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In this paper we present a 2D four-parameter model that accounts for the variation of transverse deformation through-the-
thickness in thick linear elastic shells. �is model is deduced directly from the 3D elasticity equations of the traction-displacement
boundary value problem. Transverse shear strains and thickness variation are accountable through additional terms which appear
in the �nal equations besides well-known terms in the classical Kirchho�-Love models for thin shells. A unique solution of the
variational equation is established, and numerical and analytical results are compared with satisfaction.

1. Introduction

Shell structures are increasingly being used in modern
complex constructions. An outstanding problem is how to
account for the through-the-thickness stretching and shear
strains in a two-dimensional model when the shell becomes
thick. Let x � (x1, x2) be the coordinates of the generic
point of the mid-surface of the shell, and z the transverse
coordinate. In order to derive a 2D shell model from the 3D
solid, a displacement of the form as shown in following
equation was proposed in [1].

x � φ +∑
∞

n�1
zndn, (1)

where dn are the shell directors and φ the position vector of
the mid-surface in the deformed con�guration. Several at-
tempts to approach the kinematics of a point on the shell are
presented in the literature to o�er 2Dmodels, although there
are also 3D models. �ese latter have the advantage of
avoiding complex shell �nite elements [2]. But numerically,
a locking phenomenon arises when the thickness of the shell

is small, and in addition, numerical approximation requires
a voluminous mesh in three dimensions to approach the
exact solution. �e numerical implementation is memory-
greedy and needs an extensive calculating time, hence the
necessity to search for e�cient 2D models. In this sense,
several authors ([3–6]) have proposed 2D models based on
the works of Love, Sander and Kirchho�, where the pro-
posed kinematics satisfy the Kirchho�-Love hypotheses, i.e.,
normal segments to the mid-surface before deformation
remain rigid and normal to the deformedmid-surface (εxz �
εyz � εzz � 0). So, transverse strains do not contribute to the
strain energy. Also, transverse shear stresses σα3 and the
pinch stress σ33 are neglected. In [7], the nonlocal model of
strain gradient small-scale approach and the �rst-order
shear deformation shell theory (FSDST), initially proposed
by Hencky, Timoshenko-Mindlin, Naghdi-Berry, and
Reissner-Mindlin ([8–10]), which are 2D models were
proposed. �ese models calculate transverse shear stresses
but do not address variations in thickness (see ([11–13]).
Some authors restricted the series of equation (1) into a
linear or quadratic formula in z ([14–16]). In this case, the
number of parameters (or unknown functions) of the model
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is 6 or 7 unlike in thin shell theory where they are only 3.
Moreover, the strain tensor which is a change in metrics, is
either linear or quadratic in z and does not depend on the
change of the fundamental forms of the mid-surface as
expressed in ([17, 18]) for linear elastic thick shells. .e N-T
theory implemented in ([19–22]) proposed by [17] intro-
duced the Gauss deformation strain tensor (change of the
third fundamental form) and calculated the transverse
stresses σxz, σyz, σzz as reactions to a more general plane
strain. .e setting is quite different from that of the classical
shell theory. However, it does not calculate transverse
strains. In this paper we present a 2D model also derived
from the 3D elasticity by introducing a particular form of
admissible displacements obtained as a solution of a torsion
loading problem in 3D solid. Let ϕ be the vector field
representing the total transverse strains. We assume
rot(ϕ) � 0 as widely used in 3D solids for torsion problems.
.e solution of the resulting ordinary differential equation is
in-plane quadratic and depends transversally on a stretching
function q(x, z) � w(z)q(x), w(z) is a transverse distri-
bution function. .e displacement appears to be the sum of
the plane strain thick shell displacement field [18] with a
warping in-plane tensor and a through-the-thickness
stretching term. .e number of parameters is 4. .e
resulting 2D model accounts for transverse strains and
stresses and appears to be an improvement on the linear
elastic thick shell theory. Moreover, the transverse stretching
can be described by a nonpolynomial function in z or a
polynomial function of any order according to the desired
accuracy. In the work of [23], a good conformity is observed
between the experimental and numerical predictions for the
choice of a linear polynomial distribution stretching
function.

.e rest of the paper is organized as follows: Section 2 is
devoted to the study of the admissible displacement and its
consequences on strains and constitutive laws. In Section 3
we establish the existence and uniqueness of the solution to a
model problem, the classical traction-displacement varia-
tional problem which is the 2D model. We next present

convergence tests and compare numerical and analytical
results in Section 4. We conclude in Section 5 after some
discussions.

.e repeated index convention is adopted unless oth-
erwise specified. .e derivative of a function zu/zxi will also
be denoted u,i or ziu. Greek and Latin indexes range in 1, 2{ }

and 1, 2, 3{ } respectively. Covariant derivation will be
denoted “|” or ∇ in the 3D shell and mid-surface respectively.
.e scalar product of matrices A and B will be denoted A: B.
Further notations will be specified in the text.

2. Admissible Displacements and
Constitutive Law

Let Ω � S × [− h, h] (S is the mid-surface and h> 0 is half the
thickness) denote a shell. We assume the surface S is
bounded and sufficiently smooth [24] for all subsequent
computations. Let a1, a2,a3􏽮 􏽯 and a1, a2

,a
3􏽮 􏽯 denote the

covariant and contravariant bases of the mid-surface and
G1, G2,G3􏽮 􏽯, G1, G2

,G
3􏽮 􏽯 the covariant and contravariant

bases of the shell. .en

x � x
1
, x

2
􏼐 􏼑Gα � δc

α − zb
c
α( 􏼁ac � (μ)

c
αac,

G3 � a3G
α

� δαc − zb
α
c􏼐 􏼑

− 1
a

c
� μ− 1

􏼐 􏼑
α
c
a

c
, G

3
� a

3
,

dΩ � G1, G2, a3( 􏼁dx
1dx

2dz � 1 − 2zH + z
2
K􏼐 􏼑dzdS

� ψ(x, z)dzdS; 2H � b
α
α, K � detb,

(2)

where b
ρ
α � aρcbcα and bcα denote the curvature tensor

components and aαβ is the contra variant component of the
metric of the mid-surface S. We have implicitly assumed that
the characteristic parameter of the mid-surface χ � h/R is
less than 1; h is half the thickness and R the minimum
absolute value of its radius of curvature. A vector field
v: Ω⟶ R3 can be expressed component wise indifferently
in the G-base or the a-base as follows:

v � vi(x, z)G
i

� vα(x, z)a
α

+ v3(x, z)a
3 and deduce that vα � μc

αvc, vα � μ− 1
􏼐 􏼑

c

αvc. (3)

.en the strain tensor [17] reads

∈αβ(v) �
vα|β + vβ|α􏼐 􏼑

2
�

μ]α ∇βv] − bαβv3􏼐 􏼑 + μ]β ∇αv] − b]βv3􏼐 􏼑􏽨 􏽩

2
,

∈α3(v) �
vα|3 + v3|α􏼐 􏼑

2
�

μ]αv],3 + v3,α + b
]
αv]􏼐 􏼑􏽨 􏽩

2
, ∈33(v) � v3,3 �

dv3

dz
.

(4)

We deduce the form of admissible displacement and
strain from the following

Lemma 1. Let ϕ(x1, x2, z) � (ϕi) be such that ϕα(x, z) �

∈α3 + ∈3α � 2∈α3, ϕ3(x, z) � ∈33. We suppose rot(ϕ) � 0;
rot(ϕ)i � ϕi+1,i+2 − ϕi+2,i+1 mod [3]
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Ben there exist functions ξi(x) and q(x, z) such that

vα � ξα − z zαξ3 + 2b
ρ
αξρ􏼐 􏼑 + z

2
b
ρ
αb

τ
ρξτ + b

ρ
αzρξ3􏼐 􏼑􏼐 􏼑, v3 � ξ3 + q(x, z),

∈αβ(v) � eαβ(ξ) − zkαβ(ξ) + z
2
Qαβ(ξ) + q(x, z)Υαβ(x, z),

∈α3(v) �
zαq

2
, ∈33(v) � zzq,

eαβ(ξ) �
∇​ αξβ + ∇βξα − 2bαβξ3􏼐 􏼑

2
,

kαβ(ξ) � ∇αb
υ
βξυ + b

υ
α∇βξυ + b

υ
β∇αξυ + ∇α∇βξ3 − b

τ
αbτβξ3,

Qαβ(ξ) �
b
υ
α∇β b

τ
υξτ + ∇υξ3( 􏼁 + b

υ
β∇α b

τ
υξτ + ∇υξ3( 􏼁􏼐 􏼑

2
,

Υαβ(x, z) � −
μ]αb]β + μ]βb]α􏼐 􏼑

2
,

(5)

where e, k, and Q respectively change in the first, second, and
third fundamental forms of the mid-surface and Υ is the
section warping tensor, bαβ the mixed components of the
curvature tensor, bρα the covariant components of the cur-
vature tensor, and δρα Kronecker’s symbol.

Proof. We shall denote (v3,1, v3,2) by ∇v3. Let

A
α
β � μ− 1

􏼐 􏼑
α
β , A

− 1
􏼐 􏼑

α
β � μαβ. (6)

.e tensors A and b commute and we deduce from
AA− 1 � I that dA/dz � A2b. From equation (2) we deduce
that there exists q(x, z) such that ϕi � ziq which is equiv-
alent to ∈α3 � zαq/2, ∈33 � zzq or

A
− 1dv

dz
+ bv + ∇v3 � ∇q,

dv3

dz
� zzq. (7)

Equation (7) are also equivalent to

d(Av)

dz
+ A

2∇ v3 − q( 􏼁 � 0,
dv3

dz
� zzq. (8)

Let w � ∇(v3 − q) then equation (8) becomes

d(Av)

dz
+ A

2
w � 0,

dv3

dz
� zzq. (9)

A solution to equation (9) is
v3 � η3 + q, v � A− 1η − z∇η3, η � (η1, η2). In fact since

dw/dz � 0, one has

d
A A

− 1η − zw􏼐 􏼑􏼐

dz
+ A

2
w �

d(η − zAw)

dz
+ A

2
w � − zA

2
bw − Aw + A

2
w

� − A
2

zb + A
− 1

􏼐 􏼑w + A
2
w

� − A
2
w + A

2
w � 0.

(10)

.erefore,

v � A
− 1η − z∇η3, v3 � η3 + q, (11)

or

vα � ηα − z zαη3 + 2b
ρ
αηρ􏼐 􏼑 + z

2
b
ρ
αb

τ
ρητ + b

ρ
αzρη3􏼐 􏼑, v3

� η3 + q(x, z).
(12)

.e solution v can be decomposed as a sum of two
displacements namely a plane strain displacement field
v(η) � (vα(η), η3) [17] and a stretching displacement
v(q) � (0, 0, q). .erefore the strain can also be decom-
posed as

∈ij(v) � ∈ij(v(η)) + ∈ij(v(q))

� ∈η + ∈q,
(13)
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where

∈αβ(v(η)) � eαβ(η) − zkαβ(η) + z
2
Qαβ(η) � ∈ηαβ, ∈i3(v(η)) � 0 � ∈ηi3,

∈αβ(v(q)) � q(x, z)Υαβ(x, z) � ∈qαβ,

∈α3(v(q)) �
zαq

2
� ∈qα3, ∈33(v(q)) � zzq � ∈q33,

(14)

and the proof is complete by taking η � ξ.
It should be noted that if ϕ � 0, equation (2) will be

satisfied. .erefore, plane strains hypothesis which leads to
the N-T displacement is another form of equation (2). .e
in-plane displacement is quadratic in z with an additional
warping strain. .e stretching function can be expressed as
follows:

q(x, z) � w(z)q(x), (15)

where w is an arbitrary nonconstant function or a poly-
nomial of any degree. .e number of unknown functions is
4.

Let us consider the strain decomposition ∈ � ∈η + ∈q �

∈ (η) + ∈ (q). For a linear elastic isotropic homogeneous
material with Lamé constants λ, μ, the stress-strain consti-
tutive relations is as follows:

σ � λ ∈ll􏼐 􏼑G + 2μ ∈,

� σ ∈η( 􏼁 + σ ∈q( 􏼁.
(16)

Since ∈33(η) � 0, we have

σ33 � λ ∈αα(η) + ∈ρρ(q)􏼐 􏼑 +(λ + 2μ)∈33(q). (17)

If 33
σ � 0, then

∈33 � −
λ

(λ + 2μ)
∈αα(η) + ∈αα(q)( 􏼁,

σα3 � 2μ∈α3(q),

(18)

and plane stress can be reproduced only if zαq � 0.

3. Presentation of the 2D Model

Let the border of S be partitioned by zS � c0 ∪ c such that the
border of the shell reads zΩ, � ​ Γ0 ​ ∪ , Γ1 ∪ , Γ− ∪
Γ+;Γ0 � c0×] − h, h;Γ 1 � c1×] − h, h;Γ− � S × − h{ };Γ+ � S ×

h{ }. .e model problem is the standard traction-displace-
ment boundary value problem defined by: find the dis-
placement field u: (x, z) ∈ Ω⟶ R3, (Ω is the closure ofΩ)
which solves the following equations:

− div σ � f inΩ,

u(.) � 0 on Γ0, σ n
→

� p on Γ � Γ1 ∪ Γ− ∪Γ+,

σij
� λ∈ll(u)G

ij
+ 2μ∈ij(u),

(19)

where n
→ is the unit outer normal vector; fε, p volume and

surface force densities, respectively; divσ � (σij
j ). .e vari-

ational equation associated to the model problem reads: find
u ∈ IH1

Γ0(Ω) � v ∈ (H1(Ω))3, v � 0 on Γ0􏽮 􏽯 such that

E(u, v) � L(v), for all v ∈ IH
1
Γ0(Ω),

E(u, v) � 􏽚
Ω
σij

(u)∈ij(v)dΩ,

L(v), � 􏽚
Ω

f
i
vidΩ + 􏽚

Γ
p

i
vidΓ,

(20)

Hm(D) for a natural number m≠ 0 and a domain D in
R1,R2 orR3 designates a Sobolev space; H0(D) � L2(D).

Volume and surface forces are supposed to be sufficiently
regular.

.e model problem has a unique solution because the
operator E(., .) is coercive in the space of admissible dis-
placements IH1

Γ0(Ω). We shall be interested in the particular
case where q(x, z) � w(z)q(x). Let
Uad � v ∈ IH1

Γ0(Ω), Rotϕ � 0􏽮 􏽯, then Uad is a closed
subset of IH1

Γ0(Ω). Let v be in Uad, then because w is
nonconstant in z, we deduce from (7) and the boundary
condition on the displacement that
η1 � η2 � η3 � q � zαη3 � 0 on c0. It is easy to check that

ηα ∈ H
1
c0

(S),

q ∈ H
1
c0

(S),

η3 ∈ H
2
c0

(S),

H
2
c0

(S) � η3 ∈ H
2
(S), η3 � z ]→η3 � 0 on c0􏽮 􏽯,

(21)

]→ is the outer unit vector on the border of the mid-surface.
We denote the set of admissible displacements and the
bilinear form, respectively, by

U
w
ad � (η, q), ηα ∈ H

1
c0

(S), q ∈ H
1
c0

(S), η3 ∈ H
2
c0

(S)􏽮 􏽯,

E(u, v) � E
w

((ξ, q), (η, y)),

(22)
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where u � u(ξ, q), v � v(η, y) are constructed as in equation
(12).

Lemma 2. Be operator Ew is coercive in Uw
ad.

Proof. Let X � X(η, q) ∈ Uw
ad then eαβ(η), kαβ(η), Qαβ

(η), q, z1q, z2q ∈ L2(S). We next define

‖q‖
2
L2(S) � max 􏽚

Ω
w

2
(z)q

2
(x)dΩ, 􏽚

Ω
w’2(z)q

2
(x)dΩ􏼚 􏼛,

zαq
����

����
2
L2(S)

� 􏽚
Ω

w
2
(z)zαq

2
(x)dΩ,

X � e, k, Q, q, z1q, z2q( 􏼁,

Θ � X ∈ L
2
(S)

3
× L

2
(S)

3
× L

2
(S)

3
× L

2
(S) × L

2
(S) × L

2
(S)􏽮 􏽯,

(23)

equipped with the norm

‖X‖ � ‖e‖
2

+‖k‖
2

+‖Q‖
2

+‖q‖
2

+ z1q
����

����
2

+ z2q
����

����
2

􏼒 􏼓
1/2

, (24)

where we have voluntarily omitted the subscript L2(S) on the
norms. We deduce from the expression of the strain tensor
that the bilinear form Ew can also be considered as a

quadratic form on the spaceΘwhere it is also continuous for
the weak topology. .erefore, it is bounded in the unit ball
and there exist positive constants m, M such that
m≤Ew(X, X)≤M. We deduce that for all X ∈ Θ, one has
m‖X‖2 ≤Ew(X, X)≤M‖X‖. More over there exists
Xm in the unit ball such thatEw(Xm, Xm) � m. We infer that
m≻0. In fact suppose m � 0. .en

0 � E
w

Xm, Xm( 􏼁≥ 2μ

􏽚
Ω

em − zkm + z
2
Qm + w(z)qmΥ􏼐 􏼑: em − zkm + z

2
Qm + w(z)qmΥ􏼐 􏼑 + qm

����
����
2

+ z1qm

����
����
2

+ z2qm

����
����
2

􏼚 􏼛.
(25)

We deduce that qm � 0 and from [17] we have em � km �

Qm � 0 which is in contradiction with ‖Xm‖ � 1. .erefore
Ew(X, X) � Ew(X, X)≥m‖X‖2. Again from [17, 25] we
deduce that there exists a strictly positive constant C such
that Ew(X, X)≥C‖X‖2 and the proof is complete.

Theorem 1. Be 2D variational equation for the genuine
traction-displacement problem has a unique solution
(ξ(x)q(x)) which satisfies the equations: find (ξ(x), q(x))

such that (ξ(.), q(.)) ∈ Uw
ad;

E
w

(u, v) � L
w

(v), v ∈ U
w
ad,

uα � ξα(x) − z zαξ3(x) + 2b
ρ
αξρ(x)􏼐 􏼑 + z

2
b
ρ
αb

τ
ρξτ(x) + b

ρ
αzρξ3(x)􏼐 􏼑,

u3 � ξ3(x) + w(z)q(x),

vα � ηα − z zαη3 + 2b
ρ
αηρ􏼐 􏼑 + z

2
b
ρ
αb

τ
ρητ + b

ρ
αzρη3􏼐 􏼑, v3 � η3(x) + w(z)y(x),

v3 � η3(x) + w(z)y(x),

E
w

(u, v) � 􏽚
S

􏽚
h

− h
σij

(u)∈ij(v)ψ(x, z)dzdS􏼠 􏼡,

L
w

(v) � 􏽚
S

􏽚
h

− h
f

i
(x, z, t)viψ(x, z)dz􏼠 􏼡dS + 􏽚

Γ
p

i
(x, z, t)vidΓ;

� 􏽚
S

F
i
(x)ηi + F

4
y􏼐 􏼑dS + 􏽚

c1

Ηi
(x)ηi +Η4y􏼐 􏼑dc1 + 􏽚

c1

m
αθαdc1.

(26)

Here the stress σ and strain ∈ fields are defined through
equations (8)–(13) (Fi, F4), (Hi, H4), mα, θα are,
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respectively, resultant surface force, shear force, moment
density, and the opposite angle of rotation of a section at the
border.

Proof. Resultant forces are also sufficiently smooth and the
bilinear form is coercive. Existence and uniqueness of a
solution are obtained through the Lax-Milgram lemma.

4. Validation of the Model

In the numerical validation section we will use a finite el-
ement that we name “MT6” or “T6-m”, which is a modified
T6 finite element. Figure 1 below presents the shape of both
elements.

Let us consider a shell Ω � S × [− h/2, h/2] whose con-
stitutive law is

σij
(u, q) � λ ∈αα(u) + ∈ll(q)􏼐 􏼑G

ij
+ 2μ ∈ij(u) + ∈ij(q)􏼐 􏼑

� C
ijkl∈kl(u, q).

(27)

.e variational formulation for a fixed transverse dis-
tribution function w,is as follows:

(u(x), q(x)) ∈ Uad,

E((u, q); (v, y)) � L(v, y).
􏼨 (28)

For every (v, y), ∈ Uad with

Uad � H
1
Υ0(S) xH

1
Υ0(S) xH

2
Υ0(S) xH

1
Υ0(S)􏼐 􏼑. (29)

Let Aαβδτ � λGαβGδτ + 2μGατGτβ

.en

E(((u, q); (v, y)) � 􏽚
S

􏽚
h/2

h/2
σij

(u, q)∈ij(v, wy)ψdzdS

� 􏽚
S

􏽚
h/2

h/2
A
αβδτϵδτ(u)ϵαβ(v) + wA

αβδτΥδτϵαβ(u)y + λw′Gαβϵαβ(u)y + λG
αβ

w′ + wA
αβδτΥδτ􏼐 􏼑qϵαβ(v)􏽨 􏽩ψdzdS

+ 􏽚
S

􏽚
h/2

h/2
w

2
A
αβδτΥδτΥαβ + λww

’GαβΥαβ􏼒 􏼓qy +(λ + 2μ) w′( 􏼁
2
qy + μG

αβ
w

2
zβqzαy􏼔 􏼕ψdzdS.

(30)

Let

D
αβ
0w � 􏽚

h/2

h/2
wA

αβδτΥδτ􏽨 􏽩ψdz; D
αβ
1w,

E
αβ
0w � 􏽚

h/2

h/2
λG

αβ
w′􏽨 􏽩ψdz; E

αβ
1w,

F
αβ
0w(c) � 􏽚

h/2

h/2
wA

αβδτΥδτ + λG
αβ

w′􏽨 􏽩ψdz; F
αβ
1w(c)

􏽚
h/2

h/2
z wA

αβδτΥδτ + λG
αβ

w′􏽨 􏽩ψdz; F
αβ
2w(c),

F
33
w0(c) � 􏽚

h/2

h/2
w

2
A
αβδτΥδτΥαβ + λww′Gαβ

􏽨 􏽩ψdz; F
33
w1(c),

I
αβ
ww(c) � 􏽚

h/2

h/2
(μ)G

αβ
(w)

2ψdz.

(31)

.en an equivalent form of the variational equation is as
follows:

E((u, q; (v, y)) � 􏽚
S

N
αβ

(u)eαβ(v)􏼐 + M
αβ

(u)Kαβ(v) + M
∗αβ

(u)Qαβ(v)dS + 􏽚
S

D
αβ
0weαβ(u)􏼐 − D

αβ
1wKαβ(u) + D

αβ
2wQαβ(u))ydS

+ 􏽚
S

E
αβ
0weαβ(u) − E

αβ
1wKαβ(u) + E

αβ
2wQαβ(u)􏼐 􏼑ydS + q􏽚

S
F
αβ
0w(c)eαβ(v) − F

αβ
1w(c)Kαβ(v) + F

αβ
2w(c)Qαβ(v)􏼐 􏼑dS

+ 􏽚
S
q y F

33
w0(c) − F

33
w1(c) + F

33
w2(c)􏼐 􏼑dS + 􏽚

S
I
αβ
wwzβqzαy􏼐 􏼑dS,

(32)
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where by letting ψ ≈ 1, Gαβ ≈ aαβ in calculating the efforts,
E, ] Young’s modulus and Poisson’s ratio, respectively,

N
αβ

�
Eh

1 − v
2 (1 − v)e

αβ
(u) +

v(1 − v)

1 − 2v
e
ρ
ρ(u)a

αβ
􏼢 􏼣 +

Eh
3

12 1 − v
2

􏼐 􏼑
(1 − v)Q

αβ
(u) +

v(1 − v)

1 − 2v
Q

ρ
ρ(u)a

αβ
􏼢 􏼣,

M
αβ

�
Eh

3

12 1 − v
2

􏼐 􏼑
(1 − v)K

αβ
(u) +

v(1 − v)

1 − 2v
K

ρ
ρ(u)a

αβ
􏼢 􏼣,

M
∗αβ

�
Eh

5

80 1 − v
2

􏼐 􏼑
(1 − v)Q

αβ
(u) +

v(1 − v)

1 − 2v
Q

ρ
ρ(u)a

αβ
􏼢 􏼣 +

Eh
3

12 1 − v
2

􏼐 􏼑
(1 − v)e

αβ
(u) +

v(1 − v)

1 − 2v
e
ρ
ρ(u)a

αβ
􏼢 􏼣,

λ �
Ev

(1 − 2v)(1 + v)
; μ �

E

2(1 + v)
,

L(v, y) � 􏽚
S

P
i
vi + P

4
y􏼐 􏼑dS + 􏽚

c1

q
i
vi + q

4
y􏼐 􏼑dc + 􏽚

c1

m
αθα(v)( 􏼁dc,

(33)

where

P
4

� 􏽚
h/2

h/2
f
3
wdz + w

h

2
􏼠 􏼡p

3
+ − w −

h

2
􏼠 􏼡p

3
− . (34)

We use iso-parametric Lagrangian symplectic type tri-
angle finite elements which are based on complete

polynomial bases [23]. .e finite element used has 4 (four)
degrees of freedom at the vertex nodes (3 displacements and
1 stretching) and 1 (one) additional degree of freedom at
mid-points of edges (1 for transverse displacement). By
laying the matrix of shape functions we get

N �

1 − ξ − η ξ η 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 − ξ − η ξ η 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − (1 − ξ − η)(1 − 2(1 − ξ − η)) − ξ(1 − 2ξ) − η(1 − 2η) 4(1 − ξ − η)ξ 4ξη 4(1 − ξ − η)η 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 (1 − ξ − η) ξ η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

t 􏽢Ue � 􏽢u1 􏽢u2 􏽢u3 􏽢v1 􏽢v2 􏽢v3 􏽢w1 􏽢w2 􏽢w3 􏽢w4 􏽢w5 􏽢w6 􏽢q1 􏽢q2 􏽢q3􏼂 􏼃.

(35)

4.1. Hemisphere under Diametrically Opposed Loads. .is
test case makes it possible to verify the behavior of the el-
ement in bending and shear [26]. .e test of a thin hemi-
sphere (R/h� 250) subjected to a free base with four
concentrated charges (see Figure 2) is used to verify the

absence of membrane locking [21]. .e reference solution
presented by [27] gives displacements according to the di-
rection of the load: UA � VB � 0.094mm. Due to symmetry
considerations, only a quarter of the hemisphere is meshed.
.e mesh is regular and the number of elements varies from

3

56

1 4 2 c3

Z

Y X

a1

a2
a3

η

(a) (b)

Figure 1: (a) Triangular mesh. (b) MT6 Finite Element.
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2 to 15. We compare our results obtained with the MT6 or
T6-m to several families of finite elements of shells. In
Figure 3, the displacement convergence at UA according to
the number of elements is represented in Table 1. .is new
model of thick shell does not have a locking problem. In
addition, it is memory less greedy and fast converging with
very few elements, as shown in Figure 3 for a thin shell.

4.2. Pinched Cylinder. .e aim of this test is to check the
behavior of the element (cylindrical shell) in bending and
shearing. It has been studied by several authors ([21, 27–30]).
.e two ends of the shell are closed by an infinitely rigid
diaphragm. An eighth of the cylinder is meshed thanks to the
symmetries of the problem. .e shell is subjected to a
concentrated load at point A, ‖ P

→
‖ � 1 (Figure 4). Geometry,

loading, and material data for this test case are listed in
Table 2. And comparison is provided in Table 3.

WC � −
WC.E.h

P
� 164.24. (36)

4.3. Sphere under Uniform Pressure. .e geometric and
mechanical parameters of the hollow sphere under con-
sideration are defined in Table 4.

.e solution is obtained by solving the equilibrium
equation in the absence of volume force:

zσrr

zr
−
2
r

σrr − σθθ( 􏼁 � 0, (37)

where σrr , σθθ are the radial and circumferential compo-
nents of the stress tensor.

It is shown that the solution is in the form ur � Arλ1 +

Brλ2 [31].
With:

λ1 � −
1
2

− 1 +
λ

(2μ + λ)
􏼠 􏼡 +

1
2

����������������������������������

− 1 +
λ

(2μ + λ)
􏼠 􏼡

2

− 4 − 2 −
λ

(2μ + λ)
􏼠 􏼡􏼠 􏼡

􏽶
􏽴

,

λ2 � −
1
2

− 1 +
λ

(2μ + λ)
􏼠 􏼡 −

1
2

����������������������������������

− 1 +
λ

(2μ + λ)
􏼠 􏼡

2

− 4 − 2 −
λ

(2μ + λ)
􏼠 􏼡􏼠 􏼡

􏽶
􏽴

,

B � −
(2μ + λ)λ1Ri

λ1− 1
+ λRi

λ1− 1

(2μ + λ)λ2Re
λ2− 1

+ λRe
λ2− 1 A,

A � −
Pi

(2μ + λ)λ1Ri
λ1− 1

+ λRi
λ1− 1 −

(2μ + λ)λ2Ri
λ2− 1

+ λRi
λ2− 1

(2μ + λ)λ1Ri
λ1− 1

+ λRi
λ1− 1 B.

(38)

Data
R = 10 m; h = 0.04 m; R/h = 250
P = 2 N; E = 6.825 × 107 Pa; v = 0.3
Limits conditions
W = 0 in E
Symetrics conditions

U = 0 on BD
V = 0 on AC

P

P

P

A

P
B

N = 4
Y, V

E

R

X, U

slib bound

slib bound
A

D

Z, W φ = 18°

Figure 2: Hemispheric shell benchmark.
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Figure 3: (a) Convergence of displacements at point A(3D Model), (b) convergence of displacements at point A (2D Model).

Table 1: Hemisphere under diametrically opposite loads, displacement UA × 103.

Reference: UA × 103 � 94mm
Family of 3D elements Family of 2D elements

Mesh step 3D model PRI6 SHB6 initial SHB6 Mesh step 2D model T6_M

3×(5× 5×1)×2 0,104 0,589 1,60 2× 2× 2 1, 8
3×(11× 11× 1)×2 0,457 1,209 4,27 4× 4× 2 10, 27
3×(22× 22×1)×2 2,015 5,424 18,05 6× 6× 2 31, 92
3×(180×180×1)×2 50,72 64,18 84,70 8× 8× 2 54, 35
3×(250× 250×1)×2 64,35 74,82 88,40 10×10× 2 72, 33

12×12× 2 87, 26
15×15× 2 93, 6
16×16× 2 94. 8

Z,W

P=IN

P=IN

X, D

L

R

A

B

Y, V

H D

Diaphragme

Figure 4: Geometry and loading of the clamped cylindrical shell with diaphragm.
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Table 2: Geometry and mechanical data of the pinched cylinder.

Length L � 6m
Radius R � 3m
�ickness h � 0.03m
Young’s modulus E � 3 × 1010 Pa
Poisson’s coe�cient v � 0.3
Limit conditions U �W � 0 onAD
Conditions of symetry W � 0 onAB;V � 0 onBC;U � 0 on CD
Sollictation at C f � − 0.25N

Table 3: Transverse displacements results WC at point C.

Reference: WC � − WC.E.h/P � 164.24
Mesh step 3D model PRI6 SHB6 initial SHB6 Mesh step 2D model T6_M

(10×10×1)×2 10,134 16,335 39,411 2× 2× 2 9,79
(30× 30×1)×2 35,919 57,33 107,82 4× 4× 2 43,32
(50× 50×1)×2 60,696 89,973 137,79 6× 6× 2 74,08
(70× 70×1)×2 80,406 112,95 151,83 8× 8× 2 96,09
(90× 90×1)×2 95,31 129,06 159,3 10×10× 2 116,47

12×12× 2 135,23
15×15× 2 155,01
16×16× 2 158,75
18×18× 2 163,38

Table 4: Geometry and mechanical data of the sphere under uniform pressure.

Inner radius Ri � 10 cm
Outer radius Re � 20 cm
�ickness

h � Re − RiYoung’s modulus

Poisson’s coe�cient E � 21MPa
v � 0.3

Inner pressure Pi � 0.1MPa
Outer pressure Pe � 0MPa
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Figure 5: Continued.
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.e superposition curves shown in Figures 5(a)–5(f) and
Table 5 show the deviations.

5. Discussions

.e shell model, the “N” model [18], is used for the cal-
culation of the hemisphere (Figure 2 and (Table 1), the
pinched cylinder (Figure 4 and Table 2) and the sphere under
uniform pressure (Table 4). .e finite element of the tri-
angular type uses stretching as a degree of freedom to follow
the displacement in the thickness. Several authors have
worked on the hemisphere case using triangular,

rectangular, and even volume finite elements, where all
displacement components are represented by polynomials of
order 2 and 3. In [26], it is indicated that the results obtained
with the new SHR6 element converge faster than the initial
PRI6 and SHR6 does not lock for the same number of el-
ements. However, this 3D element has an excessively high
number of degrees of freedom as the thickness of the shell
increases. It would therefore require a significant compu-
tational effort to perform the analysis using this element. In
comparison, the present element uses only four degrees of
freedom per vertex node and one for middle nodes. .e
hemispherical shell described above is analyzed here using

-0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.001-0.001
z (mm)

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26
Tr

an
sv

er
se

 d
isp

la
ce

m
en

t U
r (

m
m

)

Analytical
Numerical

(c)

-0.02 -0.015 -0.01 -0.005 0 0.020.01 0.015 0.025-0.025 0.005
z (mm)

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Tr
an

sv
er

se
 d

isp
la

ce
m

en
t U

r (
m

m
)

Analytical
Numerical

(d)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05-0.05
z (mm)

0.2

0.25

0.3

0.35

0.4

0.45

Tr
an

sv
er

se
 d

isp
la

ce
m

en
t U

r (
m

m
)

Analytical
Numerical

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.70
Khi

0

2

4

6

8

10

12
Tr

an
sv

er
se

 d
isp

la
ce

m
en

t U
r (

z=
0)

 (m
m

)

Analytical
Numerical

(f )

Figure 5: (a) Evolution of radial deviation as a function of thickness ratio (khi� 0.0198). (b) Evolution of radial deviation as a function of
thickness ratio (khi� 0.0769), (c) evolution of radial deviation as a function of thickness ratio (khi� 0.1818). (d) Evolution of radial deviation
as a function of thickness ratio (khi� 0.4), (e) evolution of radial deviation as a function of thickness ratio (khi� 0.667). (f ) Evolution of the
radial deviation of the mid-surface as a function of the thickness ratio khi.
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the triangular element presented above. .e results from the
analyses are compared with those obtained from the solution
given in [27]. Convergence tests were carried out for the
normal deviation at point A (Figure 3) of the shell. Table 1
shows that MT6 with the model “N” indicates a deviation of
0.42% for amesh of 15×15× 2, which is reached by CSFE3-sh
with a mesh of 12×12× 2 to converge to the reference so-
lution. .e DKT12 and DKT18 give 2% and 1.06% with a
mesh of 12×12× 2 for the reference solution [20]. As for the
SHR6 developed in [26] the difference obtained is 4.49% for a
mesh of 3×(250× 250×1)× 2 or 375 000 elements. We realize
that compared to the “N” model, this volumetric model [26],
which also takes into account the variation of thickness, is
very memory greedy and calculating time is excessive. Fig-
ure 3 shows an excellent agreement between the results ob-
tained with the elementMT6 and those found in the literature
for the variation of the normal deviation at point A.

.e pinched cylinder is a reference example for testing
a finite element model, especially for thin shells. .e
loading case here is not symmetrical (due to the con-
centrated point load) and the solution cannot be managed
by the 3D elasticity theory [20]. .e “N” model although
being a thick shell model, shows good convergence to-
wards the reference solution. .e error is 0.523% for a
mesh of 18 ×18 × 2, while the SHR6 of [26] indicates an
error of 3% for a mesh of (90 × 90 ×1) × 2 or 16200 ele-
ments. .e convergence curves are illustrated in
(Figures 6(a) and 6(b)). It is a difficult problem to solve
numerically when the thickness is small because the
locking and hourglass problems are recurrent. .e finite
element of [26] does not lock, but it needs a very fine mesh
and fairly important calculating time.

.e sphere case under uniform pressure is a resolvable
case by the 3D elasticity theory. .e reference solution,
which is a function of the radius, is obtained analytically.

.e model “N” (by Nzengwa [18]) has the ability to also
calculate the radial displacement as a function of the radius.
In Table 5, we plotted the following values of the charac-
teristic parameter: h/R � 0.0198, 0.0769, 0.1818, 0.4, and
0.667. A gap of less than 5.55% was observed between the
inner and outer radii for the radial deviation for thin shells
(example h/R � 0.0198). In general, the average gap is
around 10%, as shown in (Figures 5(a)–5(e)). .e nu-
merical displacements are smaller than the analytical ones,
which highlights the contribution of the flectional energy of
the double curvature shell. Table 5 shows that the model is
closer to the reference solutions according to the ratio khi
for a uniform loading. For nonuniform loads, the 3D
elasticity theory can no longer be able to provide analytical
solutions, while the model “N” still remains efficient for
solving common problems in complex shell structures,
either thin or thick.

6. Conclusion

.e 2D model “N” which is a 4-parameter model has
proven its efficiency in handling different loadings in thin
or thick shells with the calculation of transverse stresses,
strains, and also thickness variation. Increasing the degree
of the polynomial of the transverse stretch distribution
function w(z) does not increase the number of parameters.
.e transverse distribution function w(z) is not limited to
polynomials only. .e model includes terms found in the
classical theory of thin or thick shells and seems to be
suitable for stiffened shells that are actually locally thin or
thick shell structures. .e distribution function w(z) in this
paper is z, so the quality of the results can be improved by
choosing another expression, which makes the model
flexible.
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Figure 6: (a) Convergence of displacements at point C (3D model) (b) convergence of displacements at point C (2D model).
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