α ∈ (0, 1] and 0≤ a≤ b, then we
can say that a function h: [a, b]⟶ R is α− fractional in-
tegrable on [a, b], if the integral

N3
J
α
ah(x) � 􏽚

x

a

h(t)

t
− α dt � 􏽚

x

a
h(t)dαt, (3)

exists and is fnite.
In the next section, we present the defnitions of the

nonconformable double and single Laplace transform of a
function with tow variables. We prove some properties. We
claim that the results presented here are new in its domain.

3. Nonconformable Double Laplace Transform

Defnition 4. Let u(x, t) be a piecewise continuous function on
[0,∞) × [0,∞) of generalized exponential order; that is, there
exist constants M, a and b such that |u(x,

t)|≤MEN3
α (a, t)E

N3
β (b, t) for sufciently large t. Te non-

conformable double Laplace transform of u(x, t) is defned by

L
α
t L

β
x[u(x, t)] � U(p, s)

� 􏽚
∞

0
􏽚
∞

0
E

N3
α (− s, t)E

N3
β (− p, x)u(x, t)dαtdβx,

(4)

where p, s ∈ C, 0< α, β≤ 1, and the integrals are in sense of
nonconformable fractional integral with respect to t and x.

Now, we defne the single nonconformable Laplace
transform of a function with two variables.

Defnition 5. Let u(x, t) be a piecewise continuous function
on [0,∞) × [0,∞) of the generalized exponential order.Te
nonconformable Laplace transform with respect to x of
u(x, t) is defned by

L
β
x[u(x, t)] � U(p, t)

� 􏽚
∞

0
E

N3
β (− p, x)u(x, t)dβx,

(5)

and the nonconformable Laplace transform with respect to t

of u(x, t) is defned by

L
α
t [u(x, t)] � U(x, s)

� 􏽚
∞

0
E

N3
α (− s, t)u(x, t)dαt,

(6)

where the integrals are in nonconformable sense.

3.1. Some Properties of Nonconformable Double Laplace
Transform. Here, we consider some of the properties and
theorems of the nonconformable double Laplace Transform
with their verifcation.

If we assume that the function u(x, t) provides the
sufcient conditions [35] and the order of transformation
can be changed, then

􏽚
∞

0
􏽚
∞

0
E

N3
α (− s, t)E

N3
β (− p, x)u(x, t)dαtdβx

� 􏽚
∞

0
􏽚
∞

0
E

N3
β (− p, x)E

N3
α (− s, t)u(x, t)dβxdαt

. (7)

Terefore, we get

L
α
t L

β
x[u(x, t)] � L

β
xL

α
t [u(x, t)],

� U(p, s).
(8)

Theorem 1. Let u(x, t) and w(x, t) be two functions which
have the nonconformable double Laplace transform.Ten, we
get

(1) Lα
t L

β
x[c1u(x, t) + c2w(x, t)] � c1L

α
t L

β
x[u(x, t)] +

c2L
α
t L

β
x[w(x, t)], where c1 and c2 are real constants

(2) Lα
t L

β
x[E

N3
β (d, x)E

N3
α (c, t)u(x, t)] � U(p − d, s − c),

where c and d are any real constants, s − d> 0 and
p − c> 0

(3) Lα
t L

β
x[u(ηx, μt)] � 1/ηβ+1μα+1U(p/ηβ+1, s/μα+1),

where μ and η are two nonzero real numbers
(4) For m, n ∈ N, (− 1)m+nLα

t L
β
x[xm(β+1) /(β + 1)m.

tn(α+1) /(α + 1)nu(x, t)] � zm+nU(p, s)/zpmzsn

Proof

(1) We obtain the proof from the defnition directly.
(2) By using nonconformable Laplace transform def-

nition, one can fnd
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L
α
t L

β
x E

N3
β (d, x)E

N3
α (c, t)u(x, t)􏼔 􏼕

� 􏽚
∞

0
􏽚
∞

0
E

N3
β (d, x)E

N3
α (c, t)E

N3
β (− p, x)E

N3
α (− s, t)u(x, t)dβxdαt

� 􏽚
∞

0
􏽚
∞

0
E

N3
β (− (p − d), x)E

N3
α (− (s − c), t)u(x, t)dβxdαt

� U(p − d, s − c),

L
α
t L

β
x[u(ηx, μt)] � 􏽚

∞

0
􏽚
∞

0
E

N3
α (− s, t)E

N3
β (− p, x)u(ηx, μt)dαtdβx

� 􏽚
∞

0
􏽚
∞

0
e

− pxβ+1/β+1
e

− stα+1/α+1
u(ηx, μt)dαtdβx

� 􏽚
∞

0
e

− pxβ+1/β+1
􏽚
∞

0
e

− stα+1/α+1
u(ηx, μt)dαt􏼒 􏼓dβx,

(9)

but
􏽚
∞

0
e

− stα+1/α+1
u(ηx, μt)dαt � 􏽚

∞

0
e

− stα+1/α+1u(ηx, μt)

t
− α dt

�
t�q/μ

􏽚
∞

0
e

− s(q/μ)α+1/α+1u(ηx, q)

q
− α/μ− α

dq

μ

�
1

μα+1 􏽚
∞

0
e

− s/μα+1qα+1/α+1
u(ηx, q)dαq

�
1

μα+1 U ηx,
s

μα+1􏼠 􏼡.

(10)

Terefore,

L
α
t L

β
x[u(ηx, μt)] � 􏽚

∞

0
e

− pxβ+1/β+1 1
μα+1 U ηx,

s

μα+1􏼠 􏼡􏼠 􏼡dβx �
1

ηβ+1μα+1 U
p

ηβ+1,
s

μα+1
⎛⎝ ⎞⎠. (11)

(3) Taking into account the convergence properties of
improper integral, one can change the order of the
operation of diferentiation and integration.

Terefore, one can diferentiate with respect to p, s

under the sign of integral. Tus,

z
m+n

U(p, s)

zp
m

zs
n � 􏽚

∞

0

z
m

zp
me

− pxβ+1/β+1
􏽚
∞

0

z
n

zs
ne

− stα+1/α+1
u(x, t)dαt􏼠 􏼡dβx,

� (− 1)
m+n

L
α
t L

β
x

x
m(β+1)

(β + 1)
m.

t
n(α+1)

(α + 1)
n u(x, t)􏼢 􏼣,

(12)

where we repeated diferentiation with respect to p, s,
m and n times, respectively. □

Lemma 1. Under the assumptions of the defnition of the
nonconformable double Laplace transform, we have
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L
α
t L

β
x xN

β
3u(x, t)􏼔 􏼕 � pU(p, s) − U(0, s), (13)

L
α
t L

β
x tN

α
3u(x, t)􏼂 􏼃 � sU(p, s) − U(p, 0) (14)

L
α
t L

β
x xN

β
3tN

α
3u(x, t)􏼔 􏼕 � psU(p, s) − pU(p, 0) − sU(0, s)

+ U(0, 0),

(15)

where xN
β
3u(x, t) and tN

α
3u(x, t) are the β-th and α-th order

nonconformable fractional partial derivatives, respectively,

and xN
β
3t Nα

3u(x, t) are the mixed β-th and α-th order
nonconformable fractional partial derivatives.

Proof

(1) Lα
t L

β
x[ xN

β
3u(x, t)] � pU(p, s) − U(0, s).

Using the defnition of non-comformable double
Laplace transform and the Proposition 2.3 in [13], we
get

L
α
t L

β
x xN

β
3u(x, t)􏼔 􏼕 � 􏽚

∞

0
􏽚
∞

0
E

N3
α (− s, t)E

N3
β (− p, x)xN

β
3u(x, t)dαtdβx,

� 􏽚
∞

0
E

N3
α (− s, t) 􏽚

∞

0
E

N3
β (− p, x)xN

β
3u(x, t)dβx􏼒 􏼓dαt,

� 􏽚
∞

0
E

N3
α (− s, t) L

β
x xN

β
3u(x, t)􏼔 􏼕􏼒 􏼓dαt,

� 􏽚
∞

0
E

N3
α (− s, t) L

β
x xu(x, t)􏼂 􏼃 − u(0, t)􏼐 􏼑dαt,

� pU(p, s) − U(0, s).

(16)

(2) In the same manner, one can prove

L
α
t L

β
x tN

α
3u(x, t)􏼂 􏼃 � sU(p, s) − U(p, 0). (17)

(3) Lα
t L

β
x[ xN

β
3tNα

3u(x, t)] � 􏽒
∞
0 􏽒
∞
0 E

N3
α (− s, t)E

N3
β

(− p, x)xN
β
3tNα

3u(x, t)dαtdβx.

Setting g(x, t)�tN
α
3u(x, t) and using (13), we have

L
α
t L

β
x xN

β
3g(x, t)􏼔 􏼕 � pG(p, s) − G(0, s), (18)

where

G(p, s) � L
α
t L

β
x[g(x, t)] � L

α
t L

β
x tN

α
3u(x, t)􏼂 􏼃

� sU(p, s) − U(p, 0),
(19)

and

G(0, s) � L
α
t L

β
x[g(0, t)] � L

α
t L

β
x tN

α
3u(0, t)􏼂 􏼃

� sU(0, s) − U(0, 0).
(20)

Now, substituting equations (18) and (19) into equation
(17) yields

L
α
t L

β
x xN

β
3tN

α
3u(x, t)􏼔 􏼕 � psU(p, s) − pU(p, 0) − sU(0, s)

+ U(0, 0).

(21)

Analogously, one can prove the following theorem. □

Theorem  . Let α, β ∈ (0, 1) and m, n ∈ N such that
u(x, t) ∈ Cl(R+ × R+), where l � max (m, n). Also, let
u(x, t), (i)

x N
β
3u(x, t), and (j)

t Nα
3u(x, t) for i � 1, ..., m , j �

1, ..., n are N-transformable; then, we have

L
α
t L

β
x

(m)
x N

β
3u(x, t)􏼔 􏼕 � p

m
U(p, s) − p

m− 1
U(0, s) − 􏽘

m− 1

i�1
p

m− 1− i
L

α
t

(i)
x N

β
3U(0, t)􏼔 􏼕,

L
α
t L

β
x

(n)
t N

β
3u(x, t)􏼔 􏼕 � s

n
U(p, s) − s

n− 1
U(p, 0) − 􏽘

n− 1

j�1
s

n− 1− j
L

β
x

(j)
t N

α
3U(x, 0)􏽨 􏽩,

L
α
t L

β
x

(m)
x N

β
3

(n)
t N

β
3u(x, t)􏼔 􏼕 � p

m
s

n
U(p, s) − s

− 1
U(p, 0) − p

− 1
U(0, s) − 􏽘

n− 1

j�1
s

− 1− j
L

β
x

(j)
t N

α
3U(x, 0)􏽨 􏽩⎡⎢⎢⎣

− 􏽘
m− 1

i�1
p

− 1− i
L

α
t

(i)
x N

β
3U(0, t)􏼔 􏼕+ 􏽘

m− 1

i�1
􏽘

n− 1

j�1
s

− 1− j
p

− 1− i(i)

x N
β
3

(j)

t N
α
3U(0, 0) + p

− m
s

− n
U(0, 0)⎤⎥⎥⎦,

(22)
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where (m)
x N

β
3u(x, t) and (n)

t Nα
3u(x, t) are m, n times non-

conformable fractional derivative of function u(x, t), with
order β and α, respectively, and (m)

x N
β
3

(n)
t Nα

3u(x, t) are the
mixed β-th and α-th order nonconformable fractional partial
derivatives of function u(x, t).

4. Examples and Applications

In this section, we use the proposed transform to solve some
fractional PDEs in sense of nonconformable fractional derivative
arising from several physical and engineering problems.

4.1. Homogeneous Space-Time Nonconformable Fractional
HeatEquation. Consider the following homogeneous space-
time nonconformable fractional heat equation in one
dimension:

tN
α
3u(x, t)�

(2)
x N

β
3u(x, t) , 0< x , 0< t, (23)

subject to the initial and boundary conditions

u(0, t) � E
N3
α (1, t), (24)

u(x, 0) � E
N3
β (1, x), (25)

xN
β
3u(0, t) � E

N3
α (1, t). (26)

Applying nonconformable double Laplace transform (4)
to equation (22), we get

s − p
2

􏼐 􏼑U(p, s) � U(p, 0) − pU(0, s)− xN
β
3U(0, s). (27)

Ten, applying the nonconformable single Laplace
transform to the conditions (23)–(25) by using Teorem 1.2
in [13], we get

U(0, s) � L
α
t [u(0, t)],

� L
α
t E

N3
α (1, t)􏽨 􏽩,

�
1

s − 1
,

U(p, 0) � L
β
x[u(x, 0)],

� L
β
x E

N3
β (1, x)􏼔 􏼕,

�
1

p − 1
,

xN
β
3U(0, s) � L

α
t xN

β
3u(0, t)􏼔 􏼕,

� L
α
t E

N3
α (1, t)􏽨 􏽩,

�
1

s − 1
.

(28)

Substituting (27) into (26), one can obtain

U(p, s) �
1

(p − 1)(s − 1)
. (29)

Terefore, the solution of problem (22)–(25) is

u(x, t) � E
N3
α (1, t)E

N3
β (1, x). (30)

4.2. Homogeneous Space-Time Nonconformable Fractional
Wave Equation. Consider the following homogeneous
space-time nonconformable fractional wave equation in one
dimension:

(2)
t N

α
3u(x, t)�

(2)
x N

β
3u(x, t) , 0< x , 0< t, (31)

subject to the initial and boundary conditions:

u(0, t) � 0, (32)

u(x, 0) � sin
x
β+1

β + 1
􏼠 􏼡, (33)

xN
β
3u(0, t) � cos

t
α+1

α + 1
􏼠 􏼡, (34)

tN
α
3u(x, 0) � 0. (35)

Applying nonconformable double Laplace transform (4)
to equation (30), we get

s
2

− p
2

􏼐 􏼑U(p, s) + pU(0, s)+xN
β
3U(0, s)

− sU(p, 0)− tN
α
3U(p, 0) � 0.

(36)

Ten, applying the nonconformable single Laplace trans-
form to the conditions (31)–(34) by usingTeorem 1.2 in [13].

U(0, s) � L
α
t [u(0, t)],

� 0,

U(p, 0) � L
β
x[u(x, 0)],

� L
β
x sin

x
β+1

β + 1
􏼠 􏼡􏼢 􏼣,

�
1

p
2

+ 1
,

xN
β
3U(0, s) � L

α
t xN

β
3u(0, t)􏼔 􏼕,

� L
α
t cos

t
α+1

α + 1
􏼠 􏼡􏼢 􏼣,

�
s

s
2

+ 1
,

tN
α
3U(p, 0) � L

β
x tN

α
3u(x, 0)􏼂 􏼃,

� 0.

(37)

Substituting (36) into (35), one can get

U(p, s) �
s

p
2

+ 1􏼐 􏼑 s
2

+ 1􏼐 􏼑
. (38)
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Hence, the solution of problem (30)–(34) is

u(x, t) � sin
x
β+1

β + 1
􏼠 􏼡 cos

t
α+1

α + 1
􏼠 􏼡. (39)

4.3. Nonhomogeneous Space-Time Nonconformable Frac-
tional Wave Equation. Consider the following nonhomo-
geneous space-time nonconformable fractional wave
equation in one dimension:
(2)
t N

α
3u(x, t)�

(2)
x N

β
3u(x, t) + 2E

N3
α (1, t)cos

x
β+1

β + 1
􏼠 􏼡, 0<x , 0< t,

(40)
subject to the initial and boundary conditions

u(0, t) � E
N3
α (1, t), (41)

u(x, 0) � cos
x
β+1

β + 1
􏼠 􏼡, (42)

xN
β
3u(0, t) � 0, (43)

tN
α
3u(x, 0) � cos

x
β+1

β + 1
􏼠 􏼡. (44)

Applying nonconformable double Laplace transform (4)
to equation (39), we get

s
2

− p
2

􏼐 􏼑U(p, s) + pU(0, s)+xN
β
3U(0, s)

− sU(p, 0)− tN
α
3U(p, 0) �

2p

s p
2

+ 1􏼐 􏼑
.

(45)

Ten, applying the nonconformable single Laplace
transform to the conditions (40)–(43) by using Teorem 1.2
in [13], we get

U(0, s) � L
α
t E

N3
α (1, t)􏽨 􏽩

�
1

s − 1
,

U(p, 0) � L
β
x cos

x
β+1

β + 1
􏼠 􏼡􏼢 􏼣

�
p

p
2

+ 1
,

xN
β
3U(0, s) � L

α
t xN

β
3u(0, t)􏼔 􏼕,

� 0,

tN
α
3U(p, 0) � L

β
x cos

x
β+1

β + 1
􏼠 􏼡􏼢 􏼣,

�
p

p
2

+ 1
.

(46)

Substituting (45) into (44), one can obtain

U(p, s) �
p

p
2

+ 1􏼐 􏼑(s − 1)
. (47)

Tus, the solution of problem (39)–(43) is

u(x, t) � E
N3
α (1, t)cos

x
β+1

β + 1
􏼠 􏼡. (48)

4.4. Nonhomogeneous Space-Time Nonconformable Frac-
tional Telegraph Equation. Consider the following nonho-
mogeneous space-time nonconformable fractional telegraph
equation in one dimension:

(2)
x N

β
3u(x, t)−

(2)
t N

α
3u(x, t)− tN

α
3u(x, t) − u(x, t)

� − 4E
N3
α (1, t)sin

x
β+1

β + 1
􏼠 􏼡, 0< x, 0< t,

(49)

subject to the initial and boundary conditions

u(0, t) � 0, (50)

u(x, 0) � sin
x
β+1

β + 1
􏼠 􏼡, (51)

xN
β
3u(0, t) � E

N3
α (1, t), (52)

tN
α
3u(x, 0) � sin

x
β+1

β + 1
􏼠 􏼡. (53)

Applying nonconformable double Laplace transform (4)
to equation (48), we get

p
2

− s
2

− s − 1􏼐 􏼑U(p, s) − pU(0, s)− xN
β
3U(0, s)

+ (s + 1)U(p, 0)+tN
α
3U(p, 0) �

− 4
(s − 1) p

2
+ 1􏼐 􏼑

.
(54)

Ten, applying the nonconformable single Laplace
transform to the conditions (49)–(52) by using Teorem 1.2
in [13], we get

U(0, s) � 0,

U(p, 0) � L
β
x sin

x
β+1

β + 1
􏼠 􏼡􏼢 􏼣,

�
1

p2 + 1
,

xN
β
3U(0, s) � L

α
t E

N3
α (1, t)􏽨 􏽩

�
1

s − 1
,

tN
α
3U(p, 0) � L

β
x sin

x
β+1

β + 1
􏼠 􏼡􏼢 􏼣,

�
1

p
2

+ 1
.

(55)
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Substituting (54) into (53), one can obtain

U(p, s) �
1

p
2

+ 1􏼐 􏼑(s − 1)
. (56)

Terefore, the solution of problem (48)–(52) is

u(x, t) � E
N3
α (1, t)sin

x
β+1

β + 1
􏼠 􏼡. (57)

5. Discussion

In this section, we illustrate the obtained solutions in the
four examples for diferent values of α and β in 2D and 3D
graphs by using Maple 13 software.

In Figure 1(a), the solutions of problem (22)–(25) obtained
from the nonconformable double Laplace transform method,
are shown for diferent values of α and β when t � 1 and x ∈
[0, 2.5], Figure 1(b) shows the solution of problem (22)–(25) in
x − t plane when α � β � 0.05, x ∈ [0, 5], and t ∈ [0, 5].

Figure 2(a) illustrates the nonconformable double
Laplace transform solutions of problem (30)–(34) with
diferent values of α and β when t � 1 and x ∈ [0, 7].
Figure 2(b) shows the 3D graph of the solution, where α �

β � 0.1, x ∈ [0, 7], and t ∈ [0, 7].
With diferent values of α and β, the nonconformable

double Laplace transform solutions of problem (39)–(43) are
shown in Figure 3(a) with t � 1 and x ∈ [0, 6]. In
Figure 3(b), the solution is illustrated in the x − t plane,
where α � β � 0.01, x ∈ [0, 7], and t ∈ [0, 7].
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x

α = β = 1
α = β = 0.75

α = β = 0.5
α = β = 0.25

(a)

30000

20000

10000

0
0 1 2 3 4 5

x
t1 2 3 4 5

(b)

Figure 1: (a) Solutions of problems (22)–(25) for diferent values of α and β when t � 1. (b) 3D graph of the solution of problem (22)–(25)
when α � β � 0.05.
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Figure 2: (a) Solutions of problems (30)–(34) for diferent values of α and β when t � 1. (b) 3D graph of the solution of problem (30)–(34)
when α � β � 0.1.
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Te solutions of problem (48)–(52) are shown in
Figure 4(a) for diferent values of α and β when t � 1 and
x ∈ [0, 7], and the 3D graph of the solution is shown in
Figure 4(b) where α � β � 0.1, x ∈ [0, 7], and t ∈ [0, 7].

In Figures 1–4, one can observe that the solutions in the
case of nonconformable fractional derivative approach
values of the classical case, i.e., α � β � 1, whenever α and β
approach one.

In Figures 2 and 3, one can see that the wavelength
increases as α and β approach zero. Tus, the number of
crests and troughs increases as α and β approach one, the
wave amplitude increases in Figure 1 and decreases in
Figures 2 and 3 as α and β approach one.

6. Conclusion

In this work, we introduce the nonconformable double
Laplace transform with proof of its main properties. Ten,
we use the transform to solve selected fractional PDEs in
sense of nonconformable derivative, such as homogeneous
space-time nonconformable fractional heat equation, ho-
mogeneous and nonhomogeneous space-time non-
conformable fractional wave equations, and
nonhomogeneous space-time nonconformable fractional
telegraph equation. In addition, 3D graphical representa-
tions are ofered for obtained solutions with illustrations for
diferent values of α and β with t � 1 fxed. Te 2D graphs
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α = β = 0.25
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1 0
234567 1 023456x t
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Figure 3: (a) Solutions of problems (39)–(43) for diferent values of α and β when t � 1. (b) 3D graph of the solution of problem (39)–(43)
when α � β � 0.01.
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Figure 4: (a) Solutions of problems (48)–(52) for diferent values of α and β when t � 1. (b) 3D graph of the solution of problem (48)–(52)
when α � β � 0.5.
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show that the obtained solutions, by using the non-
conformable double Laplace transform, are close to that of
classical derivatives as α⟶ 1 and β⟶ 1 with t � 1 fxed.
We observe that the wavelength increases and the amplitude
decreases in the case of the homogeneous space-time
nonconformable fractional wave equation as α⟶ 0 and
β⟶ 0 with t � 1 fxed. It increases in the last two cases as α
and β approaches zero with t � 1 fxed. We may conclude
that this transform can be a very powerful technique to solve
many fractional PDEs involving nonconformable derivative
arising in physics, chemistry, and engineering.
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