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In this paper, we investigate the direction of arrival (DOA) estimation problem with unfolded coprime linear array (UCLA) and
propose a low computational complexity signal-subspace �tting (SF) algorithm. SF algorithm is able to achieve excellent DOA
estimation performance while it requires global angular search (GAS). Especially in the several source signals situation, expensive
complexity cost causes. To decrease computational complexity, we propose an initialized based SF (ISF) algorithm, which involves
the several one dimensional (1D) partial angular search (PAS) instead of themultidimensional GAS. Consequently, the complexity
is signi�cantly decreased. Due to the full utilization of the array aperture, the proposed method in UCLA can attain better
performance than general CLA (GCLA). In addition, as the SF is attractive in practical application, the proposed ISF algorithm
lowers the computational cost, while achieving almost approximate estimation performance as traditional SF and noise subspace
�tting (NF). Moreover, numerical simulations are provided and verify the e�ectiveness and the superiority of the proposed
algorithm for the UCLA.

1. Introduction

Direction of arrival (DOA) estimation is one of the fun-
damental issues for the array signal processing scenery and
has been applied in engineering �elds, including sonar,
radar, navigation, and wireless communications [1–6]. In
the past decades, many subspace based algorithms have
been proposed [7–10], like multiple signals classi�cation
(MUSIC) based algorithms [7–10], and estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[11–13].  ese are subspace based algorithms.  e prop-
agator method (PM) [14, 15] can reduce the computational
complexity by employing a linear partition operation in-
stead of eigenvalue decomposition (EVD).  ese algo-
rithms were initially designed for uniform array [16–19].
Nevertheless, for the conventional uniform arrays, the
interelement spacing is required to be no larger than half-
wavelength. As a result, the phase ambiguity problem can
be avoided [20].

Over these years, coprime array [21] attracts much at-
tention. It can e�ectively increase the degrees of freedom
(DOFs) [22, 23], relieve the mutual coupling (MC) e�ects
[16, 24], and improve the angle estimation performance.
Because of these advantages, the coprime array is widely
used in wireless communication systems and radar location
[25, 26]. Speci�cally, a general coprime linear array (GCLA)
incorporates two sparse uniform linear subarrays with M
and N sensors, whereM and N are coprime integers. And,
the interelement spacing of these two subarrays are (Nλ/2)
and (Mλ/2), respectively. And, λmeans the wavelength. is
design concept breaks the conventional half-wavelength and
can achieve the higher angle resolution compared with the
classic uniform array in the same conditions.

In these years, various algorithms have been proposed
for DOA estimation with GCLA. Zhou proposed a total
spectral search (TSS) algorithm in [27]. By combining the
DOA estimates of two subarrays to attain the �nal DOA
estimates.  is algorithm results in signi�cantly

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 5429488, 12 pages
https://doi.org/10.1155/2022/5429488

mailto:2020101091@niit.edu.cn
https://orcid.org/0000-0001-7923-6814
https://orcid.org/0000-0002-2760-1944
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5429488


computational complexity because of the global angular
search (GAS). A partial spectral searching algorithm [28],
which investigates the linear relationship to obtain all es-
timates, was proposed. Moreover, it transforms the GAS into
partial sector one. +ese algorithms treat the array sepa-
rately, so they only employ the auto-information of two
subarrays. An efficient method which can resolve the am-
biguity in DOA estimation was proposed in [29]. +e
method offers good generalization and robustness in re-
solving the ambiguity problem. It achieves full degrees of
freedom (DOF) with reduced complexity. An ambiguity-free
algorithm via utilizing the total matrix information, such as
auto-covariance information and mutual covariance infor-
mation, was proposed in [30]. However, it involves high
computational complexity. Along with pursuing the high
resolution and DOA estimation performance, the compu-
tational complexity is also a challenging but promising task
[31, 32].

It is known that subspace fitting techniques [33, 34] are
popular in array signal processing [35, 36]. Compared with
maximum likelihood [37], signal subspace fitting (SF) and
noise subspace fitting (NF) [33] algorithms obtain the
similar angle estimation performance [37], while these al-
gorithms involve high computational complexity due to the
GAS, especially in themultiple signals situation. A successive
scheme of SF has proposed in [38], which incorporates the
coprime linear array and SF to decrease the complexity. To
further expand the array aperture, we link the SF into un-
folded coprime linear array (UCLA), which enlarges the
array aperture and we transform the multidimensional
searching into several one dimensional (1D) searching.
Moreover, we replace the GAS by partial angular search
(PAS). Specifically, by PM, we can attain the initial DOAs of
two subarrays. And, we recover all estimates and obtain the
unique initial DOA estimates according to coprime prop-
erty. +en, we employ the initial estimates to reconstruct the
steering matrix and transform the multidimensional search
into several 1D one. Consequently, computational com-
plexity cost can be significantly decreased. Meanwhile, via
the initial estimates, we replace the GAS by PAS. +e
proposed ISF can acquire better DOA estimation perfor-
mance with UCLA than that with GCLA due to the larger
array aperture. And, it acquires similar DOA estimation
performance compared with SF and NF, while ISF has the
lowest complexity. Moreover, Cramer–Rao Bound (CRB) is
presented as a theoretical lower bound [39]. Finally, the
effectiveness and superiority of the proposed ISF algorithm
for the UCLA is demonstrated by the numerical simulations.

Specifically, we summarize the main contributions of
this paper as follows:

(1) We integrate the UCLA with the subspace fitting
method which can obtain a larger array aperture
compared with GCLA. Simulations verify that the
proposed algorithm with UCLA can realize more
excellent estimation performance than GCLA.

(2) We propose an initialization based algorithm for
DOA estimation, which can effectively decrease the
complexity of the classic SF algorithm. By utilizing

PM to initialize and obtain coarse estimation, and
operating fine searching among a small sector, so we
can achieve lower complexity.

(3) We demonstrate that the proposed algorithm can
achieve the approximately the same DOA estimation
performance as the classical SF and NF algorithms.
And, the proposed algorithm outperforms the classic
PM algorithm in DOA estimation performance.

+e remaining parts of this paper are organized as
follows: in Section 2, we elaborate the UCLA geometry and
signal model. Subsequently, the proposed algorithm is in-
troduced in Section 3. Complexity analysis and advantages
are given in Section 4. Numerical simulations are provided
in Sections 5 and 6 conclude this paper.

Notations: we utilize lower-case (upper-case) bold
characters as vectors (matrices). And, we use (·)T and (·)H to
represent the transpose and the conjugate transpose, re-
spectively. ⊙ and ⊗ represent the Khatri–Rao product and
Kronecker product, respectively. diag(·) denotes a diagonal
matrix which employs the elements of the matrix to be its
diagonal elements. E(·) represents statistical expectation.
min(·) is getting the minimum element. Dm(·) is a diagonal
matrix that them-th row of the matrix is employed. angle(·)

and arctan(·) denote phase operator and the arctangent
function, respectively.

2. Signal Model

In this paper, we employ an unfolded coprime linear array
(UCLA) configuration which is able to further enlarge the
array aperture and promote DOA estimation performance.

An UCLA configuration incorporates two uniform
linear subarrays. One subarray has M sensors with
d1 � (Nλ/2), where λ represents the wavelength. +e other
subarray is with N sensors and the interelement spacing is
denoted as d2 � (Mλ/2). So the total number of the sensors
is denoted as TUCLA � M + N − 1. Figure 1 is an example of
UCLA configuration where M � 3 and N � 4.

Assume that there are K uncorrelated far-field narrow-
band signals sk(t) impinging on the UCLA from distinct
angles where t ∈ [1, L] and L represents the number of
snapshots. +e angles are denoted as Θ � [θ1, θ2, . . . , θK],
where θk ∈ [0, π/2], (k � 1, 2, . . . , K). Here, we assume the
number of sources K is known. +e received signal of the
array can be denoted as follows:

x(t) � As(t) + n(t) �
x1(t)

x2(t)
􏼢 􏼣

�
A1

A2
􏼢 􏼣s(t) +

n1(t)

n2(t)
􏼢 􏼣,

(1)

where A � [AT
1 , AT

2 ]T � [a(θ1), a(θ2), . . . , a(θK)] is the di-
rection matrix and the steering vector is defined by
a(θk) � [a1(θk)T, a2(θk)T]T, n(t) � [n1(t)T, n2(t)T]T is the
additive white Gaussian noise with zero mean and variance
σ2n. And, the noise signal is independent of the signal re-
sources. And s(t) � [s1(t), s2(t), . . . , sK(t)]T denotes the
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signal vector, where t � 1, 2, . . . , L, L means the number of
snapshots. A1 � [a1(θ1), a1(θ2), . . . , a1(θK)] represents the
directional matrix and the corresponding steering vector
is denoted as a1(θk) � [ej(M− 1)Nπsinθk , ej(M− 2)Nπsinθk ,

. . . , 1]T(k � 1, 2, . . . , K). And, the directional matrix of
subarray 2 is denoted as A2 � [a2(θ1), a2(θ2), . . . , a2(θK)]

and the corresponding steering vector is represented as
a2(θk) � [e− jMπsinθk , . . . , e− j(N− 1)Mπsinθk ]T.

Practically, the covariance matrix is approximately
computed with L snapshots [7].

􏽢R �
1
L

􏼒 􏼓 􏽘

L

t�1
x(t)xH

(t). (2)

+en, perform eigenvalue decomposition [7].

􏽢R � 􏽢Us
􏽢Ds

􏽢U
H

s + 􏽢Un
􏽢Dn

􏽢U
H

n , (3)

where 􏽢Ds and 􏽢Dn are the diagonal matrices composed of the
largest K eigenvalues of 􏽢R and the diagonal matrix con-
taining the remaining eigenvalues, respectively. And, 􏽢Us

denotes the signal subspace which consists of the eigen-
vectors corresponding to the largest K eigenvalues. 􏽢Un is the
noise subspace including the rest eigenvectors.

In the noise-free case, we can get the following equation:

space Us􏼈 􏼉 � space A{ }. (4)

It exists a full rank matrix Γ ∈ C(K×K) [7] to make (5)
hold.

􏽢Us � AΓ. (5)

3. Proposed Method for DOA Estimation

3.1. Initialization Processing. In this subsection, we first
utilize subarray 1 to introduce the proposed algorithm. And
we can operate the subarray 2 by the similar method.

By partitioning the directional matrix A1, we can get A11
and A12, which contain the first K rows and (M − K) rows,
respectively.

For the subarray 1, we first partition the steering matrix
A1 as follows:

A1 �
A11

A12
􏼢 􏼣, (6)

where A11 ∈ CK×K represents the matrix contains the first K

rows of A1 and A12 ∈ C(M− K)×K stands for the matrix with
the remaining (M − K) rows of A1, respectively.

Assume that A11 is a full rank matrix, then we can obtain
A12 by the following equation:

A12 � P1cA11, (7)

where P1c is the propagator method of the subarray 1. And
P1c ∈ C(M− K)×K [14].

+en, we define the following equation:

P1 �
I1K

P1c

􏼢 􏼣, (8)

where I1K is a unit matrix of I1K ∈ CK×K.
So we have the following equation:

P1A11 �
I1KA11

P1cA11
􏼢 􏼣 �

A11

A12
􏼢 􏼣 � A1. (9)

+en, we partition the matrix of P1 and can get P1a and
P1b

P1 �
P1a

Γξ
⎡⎣ ⎤⎦ �

Ξζ
P1b

􏼢 􏼣, (10)

Where P1a and P1b denote the first (M − 1) rows and last
(M − 1) rows of P1, respectively. And, Ξξ and Ξζ , respec-
tively, represent the last row and the first row of P1.

+en, we partition A1 by the following equation:

A1 �
A1a

Σξ
􏼢 􏼣 �

Σζ

A1b

􏼢 􏼣, (11)

where A1a and A1b denote the first (M − 1) rows and last
(M − 1) rows of A1, respectively. Σξ represents the last row
and Σζ is the first row of A1.

+en, we can get the following equation:

P1A11 �
P1a

Γξ
􏼢 􏼣A11 �

Ξζ
P1b

􏼢 􏼣A11,

A1 �
A11

A12
􏼢 􏼣 �

A1a

Σξ
􏼢 􏼣 �

Σζ

A1b

􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

According to (10), we have the following equation:

Subarray1
Subarray2

Nd

MdM-1
………

………
N-10

0

θ

-1

1 2

Figure 1: Structure of unfolded coprime linear array.
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P1aA11 � A1a

P1bA11 � A1b

􏼨 (13)

So it has the following equation:

P1a

P1b

􏼢 􏼣A11 �
A1a

A1b

􏼢 􏼣 �
A1a

A1aΦ1r

􏼢 􏼣. (14)

+en, we have the following equation:

P+
1aP1b � A11Φ1rA

− 1
11 , (15)

where P+
1a � (PH

1aP1a)− 1PH
1a gives the pseudoinverse of P1a

and Φ1r is a diagonal matrix which is denoted as follows:
Φ1r � diag(ejπNsinθ1 , ejπNsinθ2 , . . . , ejπNsinθK ) ∈ CK×K.

We define the following equation:

Ψ1r � P+
1aP1b. (16)

Because A11 is a full rank matrix, so Ψ1r is the similar
transformation of Φ1r.

As Φ1r is a diagonal matrix of eigenvalues, Ψ1r and Φ1r

possess the same eigenvalues. As a result, operate eigen-
values decomposition of Ψ1r, then we can obtain the di-
agonal elements δ1,k. And, we can get the initial DOA
estimates sin θ

→
1,k(k � 1, 2, . . . , K) of subarray 1, which is

denoted as follows:

sin θ
→

1,k � angle
δ1,k􏼐 􏼑

(Nπ)
, (17)

where angle(·) means angle function.
By the similar conduction, we process the subarray 2.
Separate the directional matrix A2 into two parts and we

can get A21 and A22, which contain the first K rows and
(N − K) rows, respectively.

+e steering matrix of A2 is separated as follows:

A2 �
A21

A22
􏼢 􏼣, (18)

where A21 ∈ CK×K represents the matrix contains the first K

rows of A2 and A22 ∈ C(N− K)×K represents the matrix with
the remaining (N − K) rows of A2, respectively.

Assume thatA21 is a full rank matrix, then we can obtain
A22 by the following equation:

A22 � P2cA21, (19)

where P2c is the propagator method of the subarray 1. And
P2c ∈ C(N− K)×K.

+en, we define the following equation:

P2 �
I2K

P2c

􏼢 􏼣, (20)

where I2K is a unit matrix of I2K ∈ CK×K.
Similar to equation 15 we have the following equation:

P2A21 �
I2KA21

P2cA21
􏼢 􏼣 �

A21

A22
􏼢 􏼣 � A2. (21)

+en, we partition thematrix of P2 and can get P2a and P2b

P2 �
P2a

Γ2ξ
􏼢 􏼣 �

Ξ2ζ
P2b

􏼢 􏼣, (22)

where P2a and P2b denote the first (N − 1) rows and last
(N − 1) rows of P2, respectively. And, Ξ2ξ and Ξ2ζ , re-
spectively, represent the last row and the first row of P2.

+en, we partition A2 by the following equation:

A2 �
A2a

Σ2ξ
􏼢 􏼣 �

Σ2ζ

A2b

􏼢 􏼣, (23)

where A2a and A2b denote the first (N − 1) rows and last
(N − 1) rows of A2, respectively. Σ2ξ represents the last row
and Σ2ζ is the first row of A2.

+en, we can get the following equation:

P2A21 �
P2a

Γξ
􏼢 􏼣A11 �

Ξζ
P2b

􏼢 􏼣A21,

A2 �
A21

A22
􏼢 􏼣 �

A2a

Σξ
􏼢 􏼣 �

Σζ

A2b

􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

According to (22), we have the following equation:

P1aA11 � A1a

P1bA11 � A1b

􏼨 (25)

+en, we can get the following equation:

P2a

P2b

􏼢 􏼣A21 �
A2a

A2b

􏼢 􏼣 �
A2a

A2aΦ2r

􏼢 􏼣. (26)

+en, we have the following equation:

P+
2aP2b � A21Φ2rA

− 1
21 , (27)

where P+
2a � (PH

2aP2a)− 1PH
2a gives the pseudo-inverse of P2a

and Φ2r is a diagonal matrix which is denoted as follows:
Φ2r � diag(ejπMsinθ1 , ejπMsinθ2 , . . . , ejπMsinθK ) ∈ CK×K.

We define the following equation:

Ψ2r � P+
2aP2b. (28)

Because A21 is a full rank matrix, so Ψ2r is the similar
transformation of Φ2r.

As Φ2r is a diagonal matrix of eigenvalues, Ψ2r and Φ2r

possess the same eigenvalues. As a result, operate ei-
genvalues decomposition of Ψ2r, then we can obtain the
diagonal elements δ2,k. And, we can get the initial DOA
estimates sin􏽢θ2,k of subarray 2, which is denoted as
follows:

sin􏽢θ2,k � angle δ2,k􏼐 􏼑/(Mπ), (29)

where k � 1, 2, . . . , K and angle(·) is the angle function.

3.2. Ambiguity Elimination Based on Coprime Property.
In this part, according to the obtained angles, we first recover
all the estimates. +en, we eliminate the ambiguity problem
based on the coprime property.
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It is known that there exists 2kπ(k ∈ Z) between the real
and ambiguous angles for the sinusoid function [28].

2πdi sin 􏽢θi

λ − 2πdi

􏼠 􏼡
sin􏽢θi,am

λ � 2Qiπ
􏼠 􏼡, (30)

where Qi ∈ Z, d1 � N d, d2 � M d, θi,am means the am-
biguous angle of the subarray i. It has the following equation:

sin θ
→

1,k

λ − sin 􏽢θ1,am

⎛⎝ ⎞⎠ �
2Q1

N
􏼒 􏼓,

sin θ
→

2,k

λ − sin 􏽢θ2,am

⎛⎝ ⎞⎠ �
2Q2

M
􏼒 􏼓.

(31)

According to the variation range of θ, it is indicated that
Q1 ∈ [− (N − 1), N − 1)] and Q2 ∈ [− (M − 1), (M − 1)],
where M and N are integers [27].

+en, we have the following equation:

2Q1

N
�
2Q2

M
. (32)

It is known that the interelement spacing of a uniform
linear array is no larger than half wave length to avoid the
phase ambiguity. As a result, no phase ambiguity problem
results in. But the coprime array, due to the element
spacing larger than half wavelength, arises phase
ambiguity.

To illustrate the phase ambiguity problem, we provide
the simulation about the coprime array. Figure 2 depicts the
DOA estimation with the three different element spacing,
where there is one signal θ � 25° arrives at the array. And it
can be noticed that there are ambiguous angles when d �

3λ/2 and d � 5λ/2.
Due to the coprime property of M and N, there only

exists Q1 � Q2 � 0 which makes the equation (32) satisfied.
Via equations (33) and (34), all the DOA estimates are

obtained.

􏽢θM,k � arcsin
sin θ

→
1,k − 2Q1􏼒 􏼓

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (33)

􏽢θN,k � arcsin
sin θ

→
2,k − 2Q2􏼒 􏼓

M

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (34)

where k � (1, 2, . . . , K), 􏽢θM � [􏽢θM,1,
􏽢θM,2, . . . , 􏽢θM,k] and

􏽢θN � [􏽢θN,1,
􏽢θN,2, . . . , 􏽢θN,k].

Practically, considering that noise exists, to attain the
overlapped angle estimation is always difficult. Conse-
quently, we replace searching the overlap by finding the
nearest angles from 􏽢θ

ξ
M and 􏽢θ

ζ
N , which contain all the es-

timates of two subarrays, respectively.

min
􏽢θ
ξ

M,􏽢θ
ζ

N

􏽢θ
ξ
M − 􏽢θ

ζ
N

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌(ξ � 1, 2, . . . , N, ζ � 1, 2, . . . , M). (35)

By equation (36), we can get the initial DOA estimates.

􏽢θ
ini

k �
􏽢θ
ξ
M + 􏽢θ

ζ
N

2
(k � 1, 2, . . . , K). (36)

3.3. InitializationBasedAlgorithm. Via equation (37), we get
the covariance matrix [7].

R � ARsA
H

+ σ2nI(M+N)×(M+N), (37)

where Rs is the covariance matrix of the signals and
σ2nI(M+N)×(M+N) denotes the power of noise.

From equations (3) and (37), it has the following
equation:

ARsA
H

+ σ2nI(M+N)×(M+N) � UsDsU
H
s + σ2nUnU

H
n . (38)

Due to the orthogonality of the signal and noise sub-
space, it exists I � UsUH

s + UnUH
n . So equation (38) can be

rewritten as follows:

ARsA
H

+ σ2nI(M+N)×(M+N)

� UsDsU
H
s + σ2n I(M+N)×(M+N) − UsU

H
s􏼐 􏼑.

(39)

+en, we can get the following equation:

ARsA
H

+ σ2nUsU
H
s � UsDsU

H
s . (40)

As Us � AΓ and UH
s Us � I(M+N)×(M+N), we have the

following equation:

Γ � RsA
HUs Ds − σ2nI(M+N)×(M+N)􏼐 􏼑

− 1
. (41)

However, the noise exists. To solve this problem,
establish a fitting relationship to compute the matrix Γ.

θ, 􏽢Γ � min 􏽢Us − 􏽢A􏽢Γ
����

����
2
F, (42)

which can make the equation (5) hold.
By utilizing the least square (LS) criterion, we can get the

following equation:

􏽢Γ � 􏽢AH 􏽢A􏼒 􏼓
− 1

􏽢AH 􏽢Us � 􏽢A+ 􏽢Us. (43)

Incorporate (36) and (37), then we have the following
equation:

θ � min 􏽢Us − 􏽢A􏽢A
+ 􏽢Us

�����

�����
2

F

� min tr I − 􏽢A 􏽢A
H 􏽢A􏼒 􏼓

− 1
􏽢A

H
􏼨 􏼩 􏽢Us

􏽢U
H

s􏼨 􏼩

� max tr 􏽢A 􏽢A
H 􏽢A􏼒 􏼓

− 1
􏽢A

H 􏽢Us
􏽢U

H

s􏼨 􏼩.

(44)

When there are numerical signals, the problem of
equation (44) is becoming a multidimensional SF problem.
Consequently, it will have a higher computational cost. In
view of this, we utilize the initialization based method to
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reconstruct the steering matrix and search within a small
sector. In this way, complexity gets significantly decreased.

According to the obtained initial DOA estimates
􏽢θ
in

� [􏽢θ
in

1 , 􏽢θ
in

2 , . . . , 􏽢θ
in

K], the new manifold matrix 􏽢A
(1) is

obtained.

􏽢A
(1)

� a(θ), a 􏽢θ
in

2􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (45)

+en, the angle θ1 can be computed by the following
equation:

􏽢θ1 � argmin
θ∈ 􏽢θ

in

1 − Δθ,􏽢θ
in

1 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(1) 􏽢A

(1) 􏽢Us

������

������

2

F
.

(46)

It can be noted the searching region is θ ∈ [􏽢θ
in

1 − Δθ, 􏽢θ
in

1 +

Δθ] , where Δθ is a tiny value. In this way, we can get the
more accurate DOA estimate of θ1.

From equation (46), we can obtained 􏽢θ1. +en, we keep
[􏽢θ1, 􏽢θ

in

3 , . . . , 􏽢θ
in

K] unchanged and elaborate a new directional
matrix 􏽢A

(2).

􏽢A
(2)

� a 􏽢θ1􏼐 􏼑, a(θ), a 􏽢θ
in

3􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (47)

Here, θ is the angle that we will estimate in the following
step.

By equation (48), we can obtain the estimate of θ2 by PAS
within θ ∈ [􏽢θ

in

2 − Δθ, 􏽢θ
in

2 + Δθ].

􏽢θ2 � argmin
θ∈ 􏽢θ

in

2 − Δθ,􏽢θ
in

2 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(2) 􏽢A

(2)
+ 􏽢Us

������

������

2

F
.

(48)

Similarly, keep [􏽢θ1, 􏽢θ2, 􏽢θ
in

4 , . . . , 􏽢θ
in

K] unchanged. And we
employ 􏽢θ2 to establish 􏽢A

(3),

􏽢A
(3)

� a 􏽢θ1􏼐 􏼑, a 􏽢θ2􏼐 􏼑, a(θ), a 􏽢θ
in

4􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (49)

It is noted that 􏽢θ1 and 􏽢θ2 is estimated via equations (46)
and (48), and θ is the goal that we are to estimate in the next
step.

Via equation (50), we can get the more accurate DOA
estimate of θ3 within a small searching region
θ ∈ [􏽢θ

in

3 − Δθ, 􏽢θ
in

3 + Δθ].

􏽢θ3 � argmin
θ∈ 􏽢θ

in

3 − Δθ,􏽢θ
in

3 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(3) 􏽢A

(3) 􏽢Us

������

������

2

F
.

(50)

By the similar method, we reconstruct the new direc-
tional matrix 􏽢A

(K) via using [􏽢θ1,􏽢θ2, . . . , 􏽢θK− 1].

􏽢A
(K)

� a 􏽢θ1􏼐 􏼑, a 􏽢θ2􏼐 􏼑, . . . , a 􏽢θK− 1􏼐 􏼑, a(θ)􏽨 􏽩. (51)

+en. we can attain the estimate of θK by the following
equation:

􏽢θK � argmin
θ∈ 􏽢θ

ini

K − Δθ,􏽢θ
ini

K +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(K) 􏽢A

(K)
+ 􏽢Us

������

������

2

F
.

(52)

Here, the angle searches within a small region
θ ∈ [􏽢θ

ini
K − Δθ, 􏽢θ

ini
K + Δθ].

Due to transforming the multi-dimensional GAS of SF
into initialization based 1D PAS, the computational com-
plexity is significantly reduced.
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Figure 2: DOA estimation with the varying element spacing.
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3.4. Detailed Steps. +e detailed steps of the proposed
method are (Algorithm 1) as follows:

4. Discussions

4.1. Complexity. In this part, we give the computational
complexity comparison results of the proposed ISF algorithm,
SF [2], NF [2], and TSS [27]. For ISF, it has
the complexity of (M2 + N2)L + M3 + N3 + 2[(M − 1)2+

(N − 1)2]K + (M − 1)3 + (N − 1)3 + [(M − 1) + (N − 1)]K2]+

Π1[4K(M2 + N2) + (M3 + N3)] where Π1 � K · 2Δ/ds means
the search times and ds � 0.001 is the search step, Δ denotes a
tiny search value. Moreover, we provide the computational
complexity comparison of the different algorithms in Table 1,
including SF, NF, and TSS. +e comparison of the compu-
tational complexity versus number of snapshots and sensors
are illustrated in Figures 3 and 4, where M � 3,N � 4,K �

3,ds � 0.001 and N � [4,5,7,8], respectively. As the proposed
method transforms theGAS into PAS and searches over a small
sector, it shows clearly that its complexity is much lower than
SF, NF, and TSS. Figure 5 depicts the complexity comparison
versus the search step. It is seen that ISF can significantly relieve
the computational complexity burden.

4.2. Cramer-Rao Bound. Here, we derive the CRB [37] of the
UCLA.

Elaborate the manifold matrix of the UCLA as follows:

At �
A1

A2p

􏼢 􏼣, (53)

where A2p denotes the rows from the second one to the last
one of the A2.

CRB �
σ2n
2L

Re DH I − At AH
t At􏼐 􏼑

− 1
AH

t􏼔 􏼕D⊕Rs􏼔 􏼕􏼚 􏼛
− 1

, (54)

where Rs � (1/L)􏽐
L
t�1 s(t)sH(t),D� [(zat,1/zθ1),(zat,2/zθ2),

. . . ,(zat,K/zθK)], ⊕means the Hadamard operation. And at,k

is the Kth column of At.

4.3.Advantages. We give the advantages of the proposed ISF
algorithm in the following:

(1) We incorporate the signal subspace fitting method
into UCLA, which can achieve the more superior
performance than GCLA due to the larger array
aperture. It is seen in Figure 5.

(2) When there are multiple signals, the proposed ISF
transforms the conventional multi-dimensional
search into several 1D search, which can remarkably
decrease the computational complexity. It is seen in
Figure 2.

(3) By employing the obtained initial DOA estimates,
the GAS is transformed into PAS. In this way, the

Step 1: compute the covariance matrix 􏽢R according to equation (2)
Step 2: operate the EVD of 􏽢R and get the signal subspace by equation (3)
Step 3: via propagator method, obtain the initial angle estimation and recover all the DOA estimates by equations (33) and (34)
Step 4: ambiguity problem is solved via the coprime property and initial estimates 􏽢θ

in

k , k � 1, 2, . . . , K are achieved
Step 5: compute fine DOA estimates according to equation (52)

ALGORITHM 1: +e details of the proposed ISF algorithm.
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TSS
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Figure 3: Complexity versus the number of snapshots.

Table 1: Comparison of the computational complexity.

Algorithms Computational complexity

ISF O
(M

2
+ N

2
)L + M

3
+ N

3
+ 2[(M − 1)

2
+ (N − 1)

2
]K + (M − 1)

3
+

(N − 1)
3

+ [(M − 1) + (N − 1)]K
2

+ G1[4K(M
2

+ N
2
) + (M

3
+ N

3
)]

􏼠 􏼡

SF O((M2 + N2)L + M3 + N3 + G2[4K(M2 + N2) + (M3 + N3)])

NF O(M2 + N2)L + M3 + N3 + G2[M(M − K)K + N(N − K)K])

TSS O((M2 + N2)L + M3 + N3 + G3[M(M − K) + N(N − K)])
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complexity has an effective reduction, which can be
seen in Section 4.

(4) +e proposed ISF is able to attain similar DOA
estimation performance as traditional SF and NF
algorithms and outperform ESPRIT and PM, which
is seen in Section 5.

5. Simulations

In the simulation section, the root mean square error
(RMSE) is used as the performance comparison metric,
which is defined as follows:

RMSE �

���

􏽘

􏽱 Q

p�1
􏽘

K

k�1

􏽢θk,p − θk􏼐 􏼑
2

PK
, (55)

where P is the number of Monte Carlo simulations,
􏽢θk,p stands for the estimate of the p-th trial for the
k-th theoretical angle θk. And, in this paper, we set
P � 1000.

5.1. Scattering Figure of the Proposed ISF with UCLA. +e
scattering figure of the proposed ISF algorithm with
UCLA for three distant sources θ � [10∘, 30∘, 50∘] is pre-
sented in Figure 6, where M � 3, N � 4, L � 200,
SNR � 5 dB. And, we define the search step and the tiny
searching restrain as ds � 0.001 and Δ � 0.5. It is shown
clearly that the proposed ISF algorithm detects the source
signals successfully.

5.2. Comparison of Different Arrays with the Same Algorithm.
+e RMSE comparison versus SNR and snapshots with
different configurations, including UCLA and GCLA, for
two sources (θ1, θ2) � [25∘, 45∘] is given in Figures 7 and 8

by the same algorithm. It is defined that L � 200 and
SNR� 5 dB, respectively. From these two figures, we can
notice that the UCLA is able to obtain the lower CRB and
better DOA estimation performance than the GCLA.
Moreover, the proposed ISF algorithm can attain the better
DOA estimation performance with the UCLA than that with
the GCLA because of the extension of the array aperture.
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5.3. Comparison of Different Algorithms with the UCLA.
In this subsection, the RMSE comparison of the proposed
ISF algorithm, SF [33], NF [33], TSS [27], S-SF [38], ESPRIT
[11], and PM [14] versus SNR and the number of snapshots
is given in Figures 9 and 10, where M � 3, N � 4 and
(θ1, θ2) � [25∘, 45∘] It is defined that L � 200 and
SNR� 5 dB, respectively. From these two figures, we can
notice that ISF can achieve nearly similar estimation per-
formance as SF, NF, and TSS but with the lower complexity
due to the initialization operation to decrease the complexity
which is verified in Figure 2. What’s more, ISF performs the
better DOA estimation than ESPRIT and PM.

5.4. RMSEwith Different Snapshots and SNR. Figures 11 and
12 compare the estimation performance with a different
number of snapshots and SNR, respectively. It shows clearly
that the performance of angle estimation becomes better
with the number of snapshots and SNR increasing.
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5.5. Estimation Probability Comparison of Different
Algorithms. Figures 13 and 14 depict the estimation
probability versus the number of SNR and snapshots of the
proposed ISF algorithm, SF [33], NF [33], TSS [27], S-SF
[37], ESPRIT [11], and PM [14]. Suppose two closely located
targets impinging on the arrays, where
SNR � 5dB, K � 2, (θ1, θ2) � (20°, 21°). +e two sources
can be resolved if |θ − 􏽢θ|< |θ1 − θ2|/2 where θ � (θ1, θ2), 􏽢θ �

(􏽢θ1, 􏽢θ2) [40]. We can clearly see that the proposed ISF al-
gorithm performs the almost the same estimation proba-
bility than SF, NF, and TSS. It can be also inferred that ISF
outperforms the ESPRIT and PM algorithms.

6. Conclusions

In this paper, we propose an ISF algorithm for DOA esti-
mation with UCLA and verify that UCLA behaves the better
DOA estimation performance than GCLA due to the larger
array aperture. In the multiple signals scenery, the classic SF
needs severe computational complexity cost due to the
multidimensional GAS. To solve this problem, we transform
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the multi-dimensional search into several 1D one. In ad-
dition, GAS is changed to be PAS. Specifically, the propa-
gator method is employed to obtain the initial DOA
estimation. By initialization, we can transform the multi-
dimensional GAS into several 1D partial one. As a result, the
complexity is significantly reduced. CRB is presented and
the simulations verify the effectiveness of the proposed
algorithm.
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