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In order to e�ectively solve the problem of relatively large errors in individual positioning strategies in indoor environments, this
paper applies the genetic optimization neural network algorithm to indoor location based on multi-source information fusion.
�e range of the geomagnetic �tness is constrained based on the results obtained by using the wireless WiFi positioning for
combination andmatching, which can reduce the value of the matching error e�ectively. Subsequently, the global optimal value of
the indoor network is calculated based on the genetic algorithm, which can optimize the initial value and threshold of the neural
network after genetic optimization so as to improve the accuracy of the network to the greatest extent possible while accelerating
the convergence speed at the same time. After the optimization processing is completed, fusion training can be performed on the
coordinates of the actual positions based on the obtained combination positioning situation and the predicted positioning result in
the indoor network. Finally, the optimal positioning result can be obtained accordingly. �rough the analysis of practical cases, it
can be known that the mean square error predicted based on the genetic optimization neural network calculated by using the
genetic algorithm can be e�ectively reduced by 76%, and the accuracy of the fusion positioning can be increased by 48% on average
compared with the accuracy of a single positioning strategy. Hence, the method put forward in this paper has e�ectively improved
the positioning accuracy, which suggests that its positioning performance is superior.

1. Introduction

Due to the rapid advancement of wireless communication
technology and multi-source data, multi-source data have
been expensively applied in various �elds as an emerging
network technology. With regard to the �ow of indoor
multi-source data, in the high-performance scienti�c
computing of daily multi-source data, the monitoring of
real-time information of multi-source data has becomemore
and more important in the multi-source data high-perfor-
mance scienti�c computing industry [1–3]. �rough setting
up positioning and real-time monitoring on multi-source
data high-performance scienti�c computing in real time,
various data information in multi-source data high-per-
formance scienti�c computing can be perceived [4–6].

Multiple sensor terminals can be used to implement
monitoring and management. In this way, real-time mon-
itoring and management can be implemented based on
high-performance scienti�c computing. Due to the char-
acteristics of highmobility and extensive network scale at the
nodes corresponding to indoor �ow distributed, higher
reliability, stability, and security are required for real-time
positioning and monitoring systems. �e real-time posi-
tioning and monitoring system based on neural network
computation with genetic optimization can analyze the
multi-source data extracted and conduct high-performance
scienti�c studies on this basis as compared to conventional
methods. Hence, the equipment structure can be designed to
be simpler, the cost is lower, and the maintenance is con-
venient, which has gradually become the trend of the
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continuous development of intelligent indoor real-time
positioning and real-time monitoring systems.

In this paper, a multi-source data fusion indoor location
model that e�ectively combines radio frequency and wireless
WiFi technology is put forward based on the genetic opti-
mization neural network algorithm. In addition, this tech-
nology is used to improve the positioning accuracy of
unknown nodes by assigning di�erent weights to various
positioning nodes. Finally, the experimental results indicate
that the algorithm proposed in this paper can fuse multi-
source data and improve the performance of the positioning
system e�ectively.

2. Methods

2.1. Design and Construction of a Positioning Model. �e
indoor location model designed in this paper can be roughly
divided into data acquisition function module, data pro-
cessing module, and location accurate positioning module.
�e structure of indoor location model is shown in Figure 1.
�e data acquisition module is mainly used to fuse the data
collected by the system WiFi and use the multi-source data
processing and analysis module to analyze the processed RF
data. E�ectively combine multi-source data fusion and
neural network algorithm to complete the e�ective analysis
of di�erent types of data, collect di�erent types of data,
realize the high-performance scienti�c calculation of multi-
source data, and improve the accuracy of indoor location.

From Figure 2, it can be observed that the indoor lo-
cation based on high-performance scienti�c computing of
multi-source data system is mainly composed of nodes,
observation nodes, gateway, and host computer in the
hardware module. �e diagram of the corresponding system
architecture is shown in Figure 3. In the system designed in
this paper, the observation points can be roughly divided
into RF reading function and wireless WiFi function
module. �e RF reading module can realize the accurate
collection of RSSI data information. �e wireless WiFi
function module can process the obtained data information
and send the processed data information to the gateway
system as its own reference point. �e selection of reference
point is mainly based on theWiFi functionmodule.�rough
the comparison and analysis with the observation point,
from the perspective of organizational structure analysis, it
can be seen that it can be widely used in many �elds. �e

indoor location points can be integrated into RF tags, and
the genetic neural network can be optimized and used in
indoor location, which can e�ectively complete the accurate
positioning of indoor points. Figure 3 shows the structure
frame diagram of RF/wireless WiFi positioning system
designed in this paper [7–9].

�e accurate evaluation of indoor location shall be
carried out according to the following seven calculation
steps:

Step 1. According to the spatial structure layout of the
indoor environment, the processed data are stored through
the system coordinates corresponding to the observation
point and reference point, the MAC address of the com-
munication equipment, and the actual distance between
adjacent nodes, and the assigned weight can be obtained
from the perspective of node type wOP and the weights of
observation nodes wRP.

Step 2. In indoor location based on the acquisition of node
location, the related data on reference nodes are acquired
and transmitted to the communication device in the upper
layer, including the coordinates for three key nodes for
indoor location. For the purpose of making wireless WiFi
signals stronger and multi-source data computing more
accurate, reference nodes corresponding to RF signals are
adopted. �rough valid combination, the data acquired by
the system can be �ltered by the particle �lter algorithm.

Step 3. Based on the intensity of RF and wireless WiFi
signals corresponding to the above reference nodes for in-
door location, the practical distance between unknown and
known nodes is

RSSI (d) � A − 10nlgd, (1)

where A represents the intensity of signals at 1m and n
represents the loss coe�cient at the corresponding node.

Step 4. �e reference node is taken as the center of the circle,
and the corresponding recognition distance is taken as the
radius. �e reference node recognition is shown in Figure 4.
According to equation (2), the intersection point (xbc1, ybc1),
(xbc2, ybc2) between circle B and circle C, the intersection
point (xac1, yac1), (xac2, yac2) between circle A and circle C,

Indoor positioning model based on multi-source data fusion

Collection of multi-source data

Collection of RFID data Collection of ZigBee
data Particle filter algorithm Positioning algorithm

a�er optimization

Fusion of multi-source data Determination of the
location

Figure 1: Architecture of the indoor location model based on multi-source data fusion.
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and the intersection point (xab1, yab1), (xab2, yab2) between
circle A and circle B can be obtained through calculation.
�e distance Eq. (x − x1)

2 + (y − y1)
2 corresponding to the

intersection of B and C can be used to calculate the inter-
section D(x4, y4) of the two intersections that are closer to
A. �us, it can be known that the distance B between points
A and C is closer to the intersection E(x5, y5), and the
distance to C is closer to the intersection point F(x6, y6).

di �
�����������������
x − xi( )2 + y − yi( )2

√
, i � 1, 2, 3. (2)

Step 5. According to the connection of a triangular shape
composed of point D, point E, and point F designed in the
positioning algorithm, the obtained RSSI values corre-
sponding to node a, node B, and node C are divided into
node D, node E, and node F. �e detailed division of the
three nodes is shown in Table 1.

RSSImax(d) is de�ned by subtracting the RSSI of the node
with the highest signal intensity from that of nodes with
other signal intensity:

RSSImax(d)
∣∣∣∣

∣∣∣∣ − RSSIi(d)
∣∣∣∣

∣∣∣∣ � A − 10n lg di − A + 10nlgdmax, i � 1, 2, 3,

wi �
dmax

di
� 10

RSSImax(d)
∣∣∣∣

∣∣∣∣ − RSSIi(d)
∣∣∣∣

∣∣∣∣
10n , i � 1, 2, 3.

(3)

From the reference node, the coordinates (x, y) of un-
known nodes are inferred according to equation (5):

(x, y) �
w1 · x4 + w2 · x5 + w3 · x6

w1 + w2 + w3
,
w1 · y4 + w2 · y5 + w3 · y6

w1 + w2 + w3
( ).

(4)
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Figure 2: Hardware block diagram of the positioning model.
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Figure 3: Block diagram of radio frequency/wireless WiFi fusion
positioning system.
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Figure 4: Diagram of the positioning algorithm.
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(e above algorithm is used to estimate the coordinates
(xRP, yRP) of a specific node at a location.

Step 6. (e relevant data of the surrounding observation
nodes are collected at the location node again, and Step 3 to
Step 5 are repeated to calculate the coordinate estimation
value (xOP, yOP) of the location node.

Step 7. (e final coordinates of the unknown node are
calculated based on equation (6) as the following.

(x, y) �
xRP · wRP + xOP · wOP

wRP + wOP

,
yRP · wRP + yOP · wOP

wRP + wOP

􏼠 􏼡.

(5)

2.2. Principles of Indoor Location Technology. (e advan-
tages and disadvantages of the current single-source posi-
tioning technology are combined, as shown in Table 2. As
single-source positioning technology has a certain number
of restrictions, first of all, the wireless WiFi technology can
meet the communication capabilities required by the radio
frequency positioning technology. Secondly, radio frequency
positioning technology can also be embedded into wireless
WiFi positioning technology to improve andmake up for the
defect of low positioning accuracy.

(e principle of indoor location based on high-perfor-
mance scientific computing of multi-source data technology
is described in Figure 5, in which E and N stand for the east
and north of the position, respectively. It is assumed that the
initial position is (x0, y0), when the pedestrian takes a step,
the inertial sensor calculates the current heading θ and step
length d in real time, and then solves the next position
(x1, y1) according to the (1), and so on. Finally, the current
position (xi, yi) of the pedestrian can be obtained.

Xi

Yi

θi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Xi−1 + di cos θi

Yi−1 + di sin θi

θi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

In the above equation, θi represents the heading angle of
the ith step, Xi−1 and Yi−1 stand for the coordinates of the
i_1th step, and Xi and Yi stand for the coordinates of the ith
step.

As shown in equation (2), the most common model for
the estimation step has relatively high accuracy, which is also
conducive to the empirical relationship between the accel-
erometer mode value and the step length.

L � K
����������
Amax − Amin

4
􏽰

. (7)

In the above equation, K is used to represent the cali-
bration coefficient, Amax and Amin stand for the maximum
and minimum acceleration of any step, respectively, and
both values are obtained based on the gait discrimination
conditions.

2.2.1. Acquisition and Filtering. Based on the expression 1
and expression 3, the distance between different types of
ranging methods and fixed nodes can be calculated. How-
ever, when the data information is collected, different ex-
ternal interferences will be generated at the same time. (e
data obtained after multiple measurements are not corre-
lated. Hence, compared with the moving average algorithm,
the algorithm adopted in this paper can make up for the
defect of high storage space requirements based on the
moving average algorithm and optimize the distance mea-
surement value by combining the linear combination of
historical data. (e expression is shown as the following:

dn+1 �
1

k + 1
􏽘

n+1

i�n−k+1
di �

1
k + 1

dn+1 + kdn􏼐 􏼑,

�
1

k + 1
dn+1 +

k

k + 1
dn.

(8)

(e previous moment can be expressed as the following:

dk � (1 − β)dn + β · dn−1. (9)

If β� k/k+ 1 is met and 0≤ β< 1, the corresponding
exponential weighting factor β is used as the weight of the
latest data. It is assumed that the value of β gets larger, the
impact on the data will be smaller and vice versa. Based on
the above equation, dR and dT can be obtained as the
following.

􏽢dR(n) �

􏽢dR(n − 1) + vmaxT, dR(n) − 􏽢dR(n − 1)≥ vmaxT,

􏽢dR(n − 1) − vmaxT, dR(n) − 􏽢dR(n − 1)≤ − vmaxT,

dR(n), others,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

􏽢dT(n) �

􏽢dT(n − 1) + vmaxT, dT(n) − 􏽢dT(n − 1)≥ vmaxT,

􏽢dT(n − 1) − vmaxT, dT(n) − 􏽢dT(n − 1)≤ − vmaxT,

dT(n) others.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

2.2.2. Genetic Optimization. Based on the application of
wireless communication, the two wireless nodes can be set to
a visible environment [10–12]. In this case, a system state
model based on the kinematics principle is established in this
paper as the following:

_s(t) � v(t),

d(t) � s(t).
􏼨 (11)

(us, the above model can be discretized as the
following:

Table 1: RSSI allocation table corresponding to three nodes.

Node 1 Node 2 Intersection point Distribution point
A E A D
C F E A
D C C A
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s (n + 1) � s(n) + T · v(n) + T · ξ(n),
d(n) � s(n) + η(n).

{ (12)

In the above equation, the variables s(n) and v(n) stand
for the distance and radial velocity of n nodes received by
this node, respectively; T represents the sampling period.
However, based on the linear system with unknown noise
distribution, genetic optimization algorithm is the most
preferred method for state estimation. �rough equation
(12), the KF prediction equation can be obtained as the
following:

ŝ∗(n + 1) � ŝ(n) + T · v̂(n),
d̂
∗
(n + 1) � ŝ∗(n + 1),

σ ∗ 2s (n + 1) � σ2s(n) + T
2σ2ξ(n).




(13)

�e σ2s(n) and σ2ξ(n) in the above equation stand for the
nth ACK data that the node can receive, respectively, which
are mainly the degrees of changes in r̂(n) and ζ(n). At this
point, the updated equation can be obtained as the following:

K(n + 1) � σ ∗ 2s (n + 1) σ ∗ 2s (n + 1) + n2η(n + 1)[ ]
− 1
,

ŝ(n + 1) � ŝ∗(n + 1) +K(n + 1) d̂(n + 1) − d̂
∗
(n + 1)[ ],

σ2s(n + 1) � 1 − σ ∗ 2s (n + 1)[ ]K(n + 1).




(14)

In the above equation, K(n+ 1) represents the genetic
optimization gain and σ2η(n + 1) represents the amount of
changes in the noise ση(n + 1) when the node receives the
(n+ 1)th data packet. In practical applications, di�erent
distribution estimates can be made for η(n) based on the
di�erent environments where σ2η(n) is located.

2.3. WiFi/Geomagnetic Combination Positioning Method

2.3.1. Establishment of a Multi-Source Database

(1) WiFi Data. Based on the collection method, the location
determination scene is divided into n grids with a size of
0.6m ∗ 0.6m. For each grid, more than 110 sets of WiFi
intensity data are collected for multiple APs (wireless access
points) con�gured, and the mean values are calculated to
form a multi-source data sequence group accordingly.
Taking the instability of the WiFi signal into consideration,
the di�erence between the selected WiFi signal intensities of
themeasured point signal intensity should be below a certain
threshold value, as shown in equation (15).

Ri −Mi

∣∣∣∣
∣∣∣∣≤ Sth(i � 1, 2, . . . , n). (15)

In the above equation,Mi indicates that the WiFi signal
intensity can be optimized for i grid nodes; Ri indicates that
the WiFi signal intensity corresponding to the ith grid node
can be obtained based on the measured intensity data of 15
nonabnormal WiFi signals; Sth represents the intensity
threshold; and 5 dBm is taken as its value in this paper in
order to guarantee the accuracy of data collected.

Figure 6 shows a group of WiFi multi-source data, and
the mean value of the actual WiFi signal intensity is
−46.33 dBm. Under the constraint conditions, the data point
at the arrow is detected and deleted as a point far away from
the cluster, which can also e�ectively improve the accuracy
of WiFi multi-source data.

�e WiFi multi-source data on the ith grid node are
expressed in the equation as the following.

FWi � posi, RSSi{ }(i � 1, 2, . . . , n). (16)

In the above equation, posi represents the real coordi-
nates of the ith grid node and RSSi represents the WiFi
multi-source data sequence preprocessed by the ith grid
node.

(2) Geomagnetic Data. �e magnetic multi-source data are
collected by using a magnetometer. However, as the

Table 2: Comparison of the performance of indoor location technologies.

Positioning technology Accuracy Penetrability Anti-interference Cost
Ultrasound Very high Low Moderate Very high
Infrared Relatively high Very low Very low Relatively low
Radio frequency Very high Moderate Relatively low Relatively low
Wireless WiFi Relatively low Relatively high Moderate Moderate
Bluetooth Moderate Moderate Relatively low Moderate
WiFi Low Moderate Very high Low
Ultra-wideband Very high Very high Relatively high Relatively high

O

θ2

θi

E

N

(x0, y0)
(x1, y1)

(x2, y2)

(xi, yi)
di

d2

d1

Figure 5: Schematic diagram of the indoor location technology
based on high-performance scienti�c computing of multi-source
data.
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magnetometer will inevitably have errors due to the pro-
duction technology, it is necessary to carry out compen-
sation and correct the errors present.

From Figure 7, it can be observed that the center of the
sphere formed by the magnetometer data is not at the origin
of the coordinates. �e reason is due to the zero deviation
error of the magnetometer used, and the least square method
is used in this paper to correct the error of the magne-
tometer. �e three-dimensional distribution diagram of the
compensated magnetometer data is shown in Figure 8, in
which the center of the sphere is located at the origin of the
coordinates.

2.3.2. Multi-Source Data Matching Algorithm. �e multi-
source data matching algorithm can accurately measure two
multi-source data sequences with di�erent lengths and ef-
fectively maintain the primary characteristics of the multi-
source data sequence initially obtained, while ensuring a
higher accuracy of the results thus obtained at the same time.
Hence, multi-source data matching algorithm is used in this
paper to match the data array.

If the sequence of the initial multi-source data is X, Y,
and the length is |X| and |Y|, then the following can be
obtained after genetic optimization w � ω1,ω2, . . . ,ωk:

max (|X|, |Y|)≤ k≤ |X| +|Y|. (17)

In the above equation, k represents the �nal stretched
length of the two sequences.

For the purpose of implementing genetic optimization, it
is necessary to conduct at ω1 � (1, 1) and end at
ωk � (|X|, |Y|) to ensure that the coordinate points corre-
sponding to the X and Y sequences appear once each. �us,
the variables i and j in ωk � (i, j) after genetic optimization
can present a monotonic increase, and the corresponding
monotonic increase is shown as the following:

ωk �(i, j), ωk+1 � i′, j′( ), i≤ i′ ≤ i + 1, j≤ j′ ≤ j + 1.
(18)

Hence, the matrix D(i, j) for genetic optimization can be
obtained as the following:

D (i, j) � Dist(i, j) +min D(i − 1, j), D(i, j − 1), D(i − 1, j − 1){ }.

(19)

D(i, j) represents the similarity between the �rst i points
of theX sequence and the �rst j points of the Y sequence.�e
genetic optimization distance is D(|X|, |Y|). If the value of
D(|X|, |Y|) gets smaller, the sequence similarity of the
original multi-source data will be higher.

2.3.3. WiFi/Geomagnetic Combination Positioning Method.
Combined with the WiFi and magnetic positioning char-
acteristics, the geomagnetic positioning matching range is
e�ectively limited based on the WiFi positioning error, but
also signi�cantly reduces the error rate of magnetic �eld
matching [13–15]. Among them, Figure 9 shows the posi-
tioning process, using WiFi/geomagnetic coupling.

From Figure 9, it can be observed that the magnetic �eld
matching range is limited to the center of the WiFi posi-
tioning result (posWiFi), and the WiFi positioning error is
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within the radius (errWiFi) of the circular area S; that is, in
the case of actual computation, it is consistent with the
geomagnetic multi-source data within the circular area only,
whereas the other multi-source data in the multi-source
database are not included in the matching range. Finally, the
result of combination positioning can be obtained.

COMpos � DTW FMi ∈ S{ }(i � 1, 2, . . . , n). (20)

In the above equation, COMpos represents the result of
the combination positioning, and DTM FMi ∈ S{ } represents
the matching of nmagnetic �eld sequences FM in the area S
based on the DTW algorithm.

In summary, the �owchart of the WiFi/geomagnetic
combination positioning can be obtained, as shown in
Figure 10.

2.4. Fusion Positioning Method of the Genetic Optimization
Neural Network Algorithm. �e results of indoor location
based on high-performance scienti�c computing of the
source data and the results of WiFi/geomagnetic coupling
positioning are trained in the direction of the coordinates at
the actual location to obtain the optimal fusion positioning
results.

2.4.1. Design the Genetic Optimization Neural Network.
(1) Establishment of the Model for the Genetic Optimization
Neural Network.

Figure 11 shows the diagram of a typical three-layer
neural network after genetic optimization.

�e output is denoted as oi, and the input to the middle
layer by the jth node can be obtained:

netj �∑
j

wjioi,

oj � f netj( ),

netk �∑
j

wkjoj,

ŷk � ok � f netk( ).

(21)

Network error refers to the di�erence between the ex-
pected and actual outputs, i.e., ek � yk − ŷk.

E �
1
2
∑
i

n�1
yk − ŷk( )2. (22)

(2) Determine the Training Sample. With regard to the genetic
optimization neural network, its target input is a 4D matrix
including the results of indoor location based on high-per-
formance scienti�c computing of multi-source data and WiFi/
geomagnetic coupling. �e �nal training sample is shown in

InputData �

xpi

ypi

xci

yci




(i � 1, 2, . . . , n),

TargetData �
xri

yri
[ ].




(23)

In the above equation, InputData represents the input
sample, and (xpi, ypi) and (xci, yci) stand for the coordinates
of the ith point to be positioned by using the indoor location
based on the high-performance scienti�c computing of
multi-source data and the coordinates obtained by using
WiFi/geomagnetic combination positioning, respectively;
TargetData represents the target output sample, and
(xri, yri) represents the coordinates of the real position of
the ith point to be positioned.

(3) Determine the Neuron Parameters. �e number of
neurons is determined and expressed by using the empirical
equationas follows:

m �
����
n + l

√
+ a. (24)

a represents a constant between 1 and 10.

2.4.2. Design of the Genetic Optimization Neural Network
Algorithm. �e main steps are described as the following.

(1) Determination of the coding method and initial
population.

(2) Select the �tness function.
Based on the di�erence between the actual and ex-
pected network outputs, the adaptive function is
generally determined, and the function for the
matching degree is selected according to

E �∑
n

i�1
Ti − Yi( )2. (25)

(3) Select the selection operator.
�e ith individual will be retained as the following:

Psi �
fi

∑nj�1 fj
. (26)

S

Geomagnetic fingerprint area

R = err WiFi

POS WiFi

Figure 9: Schematic diagram of WiFi/geomagnetic combination
positioning.
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(4) Selection of crossover operator.

In this paper, the overall crossover scheme is selected, as
shown in

α �

fmax − fi
fmax − favg

, fi ≥favg,

0.35, fi <favg.




(27)

In the above equation, α represents the gene encoding
combination coe�cient.

�e process for the genetic optimization neural network
�nally obtained is shown in Figure 12.

3. Analysis of Experimental Results

3.1. Simulation Experiment of the Algorithm. In order to
verify that the neural network performance is optimized
after genetic algorithm optimization, this paper collects
fusion simulation analysis based on WiFi/geomagnetic
coupling positioning and indoor location X-axis coordinate
data based on multi-source data high-performance scienti�c

computing. �e training sample collection scene is a 250-m-
long straight-line area with a collection interval of 0.6m.
�ere are 900 samples in total, 700 samples are used for
training, and 200 samples are used for testing. �e input
layer in the genetic optimization neural network structure
has two nodes: the hidden layer has �ve nodes, and the
output layer has one node. �ere are 15 weights and 6
thresholds. Hence, the personal password length of the
genetic algorithm is 21.

3.1.1. Prediction Output and Error of the Genetic Optimi-
zation Neural Network without Optimization. �e predic-
tion output of the x-axis coordinates and the prediction
error obtained based on the BP network fusion algorithm are
shown in Figures 13 and 14, respectively.

3.1.2. Prediction Output and Error of the Genetic Optimi-
zation Neural Network after the Optimization of the Genetic
Algorithm. Figure 15 shows the change in the optimal in-
dividual �tness value in the genetic algorithm optimization
process.

Table 3 shows the optimal initial value and threshold
value of the genetic optimization neural network obtained
after the optimization of the genetic algorithm.

In the above table,W1 represents the weight between the
input layer and the hidden layer, B1 represents the threshold
value of the hidden layer node, W2 represents the weight
between the hidden layer and the output layer, and B2
represents the threshold value of the output layer node.

�e prediction output of the genetic optimization neural
network optimized by the genetic algorithm is shown in

WiFi fingerprint matching
at the server terminal

Return of the WiFi positioning
coordinates and accuracy

Constrain the range
of the geomagnetic

matching search

Return of the
positioning result to
the mobile terminal

Upload to the server

Geomagnetic fingerprint
matching at the server terminal

Collection of the WiFi fingerprint
for matching at the mobile terminal

Figure 10: Flowchart of the WiFi/geomagnetic combination
positioning.

i k

j

Figure 11: Architecture diagram of the genetic optimization neural
network.

Initialization

Generate the
initial population

Calculate the fitness

Does the fitness or
number of iterations

meet the requirements?

Input the learning sample

Initial weight and threshold value

Select

Cross

Calculate the fitness

Mutation

N

Y Does the fitness or
number of iterations meet

the requirements?

Assign initial values to the
output layer of the hidden layer

Solve the output of each unit in
the output layer of the hidden layer

Solve the overall error (E)
of the whole sample set

End

Calculate the generalized
error of each unit inversely

Adjust the weights and
thresholds between the layers

Y

N

Does E meet the requirements
or reache the maximum

number of times?

Figure 12: Flowchart of the genetic optimization neural network
algorithm.
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Figure 16, and the prediction error of the genetic optimi-
zation neural network optimized by the genetic algorithm is
shown in Figure 17.

It can be observed from Figures 16 and 17 that the
prediction result of the BP network is more accurate. �e
mean square error before the optimization is 0.447 meters,
whereas the mean square error after the optimization is
1.7615 meters, and the mean square error is reduced by
about 75%, which has veri�ed the feasibility of the fusion
algorithm.

3.2. Functional Experiment of Positioning. �e corridor in
the classroom building is selected as the experimental en-
vironment (14m ∗ 20m). �e experimental �eld is divided
into grids at a size of 1m ∗ 1m, and motion is carried out for

each detection (about 0.5m). As shown in Figure 18, po-
sitioning is triggered for each motion.

Six APs are set up in the environment. �e WiFi in-
tensity and magnetic �eld intensity are collected using
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Figure 13: Prediction output of the genetic optimization neural
network without optimization.
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Figure 14: Prediction error of the genetic optimization neural
network without optimization.
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Figure 15: Adaptation curve.

Table 3: Initial value and threshold of the genetic optimization
neural network after optimization.

Weight and
threshold values Parameter value

W1 −0.723 1.067 2.964 1.665 −2.767
2.357 0.268 1.183 −1.455 −0.078

B1 0.157 −2.878 −1.101 2.454 0.359
W2 2.255 1.557 1.700 2.667 2.937
B2 −1.334
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Figure 16: Predicted output of the genetic optimization neural
network after optimization of the genetic algorithm.
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mobile phones and self-developed APP in real time. �e
experimental path is A-B-C-D-A.

3.2.1. Acquisition of the Positioning Data. In order to im-
prove the real-time performance of positioning data ac-
quisition, by establishing WiFi based on socket
communication on the server side, the magnetic multi-
source database can be saved in the database server, and the
multi-source data positioning algorithm can also be used.
Download to the server. In addition, MATLAB simulation

software is used to simulate the indoor location construction
based on multi-source data high-performance scienti�c
computing. When the indoor location of high-performance
scienti�c computing based on multi-source data is started,
the system will send the collected data information, geo-
magnetic data, and sensor data to the server together. Fi-
nally, after the server receives the data information, it will
locate according to the genetic optimization algorithm and
feed the result back to the locator.

3.2.2. Analysis of the Positioning Accuracy. Figure 19 shows
the reproduction results of the motion trajectories obtained
based on di�erent positioningmethods. It can be known that
the results obtained based on WiFi and geomagnetic posi-
tioning are prone to deviating from the actual coordinates.
Although the coupled positioning has e�ectively improved
the defects of two single positioning to some extent, there is
still a range of error �uctuations. In the indoor location
based on high-performance scienti�c computing of multi-
source data in the 5 steps before departure, the positioning
result is close to the real coordinates. Due to the in�uence of
the cumulative error, the error of the coordinates when
returning to the origin is relatively huge, whereas the po-
sitioning accuracy of neural network fusion after genetic
improvement can be signi�cantly improved.

Based on the di�erent values of the positioning average
errors obtained in Table 4, the accuracy of e�ectively
obtaining combination positioning can be improved by
about 17% compared with the positioning accuracy of using
WiFi alone. Hence, the accuracy of the algorithm proposed
in this paper is about 47% higher than that of the high-
performance indoor location, with relatively good posi-
tioning performance.
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Figure 17: Prediction error of genetic optimization neural network
after optimization of the genetic algorithm.
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methods.

10 Mathematical Problems in Engineering



4. Conclusions

In view of the relatively huge error in the current indoor
location based on a single method before the application of
the genetic optimization neural network algorithm, the
wireless WiFi, geomagnetism, and multi-source data are
used in this paper to extract the coordinates based on indoor
location, which are characterized by the fact that this
function can be implemented with a mobile phone. In this
way, the calculation can be simplified so that the algorithm
can be implemented more effectively. (e problem of slow
convergence is solved effectively by using the genetic al-
gorithm, and the method of network prediction average is
adopted, which can reduce the workload by 76%. (e ac-
curacy of fusion positioning can be improved by 48%
compared with that of the positioning method. Based on the
method put forward in this paper, the sensors and WiFi
hotspots built in the mobile terminal can be used; that is, in a
continuous and stable indoor location situation, even if the
wireless WiFi signal disappears, the continued positioning
can still be carried out, which has demonstrated relatively
good scalability and fault tolerance of the method proposed
in this paper.
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algorithm scheme proposed in

this paper
Average error
(m) 0.544 0.644 1.2156 0.445 0.378
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