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Image super-resolution (SR) is one of the classical ill-posed image processing issues to generate high-resolution (HR) images from
given low-resolution (LR) instances. Recent SR works aim to find an elaborate convolutional neural network (CNN) design and
regard it as an end-to-end filter to map the image from LR space to HR space. However, seldom of them concentrate on the
mathematical proof of network design or consider the problem from an optimization perspective. In this paper, we investigate the
image SR based on the Landweber iteration method, which is an effective optimization method to find a feasible solution for the
ill-posed problem. By considering the issue from the optimization perspective, we design a corresponding Landweber iteration-
inspired network to adaptively learn the parameters and find the HR results. Experimental results show the proposed network
achieves competitive or better subjective and objective performance than other state-of-the-art methods with fewer parameters

and computational costs.

1. Introduction

Single image super-resolution (SISR), one of the classical
image processing issues, has been widely investigated in
recent years. Given a low-resolution (LR) image, the task of
SISR is to generate a corresponding high-resolution (HR)
instance with satisfying visual quality [1]. Image super-
resolution (SR) has been widely investigated in numerous
applications, such as image inpainting [2], self-driving [3],
pose detection [4], underwater image enhancement [5],
video deinterlacing [6], and recognition [7]. Figure 1 shows
an example of image super-resolution. Figure 1(a) shows the
given low-resolution image and the original high-resolution
instance. Figure 1(b) shows the restored SR images.
Traditional SISR methods usually find a feasible solution
for SISR by interpolation or compressed sensing. Zhang et al.
proposed a contourlet-based interpolation method for SISR
[8]. There are also works conducting the interpolation with

the help of wavelet transformation [9]. Recently, rational
fractal interpolation is also considered for image SR [10].
These works aim to design a filter to process the image but
lack the learning step for finding the statistical correlation
between LR and HR images. Compressed sensing for SISR,
which learns a mapping relationship between LR and HR
images from training data, is also fully investigated by re-
searchers. Chen et al. utilized K-SVD for dictionary learning
and achieved good restoration performance [11]. Zhao et al.
considered local manifold projection in compressed sensing
for more accurate results [12]. The compressed sensing-
based methods highly depend on the choice of regulation
term. Furthermore, the hyper-parameters are manually
intervened and lack the ubiquity.

With the rapid development of deep learning, recently
there are convolutional neural networks (CNNs) specially
designed for SISR, which achieve state-of-the-art perfor-
mance. SRCNN [13] is the first CNN-based method for SISR
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FIGURE 1: An example of image super-resolution. (a) The given low-resolution (LR) image and the original high-resolution (HR) instance.

(b) The restored super-resolution (SR) image.

with a three-layer neural network to simulate the step of
compressed sensing. After SRCNN, numerous works are
devising elaborate blocks to build the CNN deeper and
wider. VDSR [14] proposed a very deep network with re-
sidual connection for improving the performance. EDSR
[15] removed the batch normalization and built the network
with residual blocks [16]. In recent years, RDN [17], DRN
[18], RFANet [19], and other works design effective blocks to
achieve state-of-the-art performance. However, these works
only concentrate on the network architecture, but almost
neglect to consider the mathematical proof of the design.

There are also works considering the SISR from the
optimization perspective. IRCNN [20] analyzed the image
restoration by half-quadratic splitting (HQS) strategy and
designed an end-to-end network for multitask image res-
toration. Hu et al. devised an end-to-end network inspired
by the alternating direction method of multipliers (ADMM)
[21]. Liu et al. also proposed a novel network termed ISRN
[22] for restoration, which is inspired by the HQS strategy.
However, these works only use stacked blocks to build the
solver of iterative formulations, but do not concentrate on
guiding the block design itself by the optimization method.

In this paper, we design a novel Landweber iteration [23]
inspired network for SISR, which is termed as LandNet.
Different from other iteration optimization-inspired CNN-
based methods, the proposed LandNet unfolds the iteration
steps into sequential network blocks, and designs a
straightforward network to generate HR images from LR
instance. Specially, we devise a novel block inspired by the
formulation of Landweber iteration, and use convolutional
layers to simulate the optimization step of each iteration.
Based on the unfolding blocks, an end-to-end network is
established for effective restoration. Experimental results
show the proposed LandNet achieves competitive or better
subjective and objective performance than other state-of-
the-art methods with fewer parameters and computation
cost.

The contribution of this paper can be concluded as

(i) We analyze the image super-resolution in the op-
timization perspective and design a novel block for
restoration inspired by the Landweber iteration
method.

(ii) We design an unfolding network for end-to-end
image super-resolution based on the proposed
optimization block, which is termed as LandNet.

(iii) Experiment results show that the proposed LandNet
achieves competitive or better subjective and ob-
jective performance than other works with fewer
parameters and computation cost.

2. Relate Works

Image processing and analysis is an important task for signal
processing [24, 25]. As a classical issue in image processing,
the task of image super-resolution (SR) is to generate high-
resolution (HR) images from low-resolution (LR) instances
[26-28]. In recent years, convolutional neural networks
(CNNs) have demonstrated amazing performance on image
SR. SRCNN [13] is the first CNN-based image super-res-
olution network that achieves a large improvement over
traditional works. FSRCNN [29] improves the speed of
SRCNN and utilizes a deeper network to obtain a better
performance. ESPCN [30] proposes a subpixel convolution
strategy to resize the feature map and utilizes it to substitute
the deconvolutional layer, which has been widely used in
recent works. VDSR [14], EDSR [15], and SRDenseNet [31]
build the network deeper and wider for better performance.
In recent years, more and more elaborate blocks are pro-
posed for effective restoration. RDN [17] combines the
residual [16] and dense [32] connections and designs a novel
residual dense block for image restoration. RCAN [33]
investigates a residual-in-residual block with channel-wise
attention [34] and achieves the state-of-the-art performance.
SAN [35] utilizes a second-order attention network to focus
on the inherent correlations among features. REANet [19]
aggregates the residual information to improve the network
representation. Based on the residual aggregation, RFDN
[36] is also proposed for effective lightweight image super-
resolution. These works build the network with well-
designed blocks and achieve good performances. Cross-SRN
[7] designs a cross convolution to enhance the edge infor-
mation recovery. Zhu et al. devised a GAN-based method for
perceptual-oriented image super-resolution [37]. Recently,
there are effective networks specially designed for image and
video super-resolution. Mei et al. combined the nonlocal
attention and the sparse representation for image super-
resolution and proposed a novel nonlocal sparse attention
with dynamic sparse attention pattern for image super-
resolution, which achieved the state-of-the-art performance
[38]. Jiang et al. investigated the effective connections be-
tween different network modules and proposed a
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hierarchical dense recursive network for image super-res-
olution [39]. Zhang et al. also considered the attention over
the context, and developed a context reasoning attention
network for image super-resolution [40]. Progressive ex-
ploration and generative adversarial network were also in-
vestigated by Yi et al. for super-resolution [41]. Zhang et al.
also analyzed the image super-resolution in the fluid micelle
perspective and proposed an FMNet for image super-res-
olution [42]. However, they do not concentrate on the
mathematical analysis of the image super-resolution and
only use end-to-end CNN to map the low-resolution (LR)
images to high-resolution (HR) instances.

Recently researchers begin to investigate the interpre-
tation of neural networks and design networks based on
mathematical analysis. ADMM-Net [43] provides an opti-
mization perspective analysis on compressive sensing MRI
and designs an end-to-end network to simulate the alter-
nating direction method of multipliers (ADMM) operation.
IRCNN [20] proposes a general analysis of the image res-
toration issue and designs a denoiser prior to solve the
problem based on the half-quadratic splitting (HQS)
strategy. Ma et al. propose an ADMM-based unfolding
network for image super-resolution [44]. Tuo et al. also
consider real aperture super-resolution with an ADMM-
based solver [45]. ISRN [22] is also investigated recently for
single image super-resolution, which utilizes HQS to build
an end-to-end iterative network. Zhang et al. rethink the
degradation model of image super-resolution and propose a
plug-and-play super-resolution network for arbitrary
downsampling situations [46]. However, these works only
regard the iterative scheme as guidance to design the net-
work pipeline, but neglect to concentrate on the block
architecture.

3. Methodology

In this section, we use Landweber [23] iteration method to
analyze the image SR issue and design an end-to-end net-
work to restore the image. Given a low-resolution (LR)

image I'® € RFPWXC the task of image super-resolution is to
find a corresponding high-resolution (HR) image
IHR ¢ REFHXWXC atisfying

ILR — QIHR, (1)

where 9 is the degradation operation, H, W, C are the
height, width, and channels of the image separately, and s is
the scaling factor. Usually & can be represented as a matrix.
If D is a nonsingular matrix, then there is the specific so-
lution for "} where

IHR _ 9711LR. (2)

However, due to the highly ill-conditioned property of
the image SR problem, the solution of (1) is sensitive to the
noise. Especially, if 9 is a singular matrix, there is no exact
solution of I#R. As such, we try to find a least-squares super-
resolution solution IS? that satisfies

| argminIsR%HQISR - ILR||2. (3)
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FIGURE 2: Block design of Landweber iteration step (LandBlock).
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FIGURE 3: Network design. (a) k = 0. (b) k = 4. (c) k = 8.(d) k = 12.
(e) k = 16.

To solve the issue, we consider the fix-point equation as
S L 9*(ILR _ QISR), (4)

where 9 is the conjugate matrix of &. The fix-point
equation is converged at the point where I'® = QTR

As such, we use the iterative method to gradually update
the I? and find a feasible solution as

Ly =L+ 2" (1" - g1"), (5)

where IiR is the result of k-th iteration.
The (5) can be re-written as

L =(1-a2* D)L +aP T (6)

which can be regarded as a gradient descent step. With the
accumulate of iteration step k, the accuracy becomes higher.

The iteration mechanism inspires us to design a network
and solve the problem, which learns the matrix represen-
tation from the training data pairs. Our block is designed
based on the (6). Figure 2 shows the block design for
Landweber iteration step. Three residual blocks [16], two
convolutional layers, and one ReLU activation are designed
to calculate the a@*DIR. The residual block follows the
same design with EDSR [15], which is composed of two
convolutional layers, one ReLU activation, and a skip
connection. After calculation, the inputs is subtracted by the
I}, and then added by the a2 * 1'%,

Figure 3 shows the entire network design. First, one
convolutional layer processes the input I'® and gets the
extracted feature map xR, which is described as

xR = Conv(ILR). (7)

Then, four convolutional layers and three ReLU acti-
vation layers are utilized to calculate the a2 *I'® from the
extracted feature map as

aD IR = extractor(xLR), (8)

where extractor (-) denotes the CNN layers.



There are Landweber iteration blocks (LandBlock) in the
network to perform the optimization according to the (6).
For the ith iteration, there is

LY = LandBlocki(IiSR, aP” ILR), )

i+1
where LandBlock; (-) denotes the ith Landweber iteration
block.

After kth iteration, there is a padding structure com-
posed of two convolutional layers and a ReLU activation to
process the feature map. Then, a skip connection is designed
to learn the residual information and improve the gradient
transmission [16] as

R = xR (10)
Finally, there is an upscale module to restore the SR
image from the feature map, which is described as

R = Upscale(xSR), (11)

where Upscale(-) is the upscale module composed of one
convolutional layer and a subpixel convolution [30].

The implementation detail of LandNet is as follows. The
number of iteration blocks is set as k = 16. All convolutional
layers are with channel number as ¢ = 64 except for the
upscale module. The loss function is chosen as ¢;-norm.

4. Experiment

We train the network with DIV2K [47] data set. DIV2K data
set contains 800 images for training and 100 images for
validation. The images of DIV2K data set are with near 2K
resolution, which are widely used in recent image SR works
[7, 15, 17, 22]. We update our network for 1000 epoch by
Adam optimizer [48] with learning rate Ir = 10~*. The patch
size of training data is set as 48 x 48 for LR input. All other
settings are same with RDN [17]. The testing benchmark is
chosen as Set5 [49], Setl4 [50], B100 [51], Urban100 [52],
and Mangal09 [53].

4.1. Ablation Study

4.1.1. Investigation on the Computational Complexity. To
show the effectiveness of our LandNet, we compare the
performance, the computational complexity, and the pa-
rameters with recent works: OISR [54], MSRN [55],
MemNet [56], EDSR [15], and DBPN [57]. The computa-
tional complexity is modeled as the number of multiply-
accumulate operations (MACs). The MACs is calculated by
restoring a 720P image (1280 x 720) with the given scaling
factor. Table 1 shows the MACs, parameters, and PSNR
comparisons with scaling factor x4. In the table, we can find
our network achieves better performance than OISR and
MSRN with fewer parameters and MACs. When compared
with EDSR and DBPN, LandNet achieves competitive
performance with much fewer parameters and MACs.
Specially, LandNet holds near 10% parameters and MACs
than EDSR and only drops 0.08 dB PSNR on Set5. Similarly,
LandNet holds near 47% parameters and 5% MACs than
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TaBLe 1: Computational complexity, parameters, and PSNR
comparisons among different methods with scaling factor x4.

Method MACs (G) | Params (M) | Set5 T Set14 T
OISR [54] 412.2 5.50 32.32 28.72
MSRN [55] 368.6 6.37 32.26 28.63
MemNet [56] 2662.4 0.67 31.74 28.26
EDSR [15] 2895.8 43.08 32.46 28.80
DBPN [57] 5213.0 10.42 32.47 28.81
NLSN [38] 2597.2 44.15 32.59 28.87
CRAN [40] 920.1 15.78 32.72 29.01
LandNet 286.2 4.97 32.39 28.74

DBPN while only suffers near 0.07 dB PSNR decrease. In this
point of view, LandNet is proved to be an effective design for
image super-resolution. Furthermore, we mainly compare
our method with state-of-the-art methods (NLSN [38],
CRAN [40]). In the table, we can find that NLSN has near 10
times MACs and parameters than LandNet with only 0.1 dB
PSNR improvement on Setl4. Similarly, CRAN has near 3
times MACs and parameters than LandNet, but only gains
0.3dB PSNR improvement on Set5 and Set14. In this point
of view, LandNet is an effective method for image super-
resolution with restricted parameters and complexity.

4.1.2. Investigation on the Iterative Mechanism. To further
investigate the effectiveness of iterative blocks, we demon-
strate the results from different iterations. Figure 4 shows the
output with different iteration blocks. In the figure, we can
find that with the increase of iteration block k, the artifacts
are more and more suppressed and the visual quality be-
comes better. This is in accordance with the mathematical
analysis.

Furthermore, we also compare the objective perfor-
mances of different iteration blocks. For a fair comparison,
we train the different network under the same protocol for
200 epochs. Table 2 shows the average PSNR/SSIM results of
different iterations. We can find that with the increase of the
number of the iteration block k, the PSNR/SSIM results
gradually increase. This is in accordance with the Landweber
iteration that more iteration steps lead to more accurate
solution.

4.1.3. Investigation on the Block Design. In the paper, we
specially design the LandBlock to perform the iteration
steps. To show the effectiveness of the block design, we
compare our network with the modified version that sub-
stitutes the LandBlock with classical residual blocks. For a
fair comparison, we train the different network under the
same protocol for 200 epochs. Table 3 shows the PSNR/SSIM
comparison. We can find that the LandBlock brings a sig-
nificant improvement on all testing benchmarks, which
demonstrate that the LandNet is an effective design.

4.2. Comparison with State-of-the-Art Methods. To show the
performance of our LandNet, we compare our network with
several traditional and recent works: SRCNN [13], FSRCNN
[29], VDSR [14], DRCN [58], LapSRN [59], SelNet [60],
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FIGURE 4: Results from different iterations. The output is generated from features of the k-th iteration block (a) k = 0 (b) k = 4 (c) k = 8 (d)
k=12 (e) k =16.

TABLE 2: Average PSNR/SSIM results of different iteration blocks with degradation model BI x4.
k Set 5 Set 14 B 100 Urban 100
4 28.97/0.8275 26.69/0.7430 26.28/0.7103 24.46/0.7360
8 31.18/0.8706 28.07/0.7686 27.25/0.7291 25.47/0.7622
12 31.76/0.8822 28.40/0.7749 27.46/0.7324 25.84/0.7741
16 32.12/0.8943 28.59/0.7824 27.58/0.7363 26.16/0.7892

TaBLE 3: Average PSNR/SSIM results of different blocks designs with degradation model BI x4.
Block Set5 Setl4 B100
ResBlock 23.07/0.5112 22.26/0.4875 23.19/0.5303
Land 32.12/0.8943 28.59/0.7824 27.58/0.7363

RAN [61], DNCL [62], FilterNet [63], MREN [64], SeaNet
[65], DEGREE [66], FSN [67], MFSR [68], DSRLN [69], and
MemNet [56]. The indicators are chosen as peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM). Table 4
shows the average PSNR/SSIM under degradation model
bicubic-down (BI) with scaling factor x2, x3, and x4 on five
benchmarks. The best performances are shown in bold. The
dash line means the paper does not report their
performance.

In the table, we can find the proposed LandNet achieves
the best performances on all five testing benchmarks and
three scaling factors. When the scaling factor is x2, LandNet
achieves 0.4 and 0.3 PSNR improvements than the MEFSR on
Urban100 and Mangal09 benchmarks separately. Similarly,
when the scaling factors are x3 and x4, our network also
achieves significant improvements on Urbanl00 and
Mangal09. It should be noticed that Urban100 is a data set
with plentiful buildings, and Mangal09 is a data set with
comics, which contain a large amount of structural infor-
mation. In this point of view, LandNet can effectively recover
the high-frequency edge and structural information than
other works.

Figure 5 shows the visual comparisons on Urban100 data
set. We mainly compare our model with two representative
methods: LapSRN [59] and Cross-SRN [7]. LapSRN is in-
spired by the Laplacian pyramid, which utilizes multiscale
architecture to restore the structural information. Cross-
SRN is specially designed to concentrate on the edges and
lines. In the figure, we can find that LandNet achieves the
best PSNR performance than other works. There is near
0.8dB improvement on the two testing instances. In this

point of view, the LandNet has superior structural infor-
mation recovery capacity to other works. In the visual
comparison, LandNet can recover more accurate lines. The
results from LandNet are closest to the groundtruth.

Furthermore, we statistically verify the effectiveness of
our methods. We conduct the two sample T-Test among LR,
VDSR, and LandNet in pair to show the superiority of our
method. Table 5 shows the two-sample T-Test comparisons.
In the table, 0 means the left method performs statistically
the same as the upper method. —1 means the left method
performs worse than the upper method, and 1 means the left
method performs better than the upper method. In the table,
we can find that LandNet statistically improves the image
quality and performs better than VDSR.

5. Discussion

5.1. Discussion on the Landweber Iteration. Landweber it-
eration is an effective method to solve the highly ill-con-
ditioned problem such as image reconstruction [70-72]. It
has been proved with strong convergence and the precision
becomes higher with the increase of iteration steps [73]. The
image reconstruction can be generally described as (1), by
substituting the degradation & with different operations.
There are numerous optimization methods to utilize the
Landweber iteration method for image restoration [71, 74].
However, they highly rely on the explicit representation of
the degradation &, which is challenging for the image super-
resolution task. As such, we propose a Landweber iteration-
inspired network to adaptively learn the degradation rep-
resentation and the solution from LR-HR pairs.
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TaBLE 4: Average PSNR/SSIM with degradation model BI X2, x3, and x4 on five benchmarks. The best performances are shown in bold. The

dash line means the paper does not report their performance.

Scale Model Set5 [50] Set14 [51] B100 [52] Urban100 [53] Mangal09 [54]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
SRCNN [13] 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661
FSRCNN [29] 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694
VDSR [14] 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729
DRCN [58] 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723
LapSRN [59] 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
SelNet [60] 37.89/0.9598 33.61/0.9160 32.08/0.8984 - -
RAN [61] 37.58/0.9592 33.10/0.9133 31.92/0.8963 - -
X2 DNCL [62] 37.65/0.9599 33.18/0.9141 31.97/0.8971 30.89/0.9158 -
FilterNet [63] 37.86/0.9610 33.34/0.9150 32.09/0.8990 31.24/0.9200 -
MREN [64] 37.98/0.9611 33.41/0.9159 32.14/0.8997 31.45/0.9221 38.29/0.9759
SeaNet-baseline [65] 37.99/0.9607 33.60/0.9174 32.18/0.8995 32.08/0.9276 38.48/0.9768
DEGREE [66] 37.58/0.9587 33.06/0.9123 31.80/0.8974 - -
FSN [67] 37.68/0.9065 33.51/0.9180 32.09/0.9015 31.68/0.9248 -
MFSR [68] 38.07/0.9608 33.69/0.9191 32.22/0.9002 32.35/0.9307 38.75/0.9768
LandNet (ours) 38.13/0.9609 33.89/0.9203 32.31/0.9013 32.74/0.9340 39.05/0.9778
SRCNN [13] 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107
FSRCNN [29] 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212
VDSR [14] 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310
DRCN [58] 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328
DRRN [58] 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390
SelNet [60] 34.27/0.9257 30.30/0.8399 28.97/0.8025 - -
RAN [61] 33.71/0.9223 29.84/0.8326 28.84/0.7981 - -
X3 DNCL [62] 33.95/0.9232 29.93/0.8340 28.91/0.7995 27.27/0.8326 -
FilterNet [63] 34.08/0.9250 30.03/0.8370 28.95/0.8030 27.55/0.8380 -
MREN [64] 34.21/0.9267 30.03/0.8363 28.99/0.8029 27.53/0.8389 32.82/0.9396
SeaNet-baseline [65] 34.36/0.9280 30.34/0.8428 29.09/0.8053 28.17/0.8527 33.40/0.9444
DEGREE [66] 33.76/0.9211 29.82/0.8326 28.74/0.7950 - -
DSRLN [69] 34.56/- 30.36/- 29.29/- 27.88/- -
MFSR [68] 34.49/0.9280 30.42/0.8442 29.16/0.8068 28.39/0.8577 33.72/0.9457
LandNet (ours) 34.60/0.9288 30.47/0.8453 29.20/0.8081 28.63/0.8626 33.91/0.9471
SRCNN [13] 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
FSRCNN [29] 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517
VDSR [14] 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
DRCN [58] 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816
LapSRN [59] 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
MemNet [56] 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
SelNet [60] 32.00/0.8931 28.49/0.7783 27.44/0.7325 - -
X4 RAN [61] 31.43/0.8847 28.09/0.7691 27.31/0.7260 - -
DNCL [62] 31.66/0.8871 28.23/0.7717 27.39/0.7282 25.36/0.7606 -
FilterNet [63] 31.74/0.8900 28.27/0.7730 27.39/0.7290 25.53/0.7680 -
MREN [64] 31.90/0.8916 28.31/0.7746 27.43/0.7309 25.46/0.7654 29.57/0.8962
SeaNet-baseline [65] 32.18/0.8948 28.61/0.7822 27.57/0.7359 26.05/0.7896 30.44/0.9088
DEGREE [66] 31.47/0.8837 28.10/0.7669 27.20/0.7216 - -
MFSR [68] 32.26/0.8961 28.65/0.7838 27.63/0.7381 26.25/0.7919 30.62/0.9103
LandNet (ours) 32.39/0.8975 28.74/0.7857 27.66/0.7395 26.46/0.7983 30.88/0.9134

The values with bold type are the best ones within the experiments, which can show the advantages of our method in this paper.

Figure 4 shows the effectiveness of Landweber iteration.
The images in the figure are results from different iterations.
We can find that with the increase of iterations, the image
becomes clearer and the quality is boosted. This is in ac-
cordance with the Landweber iteration that the result
converges with the increase of iteration time k.

Different from straightforward end-to-end CNN
methods for image reconstruction [13, 14, 29, 59], the
Landweber iteration can find a more precise solution with
the increase of iteration times. The optimization can
adaptively adjust the descent direction with the help of the

input. In this point of view, the Landweber iteration is more
robust for finding a feasible solution, which is more suitable
for solving the highly ill-conditioned image reconstruction
issue. For the nonconvex optimization issue, Landweber
iteration can find a good solution with higher PSNR/SSIM
performance, as shown in Table 4.

5.2. Optimization Details. The parameter optimization is
conducted by the Adam optimizer [48]. The Adam optimizer
calculates the momentum for updating the network
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img002 from Urban100

img059 from Urban100

LandNet
(26.03)

LR LapSRN [60]
(22.41) (24.68)

Cross-SRN [37]
(25.49)

~=

LandNet
(21.73)

LapSRN [60]
(19.93)

Cross-SRN [37]
(20.95)

FIGURE 5: Visual comparisons on Urban100 benchmark.

TaBLE 5: Two sample T-test comparisons among LR, VDSR, and
our methods.

Method LR VDSR LandNet
LR 0 -1 -1
VDSR 1 -1
LandNet 1 1 0

parameters. The learning rate is adaptively adjusted during
the optimization step. We calculate the gradient of pa-
rameters by the back-propagation algorithm and use mean
average error (MAE) to calculate the distance between the
predict result and the label. We train our network for 1000
epochs. The batch size is set as 16, and the patch size is set as
48 x 48 for LR input.

6. Conclusion

In this paper, we proposed an end-to-end network for single
image super-resolution. We investigated the image super-
resolution problem in the optimization perspective and
derived an iterative scheme to solve the problem based on
the Landweber iteration. According to the mathematical
analysis, we devised an convolutional neural network block
to simulate the iterative step and perform the optimization.
Based on the block, an end-to-end network is designed for
image restoration, which is termed as LandNet. Experi-
mental results show the proposed LandNet can achieve
competitive or better subjective and objective performances
than state-of-the-art methods with fewer parameters and
computational cost.
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