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�is paper addresses the communication congestion and actuator fault in a nonlinear networked control system. A weighted
average event-triggered mechanism adopted the weighted average of data packets is proposed to alleviate the communication
congestion and save the network communication resources. Meanwhile, based on the system state estimation and fault estimation
obtained by a state-fault observer, a fault-tolerant controller is designed to compensate and reduce the in�uence of fault and
nonlinear factors in the networked control systems.�e stability of the closed-loop system is proved by the Lyapunov–Kroasovskii
theory, and the gains of the observer and controller are obtained by linear matrix inequalities. �e feasibility of the proposed
scheme is veri�ed by the networked motor control system. �e proposed weighted average event-triggered fault-tolerant control
scheme can reduce the data transmission without a�ecting system performance. Meanwhile, it not only has fault-tolerant control
performance but also reduces the in�uence of nonlinear factors on the system output.

1. Introduction

In recent decades, networked control systems (NCSs) have
gradually attracted considerable attentions. Compared with
conventional control systems with point-to-point wired
communication, NCSs have more advantages. For example,
the introduction of the network can reduce the complexity
and cost of the control systems and improve the reliability
and scalability of the control systems. �erefore, NCSs have
been widely applied in the industrial process, automatic
control, robotics, aircraft, and unmanned technology [1–3].
Nevertheless, some unfavorable factors also unavoidably
appear in NCSs, such as communication congestion, actu-
ator fault, nonlinear factors, network-induced delay, and so
on, which inevitably a�ects the control performance [4–6].

Due to limited communication bandwidth and imperfect
communication link, the communication congestion may
appear in NCSs [7–9]. In order to alleviate the communi-
cation congestion and save the network communication
resources, the event-triggered mechanism is usually adopted
in NCSs [10–13]. Di�erent from the conventional time-
triggered sampling, the event-triggered mechanism is based

on data sampling. �erefore, an event-triggered mechanism
can improve the e�ciency of data transmission in the
communication and calculation of NCSs. In [14], an
adaptive event-triggered scheme was designed to alleviate
the communication congestion. In [15], a self-triggered and
event-triggered mixed sampling scheme was proposed to
reduce the numbers of transmitted data packets in wireless
NCSs. In order to get better quality of service for network
communication, a hybrid method of random switching
based on time-triggered and event-triggered was introduced
in [16]. Nevertheless, the possible actuator fault in NCS is
ignored in [14–16].

Besides communication congestion, actuator fault is
inevitable in practical NCSs which decreases the system
performance. �erefore, the fault-tolerant control (FTC) of
NCSs as well as event-triggered mechanism is widely
studied. In [17], an adaptive event-triggered mechanism was
proposed and a fault-tolerant controller based on the trig-
gered output data was designed. In [18], a slidingmode fault-
tolerant controller for NCSs was proposed under a dynamic
event-triggered mechanism to ensure that the trajectories of
the system can reach the sliding surface. In [19], an
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impulsive FTC was designed based on the estimated fault
and an integral-based event-triggered mechanism was
designed to alleviate communication congestion. In [20], a
fault-tolerant controller based on an adaptive memory-
based event-triggered mechanism was proposed to com-
pensate for the influence of fault according to the fault
estimation. In [21], based on the system state and fault
estimation, a fault-tolerant controller was designed to
compensate for the fault and the event-triggered mechanism
was adopted to save communication resources. However,
the NCSs considered in [17–21] are linear and the influence
of nonlinear factors is ignored.

Along with communication congestion and possible
actuator fault, the modeling of NCSs is often accompanied
with some complex nonlinear factors in practice [22–24],
such as the nonlinear coupling relationship among different
nodes in complex dynamic networks [25] and the com-
munication topology structure of nonlinear multiagent
systems [26]. &erefore, the research of nonlinear NCSs has
further significance. In [27], a resilient event-triggered
mechanism was developed, and the sufficient conditions
were constructed to ensure that the switched control strategy
subjected to actuator fault and nonlinear factors was ex-
ponentially stable. In [28], a period event-triggered sampling
scheme was designed, and an FTC was proposed for non-
linear NCSs to guarantee its stability under the actuator
fault. In [29], an adaptive event-triggered communication
scheme was adopted to save the network communication
resources by adjusting event-triggered threshold, and a state
feedback controller was designed for nonlinear NCSs under
fault. In [30], an event-based adaptive FTC using a fuzzy
approximation mechanism was proposed for the nonlinear
system, which could also be applied to NCSs. In [31], an
adaptive event-triggered mechanism with an adjustable
triggering threshold was proposed, and an FTC with sto-
chastic event-driven actuator scheduling was investigated
for nonlinear NCSs. However, some unexpected triggered
events can be further avoided in [27–31].

Inspired by the discussions above, in this paper, a
weighted average event-triggered fault-tolerant control
scheme is proposed for nonlinear NCSs subjected to com-
munication congestion and actuator fault. &e main con-
tributions of this paper are as follows:

(1) Different from the conventional event-triggered
mechanism, the weighted average event-triggered
mechanism (WAETM) considers the weighted av-
erage of data packets, which can further alleviate the
communication congestion and save the network
communication resources.

(2) Based on the WAETM a state-fault observer is
designed to obtain the system state estimation and fault
estimation, which can guarantee the asymptotically
stability of the observation error dynamic system.

(3) With the system state estimation and fault estima-
tion, a fault-tolerant controller is designed, which
can compensate for the influence of fault and reduce
the influence of nonlinear factors in NCSs.

&e remainder of this paper is structured as follows. &e
model of nonlinear NCSs is presented in Section 2. &e
design of the WAETM, state-fault observer, and fault-tol-
erant controller are presented, and the stability of the closed-
loop system is proved in Section 3. &e feasibility of the
weighted average event-triggered FTC scheme for nonlinear
NCSs is demonstrated by the networked motor control
system in Section 4.

Notations: the following notations are adopted in this
paper. I denotes the identity matrix with an appropriate
dimension. For matrix B, its inverse and transpose matrices
are denoted by B† and BT, respectively. 0 denotes zero
matrix. Rn denotes the n-dimension Euclidean space and
Rn×n denotes the n × n matrix. ∗{ } denotes the symmetric
term in a symmetric block matrix.

2. Problem Statement

&e model of nonlinear NCSs with actuator fault is as
follows:

_x(t) � Ax(t) + Bu(t) + Bff(t) + Fρ(x(t), t),

y(t) � Cx(t),
􏼨 (1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the
system control input, and y(t) ∈ Rr is the system measured
output, f(t) ∈ Rm is the actuator fault, ρ(x(t), t) �

[ρ1(x1(t), t), . . . , ρn(xn(t), t)]T is the nonlinear function,
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, Bf ∈ Rn×m, F ∈ Rn×n are the
system parameter matrices with appropriate dimensions.

Assumption 1 (See [32, 33]). It is assumed that the nonlinear
function ρ(x(t), t) is continuous and bounded, and satisfies
Lipschitz conditions. &erefore, the following condition is
satisfied

ρ x1(t), t( 􏼁 − ρ x2(t), t( 􏼁
����

����≤ δ x1(t) − x2(t)
����

����, (2)

where δ is the Lipschitz constant.

Assumption 2. Assume that the derivative of the fault is
norm-bounded, i.e. ‖ _f(t)‖≤fΔ, where fΔ is a constant.

3. Design of Weighted Average Event-Triggered
Fault-Tolerant Control

&e proposed weighted average event-triggered FTC scheme
is shown in Figure 1. In order to save the network com-
munication resources in nonlinear NCSs, a WAETM is
designed to reduce the measured output data from y(t) to
y(tkh). &e zero-order holder ZOH guarantees the conti-
nuity of the successfully triggered data packet 􏽥y(t) within
the holding time-interval. &e state-fault observer is
designed to obtain the real-time system state estimation 􏽢x(t)

and fault estimation 􏽢f(t). Finally, the fault-tolerant con-
troller u(t) is designed based on the system state estimation
and fault estimation to compensate and reduce the influence
caused by the fault and nonlinear factors.
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3.1. WAETM. Event-triggered mechanism is an effective
way to alleviate the communication congestion and save the
network communication resources. However, the conven-
tional event-triggered mechanism depends on the difference
between the values of the latest released data packet and the
current sampling data packet. &e conventional event-
triggered mechanism is [21].

tk+1h � tkh + min
l∈N+

lh|e
T
c (t)Ωe

T
c (t)􏽮

> σy
T

tkh + lh( 􏼁Ωy tkh + lh( 􏼁􏽯,

(3)

where tkh represents the release instant, tk is a positive
integer, and h is the sampling period. l denotes the interval
time between the latest triggered instant and the next
triggered instant, σ is a constant, Ω is the constant weighted
matrix, and ec(t) � y(tkh) − y(tkh + lh).

In order to further decrease the triggered data error and
save the network communication resources, the WAETM is
designed as follows:

Ψ � l|e
T
(t)Ωe(t) − σy

T
tkh( 􏼁Ωy tkh( 􏼁􏽮

+ϕσ y
T

tkh( 􏼁Ωe(t) + e
T
(t)Ωy

T
tkh( 􏼁􏽨 􏽩≤ 0􏽯,

(4)

where Ψ denotes a set of events satisfying the event
trigger condition, y(tkh) � [tkhy(tkh) + (tkh + lh)y (tkh +

lh)]/(2tkh + lh) denotes the weighted average value
between the latest released data packet and the current
sampling data packet, e(t) � y(tkh) − y(tkh) de-
notes the difference between the latest released data
packet and the weighted average data packet, and ϕ is a
constant.

Remark 1. Compared with the conventional event-triggered
mechanism (2), the proposed WAETM (3) can decrease
the triggered data error e(t), avoiding unexpected
triggered events. Meanwhile, the item ϕσ[yT(tkh)Ωe(t) +

eT(t)ΩyT(tkh)] in theWAETM (3) contains a triggered data

packet y(tkh). &erefore, the controller can obtain data
packets from the network even when the system is subjected
to others noises or disturbances. In fact, the WAETM in (3)
can be converted into the conventional event-triggered
mechanism in [21] when ϕ � 0.

&e release instant of WAETM is denoted as
tk+1h � tkh + (lM + 1)h, where lM � max l|l ∈ Ψ{ }. When
the data packets are successfully transmitted to the observer,
the system measured output can be written as follows:

􏽥y(t) � y tkh( 􏼁, t ∈ tkh + τk, tk+1h + τk+1􏼂 􏼁, (5)

where 􏽥y(t) denotes the data successfully transmitted at the
triggered instant and τk is the time delay.

Considering that the data packets transmitted by the
WAETM are subjected to time delay τk � jk − tkh, where jk

represents the instant when the data packets arrive at the
ZOH. &e ZOH deals with the data packets out-of-sequence
and guarantees the continuity of control input within the
holding time-interval. &e subintervals are defined as
follows:

I �

I1 � jk, jk + h􏼂 􏼁,

I2 � jk + h, jk + 2h􏼂 􏼁,

⋮

Ink
� jk + nk − 1( 􏼁h, jk+1􏼂 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where nk � min l|jk + (l − 1)h≥ jk+1􏼈 􏼉, and the time delay
function can be written as follows:

τ(t) �

t − tkh, t ∈ I1,

t − (tk+1)h, t ∈ I2,

⋮

t − tk + jk − 1( 􏼁􏼂 􏼃h, t ∈ Ink
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where 0≤ τ(t)≤ τM, _τ(t)≤ τΔ, τM is the maximum value of
the τ(t), and τΔ is a constant. &en the error function of
ZOH can be expressed as follows:

ey(t) �

y tkh( 􏼁 − y tkh( 􏼁, t ∈ I1,

y tkh( 􏼁 − y tk + 1( 􏼁h( 􏼁, t ∈ I2,

⋮

y tkh( 􏼁 − y tkh + nk − 1( 􏼁h)( 􏼁, t ∈ Ink
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

which implies that

􏽥y(t) � ey(t) + y(t − τ(t)), t ∈ jk, jk+1􏼂 􏼃. (9)

3.2. State-FaultObserver. According to the data packets 􏽥y(t)

successfully transmitted by the WAETM, the state-fault
observer is designed as follows:

Actuator

f (t)

y (t)

y (tkh)

y (t)u (t)

x (t) f (t)

Plant Sensor

WAETM

Network

Fault-tolerant
Controller Observer ZOH

ˆ ˆ

~

Figure 1: Weighted average event-triggered FTC scheme.
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_􏽢x(t) � A􏽢x(t) + Bu(t) + Bf
􏽢f(t) + Fρ(􏽢x(t), t) + L(􏽥y(t) − 􏽢y(t − τ(t))),

_􏽢f(t) � G􏽢f(t) + H(􏽥y(t) − 􏽢y(t − τ(t))),

􏽢y(t) � C􏽢x(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where 􏽢x(t) ∈ Rn, 􏽢y(t) ∈ Rr, 􏽢f(t) ∈ Rm, ρ(􏽢x(t), t) �

[ρ1(􏽢x1(t), t), . . . , ρn(􏽢xn(t), t)]T are the system state esti-
mation vector, system measured output estimation, fault
estimation signal, and nonlinear function estimation, re-
spectively. L and H are observer gain matrices to be designed
later.

&e estimation error of system state is defined as
ex(t) � x(t) − 􏽢x(t), the estimation error of fault is defined as
ef � f(t) − 􏽢f(t), and the estimation error of nonlinear
function is defined as g(ex(t)) � ρ(x(t)) − ρ(􏽢x(t)). &en,
the estimation error of system state and fault can be re-
spectively rewritten as follows:

_ex(t) � Aex(t) + Fg ex(x)( 􏼁 + Bfef(t) − Ley(t)

− LCex(t − τ(t)),

_ef(t) � (1 − G)f(t) + Gef(t) − Hey(t)

− HCex(t − τ(t)).

(11)

Define ξ(t) � [ex(t)ef(t)]T, then the observation error
dynamic system can be given as follows:

_ξ(t) � Aξ(t) + Bξ(t − τ(t)) + Ley(t) + Df(t) + Fg ex(t)( 􏼁, (12)

where A �
A Bf

0 G
􏼢 􏼣, B �

− LC 0
− HC 0􏼢 􏼣, L �

− L

− H
􏼢 􏼣,

D �
0

1 − G
􏼢 􏼣, F �

F

0􏼢 􏼣.

Up to now, we need some lemmas and definitions before
proceeding the stability of observation error dynamic.

Lemma 1 (See [34]). For any positive definite constant
matrix Y ∈ Rn×n, scalar α> 0, and vector function
_x: [− α, 0]⟶ Rn, the following integration is defined:

− α􏽚
t

t− α
_x
T
(θ)Y _x(θ)dθ ≤

x(t)

x(t − α)
􏼢 􏼣

T
− Y Y

∗ − Y
􏼢 􏼣

x(t)

x(t − α)
􏼢 􏼣.

(13)

Definition 1 (See [35]). System (12) satisfies the H∞ per-
formance under initial condition, and the following per-
formance index holds for all nonzero f(t) ∈ L2[0,∞).

􏽚
∞

0
ξT

(s)ξ(s)ds ≤ λ1 􏽚
∞

0
f

T
(s)f(s)ds , λ1 > 0. (14)

Theorem 1. For given positive scalars h, τM, ϕ, σ, λ1 and υ,
there exists symmetric positive definite matrices P> 0, R1 > 0,
R2 > 0, R3 > 0, G> 0, Q> 0, and appropriate matrices M and
Z such that the following condition holds.

Ξ �

Ξ11 Ξ12 Ξ13 Q M
T
F Z M

T
D

∗ Ξ22 M
T
B 0 M

T
F Z M

T
D

∗ ∗ Ξ33 0 0 Ξ36 0

∗ ∗ ∗ Ξ44 0 0 0

∗ ∗ ∗ ∗ − υI 0 0

∗ ∗ ∗ ∗ ∗ − Ω 0

∗ ∗ ∗ ∗ ∗ ∗ − λ1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (15)

where Ξ11 � R1 + R2 − π2/4G − Q + MTA, Ξ12 � 2P − MT+

A
T
MT,

Ξ13 �
π2

4
G +

π2

4
G

T
+ M

T
B,

Ξ22 � τ2MG + τ2MQ,

Ξ33 � σC
TΩC +(1 − τ)R2 − (1 − τ)R1 −

π2

4
G,

Ξ36 � ϕσ C
TΩ +ΩC􏼐 􏼑,

Ξ44 � − R2 − R3 − Q,

(16)

then the observation error dynamic system (12) with the
WAETM (4) is asymptotically stable. In addition, the
state-fault observer gain matrices can be obtained by
L � M− TZ.

Proof. Choose a Lyapunov–Krasovskii function as follows:

V1(t) � V11(t) + V12(t) + V13(t), (17)

where
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V11(t) � ξT
(t)Pξ(t) + 􏽚

t

t− τ(t)
ξT

(θ)R1ξ(θ)dθ + 􏽚
t− τ(t)

t− τM

ξT
(t)R2ξ(t) + 􏽚

t

t− τM

ξT
(θ)R3ξ(θ)dθ,

V12(t) � τ2M 􏽚
t

ikh

_ξ
T
(θ)G _ξ(θ)dθ −

π2

4
􏽚

t

ikh
ξ(θ) − ξ ikh( 􏼁􏼂 􏼃

T
G ξ(θ) − ξ ikh( 􏼁􏼂 􏼃dθ,

V13(t) � τM 􏽚
t

t− τM

􏽚
t

r

_ξ
T
(θ)Q _ξ(θ)dθdr.

(18)

&e derivative of (17) is obtained as follows:

_V11(t) � 2ξT
(t)P _ξ(t) + ξT

(t)R1ξ(t) − (1 − τ)ξT
(t − τ(t))R1ξ(t − τ(t)) +(1 − τ)ξT

(t − τ(t))

R2ξ(t − τ(t)) − ξT
t − τM( 􏼁R2ξ t − τM( 􏼁 + ξT

(t)R3ξ(t) − ξT
t − τM( 􏼁R3ξ t − τM( 􏼁,

_V12(t) � τ2M _ξ
T
(t)G _ξ(t) −

π2

4
[ξ(t) − ξ(t − τ(t))]

T
G[ξ(t) − ξ(t − τ(t))],

_V13(t) � τ2M _ξ
T
(t)Q _ξ(t) − τM 􏽚

t

t− τM

_ξ
T
(θ)Q _ξ(θ)dθ.

(19)

According to Lemma 1, we can obtain the following
equation:

− τM 􏽚
t

t− τM

_ξ
T
(θ)Q _ξ(θ)dθ ≤

ξ(t)

ξ t − τM( 􏼁
􏼢 􏼣

T
− Q Q

∗ − Q
􏼢 􏼣

ξ(t)

ξ t − τM( 􏼁
􏼢 􏼣. (20)

&erefore, from (19) we can get the following equation:

_V1(t)≤ 2ξT
(t)P _ξ(t) + ξT

(t) R1 + R3 −
π2

4
G − Q􏼢 􏼣ξ(t) − ξT

(t − τ(t)) (1 − τ)R2 − (1 − τ)R1 −
π2

4
G􏼢 􏼣

· ξ(t − τ(t)) + ξT
t − τM( 􏼁 − R2 − R3 − Q􏼂 􏼃ξ t − τM( 􏼁 + _ξ

T
(t)

· τ2MG + τ2MQ􏽨 􏽩 _ξ(t) + ξT
(t)

π2

4
G +

π2

4
G

T
􏼢 􏼣ξ(t − τ(t)) + ξT

(t)Qξ t − τM( 􏼁.

(21)

In addition, the WAETM (3) is equivalent to the fol-
lowing equation:

e
T
y (t)Ωey(t)≤ σy

T
(t − τ(t))Ωy(t − τ(t)) + ϕσ y

T
(t − τ(t))Ωey(t) + e

T
y(t)Ωy(t − τ(t))􏽨 􏽩

� σξT
(t − τ(t))C

TΩCξ(t − τ(t)) + ϕσ ξT
t − τ(t)C

TΩey(t) + e
T
y(t)ΩCξ(t − τ(t)􏼐 􏼑􏽨 􏽩.

(22)
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It is worth noting that for anymatrix M with appropriate
dimensions, we have the following equation:

ξT
(t)M

T
+ _ξ

T
(t)M

T
􏼔 􏼕 − _ξ(t) + Aξ(t) + Bξ(t − τ(t)) + Ley(t) + Df(t) + Fg ex(t)( 􏼁􏽨 􏽩 � 0. (23)

According to Assumption 1, the nonlinear function
ρ(x(t), t) satisfies the Lipschitz condition, and for any
positive number υ we have the following equation:

υξT
(t)δ2ξ(t) − υg

T
ex(t)( 􏼁g ex(t)( 􏼁≥ 0. (24)

Define a new function as follows:

J1(t) � _V1(t) + ξT
(t)ξ(t) − λ1f

T
(t)f(t). (25)

Integrating both sides of (25) under the zero initial
condition gives us the following equation:

􏽚
t

0
J1(s)ds � V1(t) + 􏽚

t

0
ξT

(s)ξ(s)ds − λ1 􏽚
t

0
f

T
(s)f(s)ds,

(26)

where V1(t)> 0. &en according to Definition 1, we can
obtain the following equation:

􏽚
t

0
ξT

(s)ξ(s)ds≤ λ1 􏽚
t

0
f

T
(s)f(s)ds. (27)

Define a variable as ϖ1(t) � [ξT
(t) _ξ

T
(t)ξT

(t − τ(t))

ξT
(t − τM)gT(e(x))eT

y(t)fT(t)]. &en according to (21) and
(25) and (27), we can get the following equation:

J1(t) � _V1(t) + ξT
(t)ξ(t) − λ1f

T
(t)f(t)

≤ϖT
1 (t)Ξϖ1(t).

(28)

According to (15) and (28), J1(t)< 0 when Ξ< 0. When
f(t) � 0, _V1(t)< 0. &erefore, the observation error dy-
namic system (12) is asymptotically stable withWAETM (3).
&e proof of &eorem 1 is completed. □

3.3. Fault-Tolerant Controller. With the system state esti-
mation, fault estimation, and nonlinear function estimation
obtained by the sate-fault observer, the fault-tolerant con-
troller can be designed as follows:

u(t) � K􏽢x(t) − B
†
Bf

􏽢f(t) − B
∗ρ(􏽢x(t)), (29)

where K is the controller gain. &e fault-tolerant controller
consists of three terms. &e first term K􏽢x(t) is a state
feedback control, the second term − B†Bf

􏽢f(t) is used to
compensate the influence of faults, and the third term
− B∗ρ(􏽢x(t)) is used to reduce the influence of nonlinear
factors.

Combining the fault-tolerant controller (28) and the
state-fault observer (10), we can obtain the following
equation:

_􏽢x(t) � A􏽢x(t) + BK􏽢x(t) − BB
+
Bf

􏽢f(t) − BB
∗ρ(􏽢x(t)) + Bf

􏽢f(t) + Fρ(􏽢x(t)) + L(􏽥y(t) − 􏽢y(t − τ(t)))

� (A + BK)􏽢x(t) + F − BB
∗

( 􏼁ρ(􏽢x(t)) + Ley(t) + LCex(t − τ(t)).
(30)

According to (10) and (30), the overall closed-loop
system can be written as follows:

_ε(t) � 􏽥Aε(t) + 􏽥Bε(t − τ(t)) + 􏽥Ley(t) + Bfef(t) + 􏽥Fφ(ε(t)),

(31)

where ε(t) � [􏽢xT(t)eT
x(t)]T, φ(ε(t)) � [ρT(􏽢x(t))g(eT

x(t))]T,
and

􏽥A �
A + BK 0

0 A
􏼢 􏼣,

􏽥B �
0 LC

0 − LC
􏼢 􏼣,

􏽥L �
L

− L
􏼢 􏼣,

􏽥F �
F − BB

∗ 0

F 0
􏼢 􏼣.

(32)

&ere needs a lemma before the subsequent discussion.

Lemma 2 (See [36]). For a fixed constant matrix Q with full
column rank, the unknownmatrix Y can be calculated by the
following equality for any real matrix X, Y and N with
appropriate dimensions:

Y � Q
T
XQ􏼐 􏼑

− 1
Q

T
QN, (33)

when the following condition satisfies the following equation:

XQY � QN. (34)

Theorem 2. For given positive scalars h, τM, ϕ, σ, λ2 and μ,
there exist symmetric positive definite matrices P1 > 0, S1 > 0,
S2 > 0, S3 > 0, H> 0, W> 0. Aen, suppose there exists matrix
Λ, event-triggered weighted matrix Ω> 0, and matrices M1
and Θ with appropriate dimensions such that the following
condition holds:
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Π �

􏽙
11

􏽙
12

􏽙
13

W M
T
1

􏽥F M
T
1

􏽥L M
T
1 Bf

∗ 􏽙
22

M
T
1

􏽥B 0 M
T
1

􏽥F M
T
1

􏽥L M
T
1 Bf

∗ ∗ 􏽙
33

0 0 􏽙
36

0

∗ ∗ ∗ 􏽙
44

0 0 0

∗ ∗ ∗ ∗ − μI 0 0

∗ ∗ ∗ ∗ ∗ − Ω 0

∗ ∗ ∗ ∗ ∗ ∗ − λ2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (35)

where 􏽑11 � S1 + S2 − π2/4H − W + MT
1

􏽥A, 􏽑12 � 2P1−

MT
1 + 􏽥A

T
MT

1 ,

􏽙
13

�
π2

4
H +

π2

4
H

T
+ M

T
1

􏽥B,

􏽙
22

� τ2MH + τ2MW,

􏽙
33

� σC
TΩC +(1 − τ)S2 − (1 − τ)S1 −

π2

4
,

􏽙
36

� φσ C
TΩ +ΩC􏼐 􏼑,

􏽙
44

� − S2 − S3 − W,

(36)

then, the overall closed-loop system (31) is asymptotically
stable under the WAETM with the controller gain designed as
K � (BTΘB)− 1BTBΛ.

Proof. According to Lemma 2, if condition ΘBK � BΛ is
satisfied, one can obtain that

K � B
TΘB􏼐 􏼑

− 1
B

T
BΛ, (37)

whereafter, choose a Lyapunov-Krasovskii function as
follows:

V2(t) � V21(t) + V22(t) + V23(t), (38)

where

V21(t) � εT
(t)P1ε(t) + 􏽚

t

t− τ(t)
εT

(θ)S1ε(θ)dθ

+ 􏽚
t− τ(t)

t− τM

εT
(t)S2ε(t) + 􏽚

t

t− τM

εT
(θ)S3ε(θ)dθ ,

V22(t) � τ2M 􏽚
t

ikh
_εT

(θ)H_ε(θ)dθ −
π2

4
􏽚

t

ikh
ε(θ) − ε ikh( 􏼁􏼂 􏼃

T

· H ε(θ) − ε ikh( 􏼁􏼂 􏼃dθ ,

V23(t) � τM 􏽚
t

t− τM

􏽚
t

r
_εT

(θ)W_ε(θ)dθ dr,

(39)

and the derivative of (39) is obtained as follows:

_V21(t) � 2εT
(t)P1 _ε(t) + εT

(t)S1ε(t)

− (1 − τ)εT
(t − τ(t))S2ε(t − τ(t)) +(1 − τ)εT

(t − τ(t))S2ε(t − τ(t))

− εT
t − τM( 􏼁S2ε t − τM( 􏼁+

εT
(t)S3ε(t) − εT

t − τM( 􏼁S3ε t − τM( 􏼁,

_V22(t) � τ2M _εT
(t)H_ε(t) −

π2

4
[ε(t) − ε(t − τ(t))]

T
H[ε(t) − ε(t − τ(t))],

_V23(t) � τ2M _εT
(t)W_ε(t) − τM 􏽚

t

t− τM

_εT
(θ)W_ε(θ)dθ.

(40)

According to Lemma 1, we can obtain the following
equation:

− τM 􏽚
t

t− τM

_εT
(θ)W_ε(θ)dθ≤

ε(t)

ε t − τM( 􏼁
􏼢 􏼣

T
− W W

∗ − W
􏼢 􏼣

ε(t)

ε t − τM( 􏼁
􏼢 􏼣. (41)

&en, from (40) we can get the following equation:

Mathematical Problems in Engineering 7



_V2(t)≤ 2εT
(t)P1 _ε(t) + εT

(t) S1 + S3 −
π2

4
H − W􏼢 􏼣

· ε(t) − εT
(t − τ(t)) (1 − τ)S2 − (1 − τ)S1 −

π2

4
H􏼢 􏼣

· ε(t − τ(t)) + εT
t − τM( 􏼁 − S2 − S3 − W􏼂 􏼃ε t − τM( 􏼁

+ _εT
(t) τ2MH + τ2MW􏽨 􏽩_ε(t) + εT

(t)
π2

4
H +

π2

4
H

T
􏼢 􏼣ε(t − τ(t)) + εT

(t)Wε t − τM( 􏼁.

(42)

Again, the WAETM (4) is equivalent to the following
equation:

e
T
y(t)Ωey(t)≤ σy

T
(t − τ(t))Ωy(t − τ(t)) + ϕσ y

T
(t − τ(t))Ωey(t) + e

T
y(t)Ωy(t − τ(t))􏽨 􏽩

� ξT
(t − τ(t))C

TΩCξ(t − τ(t)) + ϕσ ξT
(t − τ(t)C

TΩey(t) + e
T
y(t)ΩCξ(t − τ(t))􏽨 􏽩.

(43)

It is worth noting that for any matrix M1 with appro-
priate dimension, we have the following equation:

εT
(t)M

T
1 + _εT

(t)M
T
1􏽨 􏽩 − _ε(t) + 􏽥Aε(t) + 􏽥Bε(t − τ(t)) + 􏽥Ley(t) + Bfef(t) + 􏽥Fφ(ε(t))􏽨 􏽩 � 0. (44)

According to Assumption 1, the nonlinear function
ρ(x(t), t) satisfies the Lipschitz condition, and for any
positive number μ we have the following equation:

μεT
(t)δ2ε(t) − μφT

(ε(t))φ(ε(t)) ≥ 0. (45)

Define a new variable as ϖ2(t) � [εT(t)_εT(t)εT(t − τ(t))

εT(t − τM)φT(ε(x))eT
y(t)eT

f(t)]. &en according to (42) and
(45), we can get the following equation:

J2(t) � _V2(t) + εT
(t)ε(t) − λ2e

T
f(t)ef(t). (46)

Similar to the proof of &eorem 1, we can obtain the
following equation:

J2(t)≤ϖT
2 (t)􏽙ϖ2(t). (47)

According to (47), for any small scalar β> 0 under the
initial condition, the following inequality holds:

J2(t)≤ − β‖ε(t)‖
2
. (48)

According to (35) and (47), it is obvious that
J2(t)< 0when 􏽑 < 0. Also, (48) indicates limt⟶∞‖ε(t)‖2 �

0 and hence the closed-loop system (31) is asymptotically
stable with WAETM (4). &e proof of &eorem 2 is
completed. □

4. Results

In this section, the networked motor control system shown
in Figure 2 is adopted to verify the effectiveness of the
proposed weighted average event-triggered FTC scheme.
&e mathematical model of the brushless direct current
motor is

A �
0 1.000

− 5.867 − 3.038
􏼢 􏼣,

B �
0.340

4.868
􏼢 􏼣,

C � 1 0􏼂 􏼃,

F �
− 0.818 − 1.65

− 0.2 − 0.02
􏼢 􏼣,

Bf �
− 4.811

− 25.852
􏼢 􏼣.

(49)

&e control input of the motor is the voltage value. &e
system measured output of the motor is the speed (r/min).
&e reference input function is set as
yr(t) � 400 sin(t) + 1200, and the nonlinear function is
ρ(x(t), t) � [40 sin(x(t))0]T. &e delay is
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τ(t) � 0.2 sin(πt), and hence τM � 0.2, τΔ � 0.2. In addi-
tion, parameters in the event-triggered mechanism are set as
σ � 0.0015, and ϕ � 0.12. &e sampling time is h � 0.02s.
&e event-triggered weighted matrix here is set as Ω � I.

According to&eorem 1 and&eorem 2, the gains of the
state-fault observer and the fault-tolerant controller can be
obtained as follows:

L �
49.522

− 26.896
􏼢 􏼣,

H � − 10.982,

K � − 2.5 − 0.264􏼂 􏼃.

(50)

Other parameters of the state-fault observer and the
fault-tolerant controller are

G � 0.2,

B
†

� 0.014 0.204􏼂 􏼃,

B
∗

� − 0.271 − 0.232􏼂 􏼃.

(51)

Besides, the actuator fault signal is considered as follows:

f(t) �

25, 5≤ t< 15,

50 − 25e
(− t+15)

, 15≤ t< 30,

80 + 80 cos(0.1(t − 30)), 30≤ t< 50,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(52)

&e scheme proposed in this paper (denoted by
WAETM-FTC) is compared with the scheme in [21]
(denoted by ETM-FTC). In [21], an FTC scheme was
proposed, however, the conventional event-triggered
mechanism was utilized and the influence of the nonlinear
factors in NCSs were not considered.

Figures 3 and 4 show the fault estimation and fault
estimation error, respectively. Compared with the ETM-
FTC in [21], when WAETM-FTC is employed it is obvious
that the fault can be estimated much better in the networked
motor control system.

As shown in Figure 5, when WAETM-FTC is employed
the nonlinear function can also be effectively estimated. In
contrast, the ETM-FTC in [21] does not consider nonlinear
factors and thus the nonlinear function estimation is not
shown here.

Computer

Networked controller

Brushless DC Motor

Figure 2: Brushless direct current networked motor control system.
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Figure 3: Fault estimation (a) ETM-FTC in [21]; (b) WAETM-FTC.
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Figure 6(a) shows the measured output (speed) with the
ETM-FTC in [21]. During 0-5second, although there is no
fault in the system, the measured output can not track the
reference input well because there are still nonlinear factors
in the system. After 5 seconds, the fault occurs and the
system measured output suffers from both fault and non-
linear factors. &erefore, the error between the measured
output and the reference input becomes even larger as
shown in Figure 7. Figure 6(b) shows the measured output
(speed) with theWAETM-FTC scheme. During 0–5 seconds
when the fault does not occur while there are nonlinear
factors, the measured output can track the reference input.

After 5 seconds, even though there are both fault and
nonlinear factors in the system, themeasured output can still
track the reference input well. &erefore, the error between
the measured output and the reference input can converge in
Figure 7.

&e release intervals are shown in Figure 8, when the
ETM-FTC in [21] is adopted, most of the release intervals are
the same with the sampling time of 0.02 seconds, which may
lead to the communication congestion. In contrast, when
WAETM-FTC is adopted, it is clearly that most of the release
intervals are larger than 0.02 seconds, which indicates that
the unnecessary transmitted data packets are reduced.
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Figure 4: Fault estimation error.
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Figure 5: Nonlinear function estimation.

40 45 500 5 10 15 20 25 30 35
time (s)

2000

1500

1000

500

0

Sp
ee

d 
(r

/m
in

)

Measured output
Reference input

(a)

40 45 500 5 10 15 20 25 30 35
time (s)

2000

1500

1000

500

0

Sp
ee

d 
(r

/m
in

)

Measured output
Reference input

(b)

Figure 6: Measured output and reference input (a) ETM-FTC in [21]; (b) WAETM-FTC.
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Moreover, the triggered times are 1688 in Figure 8(a), and
the triggered times are 837 in Figure 8(b), which indicates
that the proposed WAETM can decrease the triggered data
packets by 34.04%. &erefore, the communication conges-
tion is effectively alleviated.

5. Conclusions

In this paper, a weighted average event-triggered fault-tol-
erant control scheme is proposed for nonlinear NCSs with
the communication congestion and actuator fault. &e
weighted average event-triggered mechanism, which adopts
the weighted average of data packets, is to alleviate the
communication congestion and save the network commu-
nication resources. &e state-fault observer based on the
weighted average event-triggered mechanism is to estimate
the system state and fault. With the system state estimation
and fault estimation, the fault-tolerant control law is ob-
tained.&e proposed weighted average event-triggered fault-
tolerant control scheme can effectively save the network
communication resources in nonlinear NCSs, while com-
pensating the influence of the fault and reducing the in-
fluence of nonlinear factors. Adaptive event-triggered based
fault-tolerant control for nonlinear networked control sys-
tems will be investigated in our future work.
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