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­e power function distribution is a �exible waiting time model that may provide better �t for some failure data. ­is paper
presents the Bayes estimates of two-parameter power function distribution under progressive censoring. Di�erent progressive
censoring schemes have been used for the analysis. ­e Bayes estimates are obtained, using conjugate priors, under �ve loss
functions including square error, precautionary, weighted, LINEX, and DeGroot loss function.­e Gibbs sampling algorithm and
Tierney and Kadane’s Approximation are used for the Bayes estimates of model parameters, reliability function, and stress-
strength reliability. ­e comparison of the Bayes estimates is considered through the root mean squared errors. One real-life
dataset is analyzed to illustrate the applications of proposed estimates.­e results from the simulation study and real data analysis
suggest that the Bayes estimation was more e�cient for the progressive censoring schemes with all the withdrawals at the time of
�rst failure.

1. Introduction

­e power function distribution is widely used for
semiconductor devices and electrical component reli-
abilities. Meniconi et al. [1] and Zaka et al. [2] suggested
that the power function distribution is the best model to
test the reliability of an electrical component over ex-
ponential, lognormal, and Weibull distribution. Zarrin
et al. [3] used the power function distribution to estimate
the component failure of a semiconductor device. ­e
power function distribution is studied by many authors.
For example, Kleiber and Kotz [4] showed that the power
function distribution is a particular case of the Pareto
distribution, Bhatt [5] discussed the characterization of
the power function distribution through expectation,
Chang [6] considered the power function distribution and
discussed its characterizations with the use of indepen-
dence of record values, Lutful and Ahsanullah [7] used the

linear function of the order statistics for the estimation of
the power function distribution, Malik [8] calculated
expressions for the exact moments of order statistics for
the power function distribution, Saran and Pandey [9]
estimated the power function distribution and its char-
acterizations by kth record value, Saleem et al. [10] de-
rived the Bayesian estimators for the �nite mixture model
of power function distribution with a censored sample,
Shahzad et al. [11] compared the L-moments method and
Trim L-moments methods for the power function dis-
tribution, and Shakeel et al. [12] used the probability
weighted moments method and the generalized proba-
bility weighted method to estimate the power function
distribution.

­ere are many scenarios in life testing and reliability
experiments in which units are lost or removed from the
experiments before the failure occurs because of acci-
dental breakage of units, or if an individual under study
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drop-out the experimentation itself must cease due to
some unforeseen circumstances such as depletion of funds
and unavailability of testing facilities. In these circum-
stances, progressive censoring is an ideal choice for
practitioners. +e progressive censoring received con-
siderable attention in the past few years due in part to the
availability of high-speed computing resources. In this
regard, Cohen [13] provided a progressive censored model
for normal and exponential distribution using maximum
likelihood estimators (MLE). Similarly, Salah [14] sug-
gested progressive type-II censoring for alpha power
exponential distribution under MLE. Liao and Gui [15]
suggested the Bayesian estimates using progressively type-
II censored samples for the Rayleigh distribution under
various loss functions. Dey and Dey [16] introduced a
progressively type-II censoring scheme for the Rayleigh
distribution when the number of units removed at each
failure time follows the binomial distribution. +ey used
MLE and Bayesian methodologies for the estimation of
parameters. Also, Buzaridah et al. [17] provided some
useful estimation of lifetime parameters of the flexible
reduced logarithmic-inverse Lomax distribution under
progressively type-II censored data.

A stress-strength reliability model compares the strength
and stresses on a certain system; it is used primarily not only
in reliability engineering and quality control but also in
economics, psychology, and medicine [18]. In the area of
stress-strength models, there has been a large amount of
work regarding estimation of the reliability parameter,
R � p(Y<X), where X and Y are independent random
variables and have the same univariate distribution. Many
authors explore the stress-strength model for different
probability distributions. For example, Khames andMokhlis
[19] introduced a bivariate general exponential model for the
stress-strength reliability model. Saber et al. [18] suggested a
remained stress-strength model for the generalized expo-
nential model. Jafari and Bafekri [20] made inferences using
the stress-strength model for two parameters exponential
distribution under the assumption of order statistics. Al-
Babtain et al. [21] provided a stress-strength model for the
power-modified Lindley distribution under classical and
Bayesian principles. Recently, Alamri et al. [22] provided a
stress-strength model using half-normal and Rayleigh dis-
tributions. Also, Yazgan et al. [23] developed the stress-
strength model in the presence of fuzziness when the stress
and strength variables weighted exponential distribution
with a common shape parameter.

As discussed earlier, the power function distribution is
the best model to test the reliability of an electrical com-
ponent over exponential, lognormal, and Weibull distri-
bution. So, this paper aims to present the maximum
likelihood estimation and Bayesian estimation using com-
plete and randomly censored samples for the power function
distribution. Also, the reliability study is also provided. +e
estimates for unknown parameters θ and α are derived and
then compared through the root mean squared error
method. Finally, numerical illustrations and comparisons
are presented.

In the Bayesian estimation problems, it is essential to
specify a loss function. In this regard, five loss functions are
selected, which consist of squared error loss function (SELF),
precautionary loss function (PLF), weighted loss function
(WLF), DeGroot loss function (DLF), and LINEX loss
function (LLF). +e SELF loss function was introduced by
Legendre and Gauss in developing the least square theory.
+is loss function is symmetric and it assigns equal weights
to positive and negative errors. +e PLF was proposed by
Norstrom [24]. +is loss function is an asymmetric loss
function and is very useful when a lower failure rate is under
study. +e DLF was proposed by DeGroot [25]. +is loss
function is an asymmetric loss function. +e LLF was
proposed by Varian [26]. +is loss function is also an
asymmetric loss function and is preferred for use when there
is an underestimation expected. Let ψ be the parameter of
interest; then, a list of abovementioned loss functions with
their respective Bayes estimates is given in Table 1.

+e rest of the paper is outlined as follows: Section 2
provides the introduction of the power function distribu-
tion. Section 3 consists of the maximum likelihood esti-
mation for the power function distribution. Section 4
describes the Bayesian estimation. Section 5 presents the
Markov chain Monte Carlo (MCMC) technique. A simu-
lation study for the maximum likelihood estimates and the
Bayes estimates is conducted in Section 6. A real-life data
analysis is performed in Section 7 for illustrative purposes,
while the conclusion is given in Section 8.

2. Power Function Distribution

+e two-parameter power function distribution is a defined
density function as follows:

g(x; θ, α) �
θx

θ− 1

αθ
, 0< x< α, θ, α> 0. (1)

where θ is a shape parameter and α is a scale parameter. +e
two-parameter power function distribution is denoted by
the notation PF(θ, α).

+e distribution function of PF(θ, α) is given as follows:

G(x; θ, α) �
x

α
􏼒 􏼓

θ
, 0<x< α, θ, α> 0. (2)

+e survival function of PF(θ, α) is as follows:

S(x; θ, α) � 1 −
x

α
􏼒 􏼓

θ
, 0< x< α, θ, α> 0. (3)

Similarly, the hazard function of PF(θ, α) is given by

H(x; θ, α) �
θx

θ− 1

αθ − x
θ, , 0< x< α, θ, α> 0. (4)

Figure 1 provides the graphical presentation of the
PF(θ, α) for different values of θ at α � 5, which shows that
PF(θ, α) is a positively skewed and heavy-tailed distribution
for θ< 1, which is uniform for θ � 1, right triangular for
θ � 2, and negatively skewed for θ> 2.
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3. Bayesian Estimation under Progressively
Censored Samples

­e likelihood function under progressively censored
samples according to Balakrishnan and Aggarwala [27] can
be written as follows:

L(θ, α|x)∝ c∏
m

i�1
f xi;m:n|θ, α( ) 1 − F xi;m:n|θ,α( )

Ri[ ]. (5)

Using the PDF and CDF of power function distribution
in (1), we have

L(θ, α|x) �∏
m

i�1

θxθ− 1i;m:n

αθ
1 −

x

α
( )

θ
[ ]

Ri

�
θm

αmθ
∏
m

i�1
xθ− 1i;m:n 1 −

xi;m:n
α

( )
θ

[ ]
Ri

.

(6)

Here, the Bayes estimates for unknown parameters θ and
α are derived under their respective independent conjugate
priors. ­e conjugate prior for the unknown parameter θ is
gamma prior, given by

g(θ) �
ba

Γ(a)
θa− 1e− bθ, 0< θ<∞. (7)

Similarly, the conjugate prior for unknown parameter α
is the Pareto prior, which is given by

g(α) �
cdc

αc+1
, d< α<∞. (8)

Here, a, b, c, dare assumed known and nonnegative
constants called hyperparameters.­e joint prior for θ and α
is given by

g(θ, α)∝ θa− 1α− (c+1)e− bθ, 0< θ<∞, d< α<∞. (9)

­e joint posterior distribution under the joint prior,
given in (9), is as follows:

g(θ, α|x) �
θm+a− 1 e− bθ

αmθ+c+1
∏
m

i�1
xθ− 1i;m: n 1 −

xi;m: n
α

( )
θ

[ ]
Ri

. (10)

4. Tierney and Kadane’s Approximation (TK)

Since the closed form expressions for the Bayes estimators
are not available from (10), the TK approximation has been
used for the estimation of model parameters numerically.
­e advantage of using the TKA is that unlike Lindley’s
approximation, it does not require third order derivatives of
log-likelihood function. ­e procedure to apply TKA is as
follows. Consider K(θ, α) � G(θ, α) + l(x|θ, α), where
G(θ, α) is the logarithmic of the joint informative prior for
the parameters (θ, α) and l(x|θ, α) is the logarithmic of
likelihood function given in (6). Further, consider Ω(θ, α) �
K(θ, α)/n and Ω∗(θ, α) � [log h(θ, α) +K(θ, α)]/n, where
log h(θ, α) is the logarithmic of the function of the pa-
rameter(s) θ or α. ­en, according to Tierney and Kadane
[28], the expression Ε h(θ, α|x){ } can be presented in the
following form:

Ε h(θ, α|x){ } �
∫∞0 ∫
∞
0 enΩ

∗(θ,α)dθ dα

∫∞0 ∫
∞
0 enΩ(θ,α)dθ dα

. (11)

Now, using Laplace’s method, the approximation for
Ε h(θ, α|x){ } is as follows:

ĥ(θ, α) �
det∑∗

det∑
[ ]

1/2

exp n Ω∗ θ̂
∗
, α̂∗( ) − Ω(θ̂, α̂){ }[ ]. (12)

where (θ̂
∗
, α̂∗) and (θ̂, α̂) maximize Ω∗(θ1, θ2) and

Ω(θ1, θ2), respectively, and∑
∗ and∑ are the negatives of the

inverse Hessians of Ω∗(θ, α) and Ω(θ, α) evaluated at
(θ̂
∗
, α̂∗) and (θ̂, α̂), respectively.
Here, we have the log-likelihood function as follows:

l � m ln θ − mθ ln α +∑
m

i�1
ln xθ− 1i;m:n 1 −

xi;m:n
α

( )( )
θ

[ ]
Ri

,

l � m ln θ − mθ ln α +(θ − 1)∑
n

i�1
ln xi;m:n

+∑
m

i�1
Ri ln 1 −

xi;m:n
α

( )( )
θ

[ ].

(13)

Table 1: Bayes estimates under various loss functions.

Loss function Bayes estimates
SELF � (ψ − ψ̂)2 ψ̂SELF � E(ψ|x)
PLF � (ψ − ψ̂)2/ψ̂ ψ̂PLF � (E(ψ2|x))1/2
WLF � (ψ − ψ̂)2/ψ ψ̂WLF � (E(ψ− 1|x))

− 1

DLF � (ψ − ψ̂/ψ̂)2 ψ̂DL F � E(ψ2|x)/E(ψ|x)
LLF � ek(ψ̂− ψ) − k(ψ̂ − ψ) − 1, k≠ 0 ψ̂LLF � − 1/kln(E(e− kψ|x))
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Figure 1: Graphical presentation of power function distribution
for di�erent values of θ at α � 5.
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+e first-order derivatives using the log-likelihood
function (13) are as follows:

dl

dθ
�

m

θ
− m ln α + 􏽘

n

i�1
ln xi;m: n

+ 􏽘
m

i�1
Ri

xi;m: n/α􏼐 􏼑
− θ

ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ � 0,

dl

dα
� −

mθ
α

+ 􏽘

m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

ln(x/α)

1 − (x/α)
− θ

􏼐 􏼑α2
� 0.

(14)

+e second-order derivatives using the log-likelihood
function (13) are as follows:

dl
2

dθ2
� −

m

θ2
− 􏽘

m

i�1
Ri

xi;m: n/α􏼐 􏼑
− 2θ

ln xi;m: n/α􏼐 􏼑
2

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2 − 􏽘

m

i�1
Ri

xi;m: n/α􏼐 􏼑
− θ

ln xi;m: n/α􏼐 􏼑
2

1 − xi;m: n/α􏼐 􏼑
− θ

dl
2

dθ dα
� −

m

α
− 􏽘

m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

α2 1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
−

m

α

+ 􏽘
m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− 1− 2θ

θ ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2
α2

+ 􏽘
m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

θ ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕α2

dl
2

dα2
�

mθ
α2

+ 2􏽘
m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

θ

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕α2

+ 􏽘
m

i�1
Ri

x
2
i;m: nθ(− θ − 1) xi;m: n/α􏼐 􏼑

− θ− 2

1 − (x/α)
− θ

􏽨 􏽩α4
− 􏽘

m

i�1
Ri

x
2
i;m: n xi;m: n/α􏼐 􏼑

− 2θ− 2
θ2

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2
α4

.

(15)

Now, consider the function

Ω(θ, α)

� (m + a − 1)ln θ − (mθ + c + 1)ln α − bθ + ln m ln θ − mθ ln α + 􏽘
m

i�1
ln x

θ− 1
i;m: n 1 −

xi;m: n

α
􏼒 􏼓􏼒 􏼓

θRi

􏼢 􏼣⎛⎝ ⎞⎠ + K⎡⎢⎢⎣ ⎤⎥⎥⎦/n.

(16)

Suppose we want to estimate the parameter θ under
SELF using the formula 􏽢θSELF � E(θ|x), then h(θ, α|x) � θ
and

Ω∗(θ, α) � 1/n[ln θ +Ω(θ, α)]. (17)

Similarly, for computations of the Bayes estimates under
PLF, we have to evaluate E(θ2| x), and correspondingly, we
consider Ω∗(θ, α) as Ω∗(θ, α) � 1/n[2 ln θ +Ω(θ, α)]

For the LINEX loss function, we take Ω∗(θ, α) as

Ω∗(θ, α) �
1
n

ln e
− θ

􏼐 􏼑 + nΩ(θ, α)􏽨 􏽩. (18)

For instance, consider the case of estimation of pa-
rameter θ under SELF, then the following first- and second-
order derivatives are required to be evaluated.
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dΩ(θ, α)

dθ
�

m + a − 1
θ

− m ln α + b + 􏽘
n

i�1
ln xi;m: n + 􏽘

m

i�1
Ri

xi;m: n/α􏼐 􏼑
− θ

ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ � 0. (19)

dΩ(θ, α)

dα
� −

mθ + c + 1
2

+ 􏽘
m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

ln(x/α)

1 − (x/α)
− θ

􏼐 􏼑α2
� 0,

d2Ω(θ, α)

dθ2
� −

m + a − 1
θ2

− 􏽘
m

i�1
Ri

xi;m: n/α􏼐 􏼑
− 2θ

ln xi;m: n/α􏼐 􏼑
2

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2

− 􏽘
m

i�1
Ri

xi;m: n/α􏼐 􏼑
− θ

ln xi;m: n/α􏼐 􏼑
2

1 − xi;m: n/α􏼐 􏼑
− θ ,

d2Ω(θ, α)

dθ dα
� − 􏽘

m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

α2 1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
−

m

α

+ 􏽘

m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− 1− 2θ

θ ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2
α2

+ 􏽘

m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

θ ln xi;m: n/α􏼐 􏼑

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕α2
,

d2Ω(θ, α)

dθ2
�

mθ + c + 1
α2

+ 2􏽘
m

i�1
Ri

xi;m: n xi;m: n/α􏼐 􏼑
− θ− 1

θ

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕α2

+ 􏽘

m

i�1
Ri

x
2
i;m: nθ(− θ − 1) xi;m: n/α􏼐 􏼑

− θ− 2

1 − (x/α)
− θ

􏽨 􏽩α4
− 􏽘

m

i�1
Ri

x
2
i;m: n xi;m: n/α􏼐 􏼑

− 2θ− 2
θ2

1 − xi;m: n/α􏼐 􏼑
− θ

􏼔 􏼕
2
α4

.

(20)

Now, (􏽢θ, 􏽢α) can be obtained by solving (15) and (16).
+e determinant for the negative of the inverse Hessian

of Ω(θ, α) evaluated at (􏽢θ, 􏽢α) is as follows:

det􏽘 � Ω11Ω22 − Ω212􏼐 􏼑
− 1

. (21)

where Ω11 � z2Ω(θ, α)/zθ2|􏽢θ,􏽢α
, Ω22 � z2Ω(θ, α)/zα2|􏽢θ,􏽢α

, and
Ω12 � z2Ω(θ, α)/zθ zα|􏽢θ,􏽢α

.
+e second-order derivatives from Ω(θ, α) contain

lengthy expressions; therefore, they have not been presented
here. Once Ω11, Ω12, Ω22, Ω∗11, Ω

∗
12, and Ω

∗
22 have been

calculated, they can easily be used to compute det􏽐 and
det􏽐∗; hence, using (27), the Bayes estimates can be ob-
tained. A similar process has been followed for the esti-
mation of model parameters under other loss functions.

5. Stress-Strength Reliability

Let the strength “X” follow the power function distribution
P(θ1, α) and stress “Y” follow P(θ2, α). +e reliability
function R can be defined as follows:

R � P(X<Y) �
θ1

θ1 + θ2
, 0<R< 1. (22)

Let X be a progressively type-II censored sample from
P(θ1, α) and Y is the complete sample P(θ2, α). +en, the
corresponding likelihood functions are as follows:

ℓ X|θ1, α( 􏼁∝􏽙
m

i�1

θ1x
θ1− 1
i: m,n

αθ1
1 −

xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣

Ri

, (23)

and

ℓ Y|θ2, α( 􏼁∝
θn
2

αnθ2
􏽙

n

j�1
y
θ2− 1
j . (24)

+e joint likelihood function for X,Y is as follows:

ℓ X,Y|θ1, θ2, α( 􏼁 � θm+n
1 α− mθ1− nθ2 􏽙

n

j�1
y
θ2− 1
j 􏽙

m

i�1
x
θ1− 1
i: m,n

· 1 −
xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣

Ri

� mln θ1( 􏼁 + nln θ2( 􏼁 − mθ1 + nθ2( 􏼁ln(α)

+ θ2 − 1( 􏼁 􏽘

n

j�1
ln yj􏼐 􏼑 + θ1 − 1( 􏼁 􏽘

m

i�1
ln xi;m,n􏼐 􏼑

+ 􏽘

m

i�1
Riln 1 −

xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣.

(25)

Hence, theMLE of α is 􏽢α � Max(xi;m,n, yj). Similarly, the
MLEs for θ1 and θ2 can be obtained by
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zℓ
zθ1

�
m

θ1
− mln(α) + 􏽘

m

i�1
ln xi;m,n􏼐 􏼑 + 􏽘

m

i�1
Ri

xi;m,n/α􏼐 􏼑
− θ1

ln xi;m,n/α􏼐 􏼑

1 − xi;m,n/α􏼐 􏼑
θ1

,

zℓ
zθ2

�
n

θ2
− nln(α) + 􏽘

n

j�1
ln yj􏼐 􏼑⇒􏽢θ2 �

n

nln(α) − 􏽐
n
j�1 ln yj􏼐 􏼑

.

(26)

+e MLE can be obtained by using the fixed-point so-
lution of (A)

h θ1( 􏼁 �
m

nln(α) − 􏽐
m
i�1 ln xi;m,n􏼐 􏼑 + 􏽐

m
i�1 Ri xi;m,n/α􏼐 􏼑

− θ1
ln xi;m,n/α􏼐 􏼑/1 − xi;m,n/α􏼐 􏼑

θ1
. (27)

Hence, the MLE for R can be obtained as follows:

􏽢R �
􏽢θ1

􏽢θ1 + 􏽢θ2
. (28)

+e prior distribution for θ1 is as follows:

g θ1( 􏼁∝ θa− 1
1 exp − θ1b( 􏼁. (29)

+e posterior distribution for θ1 is as follows:

p θ1|X( 􏼁∝
θm+a− 1
1

αmθ1
exp − θ1 − 􏽘

m

i�1
ln xi;m,n􏼐 􏼑 + b⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ 􏽙

m

i�1

· 1 −
xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣

Ri

.

(30)

Similarly, the posterior distribution for θ2 is as follows:

p θ2|Y( 􏼁∝
θn+a− 1
2

αnθ2
exp − θ2 − 􏽘

n

j�1
ln yj􏼐 􏼑 + b⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (31)

or

p θ1|X( 􏼁∝ θm+a− 1
1 exp − θ1 − 􏽘

m

i�1
ln xi;m,n􏼐 􏼑 + b + mln(α)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ 􏽙

m

i�1
1 −

xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣

Ri

,

p θ2|Y( 􏼁∝ θn+a− 1
2 exp − θ2 − 􏽘

n

j�1
ln yj􏼐 􏼑 + b + nln(α)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(32)

Under the assumption of independence, the joint pos-
terior distribution is as follows:

p θ1, θ2|X,Y( 􏼁∝ θm+a− 1
1 exp − θ1 − 􏽘

m

i�1
ln xi;m,n􏼐 􏼑 + b + mln(α)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

· 􏽙
m

i�1
1 −

xi;m,n

α
􏼒 􏼓

θ1
􏼢 􏼣

Ri

× θn+a− 1
2 exp − θ2 − 􏽘

n

j�1
ln yj􏼐 􏼑 + b + nln(α)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(33)
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Applying transformation, R � θ1/θ1 + θ2 and
U � θ1 + θ2.

Let M � m + a, n � n + a, A1 � − 􏽐
m
i�1 ln(xi;m,n) +

b + mln(α), and A2 � − 􏽐
n
j�1 ln(yj) + b + nln(α), then

p(R, U|X,Y)∝U
M+N− 2

R
M− 1

(1 − R)
N− 1

􏽙

m

i�1
􏽘

Ri

k�0
(− 1)

k
Ri

k

⎛⎝ ⎞⎠

· exp − U A2 + R A1 + A2( 􏼁 − Rkln
xi;m,n

α
􏼒 􏼓􏼒 􏼓􏼔 􏼕.

(34)

Nowm the above posterior distribution can be decom-
posed into following form:

(1) g(R|X,Y)∝RM− 1(1 − R)N− 1 which is beta(M, N)

(2) g(U|X,Y)∝UM+N− 2exp[− UA2] which is
gamma(M + N − 1, A2)

(3) g(R, U)∝ exp[− UR(A1 + A2 − kln(xi;m,n/α))]

+e Bayes estimate for R can be obtained using the
following algorithm:

Step I. Generate R from g(R|X,Y)

Step II. Generate U from g(U|X,Y)

Step III. Repeat Step-I and Step-II L � 10000 times

Step IV. Approximate R from different loss functions as
follows:

􏽢RSELF �
􏽐

L
w�1000 Rwg Rw|X,Y( 􏼁g(R, U)

􏽐
L
w�1000 g Rw|X,Y( 􏼁g(R, U)

,

􏽢RPLF �
􏽐

L
w�1000 R2

wg Rw|X,Y( 􏼁g(R, U)

􏽐
L
w�1000 g Rw|X,Y( 􏼁g(R, U)

􏼢 􏼣

1/2

,

􏽢RWLF �
􏽐

L
w�1000 R− 1

w g Rw|X,Y( 􏼁g(R, U)

􏽐
L
w�1000 g Rw|X,Y( 􏼁g(R, U)

􏼢 􏼣

− 1

,

􏽢RDL F �
􏽐

L
w�1000 R

2
wg Rw|X,Y( 􏼁g(R, U)

􏽐
L
w�1000 g Rw|X,Y( 􏼁g(R, U)

,

􏽢RLLF � −
1
k
ln

􏽐
L
w�1000 e

− kRw g Rw|X,Y( 􏼁g(R, U)

􏽐
L
w�1000 g Rw|X,Y( 􏼁g(R, U)

􏼢 􏼣.

(35)

Note that the starting 1000 observations been discarded
as burn in observations for improved estimation.

6. Simulation Study

+is section presents a simulation study to compare the
performance of the Bayes estimates of model parameters,
reliability function, and stress-strength reliability. +e
simulation study is carried out for different sample sizes and
with different hyperparameter values. +e conjugate priors
are used for the estimation of model parameters, reliability
function, and stress-strength reliability. Two functional

forms of the prior distributions have been used for the
estimation. +e respective Bayes estimates have been named
as Bayes-I and Bayes-II. +e Bayes-I estimates are computed
by taking the hyperparameter valuesa � 0.2, b � 1, c �

8, d � 1, while the Bayes-II estimates are computed at the
hyperparameter values a � b � c � d � 0, respectively. +e
set of parametric values that are used for data generation are
(θ, α) ∈ (0.25, 1), (0.5, 1.5), (1, 2), (1.5, 3), (2, 5){ }. +e
Bayes estimates are computed under SELF, PLF, WLF, DLF,
and LLF. +e performances of the estimates are compared
based on the RMSE. +e results from the simulation study
have been reported in Tables 1 and 2, respectively. In the
mentioned tables, the amounts of RMSEs are given in the
parentheses below the Bayes estimates. +e following pro-
gressive censoring schemes have been used for estimating
the model parameters, reliability function, and stress-
strength reliability.

Scheme 1: n� 20, m� 15, R1� . . . �R14� 0, and R15� 5

Scheme 2: n� 20, m� 15, R2� . . . �R15� 0, and R1� 5

Scheme 3: n� 20, m� 18, R1� . . . �R17� 0, and R18� 2

Scheme 4: n� 30, m� 20, R1� . . . �R19� 0, and R20�10

Scheme 5: n� 30, m� 20, R2� . . . �R20� 0, and R1� 10

Scheme 6: n� 30, m� 25, R2� . . . �R24� 0, and R25� 5
Table 2 represents the comparison of different loss

functions for the estimation of model parameters under
different censoring schemes using different censoring
schemes for different sample sizes (n) and different effective
sample sizes (m). +e censoring Schemes 1–3 have been
developed using sample size 20. On the other hand, the
censoring Schemes 4–6 have been constructed for sample
size 30. From the results, it can be seen that the increase in
sample size and effective sample size has imposed a positive
impact on the estimation of the model parameters. +e
comparison of the schemes suggest that the performance of
the Bayes estimators is better for censoring schemes with
withdrawal of the items at the time of first failure (Scheme 2
and Scheme 5). +e Bayes-I estimates are superior to Bayes-
II estimates as the RMSEs for Bayes-I are smaller than the
RMSEs of Bayes-II. Further, the Bayes estimates of model
parameters under LLF are better than those obtained under
other loss functions. Since in Table 2, the Bayes estimation
was efficient under LLF, Table 3 reports the detailed Bayesian
estimation for the model parameters under LLF. Different
true parametric values have been assumed for the posterior
estimation. +e results advocate that the proposed Bayes
estimates are quite efficient for various choices of the true
parametric values.

+e estimation for the reliability function has been re-
ported in Table 4.+e estimation of reliability characteristics
was also slightly better under Scheme 2 and Scheme 5 for
sample sizes 20 and 30, respectively. On the whole, the
estimation was comparatively better for Bayes-I using a
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Table 2: Average estimates and their RMSE (in parentheses) for (θ � 0.25, α � 1) for different censoring schemes under different loss
functions.

Estimates Censoring plans
SELF PLF WLF DLF LLF

􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α

Bayes-I

1 0.2923 0.7795 0.2995 0.8029 0.2810 0.7561 0.3038 0.8163 0.2869 0.7682
(0.0727) (0.0826) (0.0735) (0.0824) (0.0733) (0.0825) (0.0754) (0.0842) (0.0715) (0.0805)

2 0.2713 0.8069 0.2770 0.8241 0.2626 0.7811 0.2829 0.8390 0.2667 0.7932
(0.0650) (0.0737) (0.0658) (0.0740) (0.0654) (0.0739) (0.0671) (0.0758) (0.0641) (0.0721)

3 0.2876 0.7976 0.2946 0.8192 0.2771 0.7723 0.2988 0.8394 0.2821 0.7869
(0.0659) (0.0745) (0.0667) (0.0744) (0.0664) (0.0744) (0.0679) (0.0760) (0.0647) (0.0725)

4 0.2707 0.8229 0.2761 0.8410 0.2599 0.7973 0.2797 0.8635 0.2643 0.8108
(0.0584) (0.0659) (0.0593) (0.0662) (0.0588) (0.0660) (0.0606) (0.0676) (0.0575) (0.0644)

5 0.2572 0.8309 0.2619 0.8508 0.2464 0.8079 0.2682 0.8668 0.2520 0.8205
(0.0512) (0.0579) (0.0519) (0.0582) (0.0518) (0.0579) (0.0529) (0.0594) (0.0505) (0.0564)

6 0.2596 0.8229 0.2651 0.8478 0.2496 0.7973 0.2712 0.8645 0.2549 0.8114
(0.0574) (0.0652) (0.0583) (0.0654) (0.0578) (0.0647) (0.0593) (0.0662) (0.0566) (0.0633)

Bayes-II

1 0.3287 0.4492 0.3356 0.4599 0.3150 0.4345 0.3420 0.4678 0.3208 0.4423
(0.0862) (0.1796) (0.0869) (0.1794) (0.0864) (0.1790) (0.0891) (0.1836) (0.0848) (0.1748)

2 0.3069 0.4692 0.3130 0.4829 0.2929 0.4556 0.3166 0.4911 0.2994 0.4624
(0.0769) (0.1617) (0.0776) (0.1612) (0.0779) (0.1616) (0.0794) (0.1643) (0.0757) (0.1572)

3 0.3233 0.4647 0.3291 0.4750 0.3096 0.4451 0.3358 0.4838 0.3159 0.4550
(0.0781) (0.1622) (0.0790) (0.1625) (0.0785) (0.1621) (0.0804) (0.1648) (0.0766) (0.1576)

4 0.3032 0.5358 0.3086 0.5499 0.2922 0.5176 0.3157 0.5625 0.2966 0.5279
(0.0683) (0.1449) (0.0696) (0.1444) (0.0693) (0.1447) (0.0705) (0.1482) (0.0674) (0.1407)

5 0.2882 0.7693 0.2933 0.7842 0.2775 0.7379 0.3001 0.8005 0.2831 0.7555
(0.0602) (0.1269) (0.0605) (0.1263) (0.0607) (0.1266) (0.0622) (0.1301) (0.0590) (0.1233)

6 0.2944 0.5850 0.3009 0.5985 0.2814 0.5629 0.3042 0.6081 0.2877 0.5757
(0.0575) (0.0652) (0.0583) (0.0650) (0.0577) (0.0651) (0.0596) (0.0667) (0.0566) (0.0633)

Table 3: Average estimates and their RMSE (in parentheses) for (θ, α) for different censoring schemes using LLF.

(θ, α) (0.25, 1) (0.5, 1.5) (1, 2) (1.5, 3) (2, 5)
Estimates Censoring scheme 􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α 􏽢θ 􏽢α

Bayes-I

1 0.2869 0.7682 0.5732 1.2596 1.1470 1.7663 1.7136 2.6959 2.2943 4.5270
(0.0715) (0.0805) (0.1432) (0.0832) (0.2861) (0.0668) (0.4278) (0.0711) (0.5706) (0.0918)

2 0.2667 0.7932 0.5305 1.2913 1.0563 1.8280 1.5875 2.7681 2.1196 4.6105
(0.0641) (0.0721) (0.1286) (0.0745) (0.2555) (0.0601) (0.3850) (0.0629) (0.5134) (0.0822)

3 0.2821 0.7869 0.5639 1.2866 1.1190 1.8090 1.6854 2.7580 2.2501 4.6037
(0.0647) (0.0725) (0.1289) (0.0748) (0.2563) (0.0605) (0.3870) (0.0636) (0.5146) (0.0826)

4 0.2643 0.8108 0.5202 1.3089 1.0274 1.8498 1.5538 2.8067 2.0739 4.6693
(0.0575) (0.0644) (0.1148) (0.0668) (0.2271) (0.0543) (0.3455) (0.0559) (0.4601) (0.0738)

5 0.2520 0.8205 0.4953 1.3324 0.9860 1.8851 1.4834 2.8613 1.9888 4.7587
(0.0505) (0.0564) (0.1005) (0.0588) (0.1987) (0.0477) (0.3025) (0.0489) (0.4042) (0.0651)

6 0.2549 0.8114 0.5116 1.3196 1.0142 1.8760 1.5333 2.8569 2.0532 4.7343
(0.0566) (0.0633) (0.1144) (0.0663) (0.2248) (0.0537) (0.3397) (0.0551) (0.4571) (0.0727)

Bayes-II

1 0.3208 0.4423 0.6416 0.9363 1.2847 1.5868 1.9308 2.6014 2.5692 4.3889
(0.0848) (0.1748) (0.1694) (0.1566) (0.3385) (0.1151) (0.5093) (0.1193) (0.6795) (0.1523)

2 0.2994 0.4624 0.5956 0.9635 1.1852 1.6518 1.7948 2.6611 2.3907 4.5089
(0.0757) (0.1572) (0.1515) (0.1392) (0.3011) (0.1038) (0.4569) (0.1063) (0.6068) (0.1348)

3 0.3159 0.4550 0.6307 0.9534 1.2646 1.6409 1.9006 2.6542 2.5205 4.4875
(0.0766) (0.1576) (0.1524) (0.1402) (0.3038) (0.1040) (0.4577) (0.1068) (0.6102) (0.1367)

4 0.2966 0.5279 0.5830 0.9763 1.1650 1.6886 1.7628 2.6796 2.3335 4.6013
(0.0674) (0.1407) (0.1361) (0.1242) (0.2690) (0.0919) (0.4070) (0.0948) (0.5439) (0.1208)

5 0.2831 0.7555 0.5597 1.0011 1.1082 1.7315 1.6857 2.7281 2.2387 4.7295
(0.0590) (0.1233) (0.1190) (0.1087) (0.2358) (0.0804) (0.3565) (0.0831) (0.4773) (0.1058)

6 0.2877 0.5757 0.5762 0.9984 1.1392 1.7148 1.7272 2.7147 2.3206 4.6673
(0.0566) (0.0633) (0.1144) (0.0663) (0.2248) (0.0537) (0.3397) (0.0551) (0.4571) (0.0727)
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Table 4: Average estimates and their RMSE (in parentheses) for reliability functions using different censoring schemes using LLF.

(θ, α)
(0.25, 1) (0.5, 1.5) (1, 2) (1.5, 3) (2, 5)

Estimate Censoring schemes

Bayes-I

1 0.5000 0.4898 0.4651 0.4374 0.4182
(0.0008) (0.0003) (0.0009) (0.0015) (0.0014)

2 0.4905 0.4777 0.4548 0.4272 0.4062
(0.0006) (0.0002) (0.0007) (0.0010) (0.0010)

3 0.5019 0.4911 0.4650 0.4388 0.4177
(0.0007) (0.0003) (0.0008) (0.0013) (0.0013)

4 0.4942 0.4767 0.4518 0.4260 0.4047
(0.0006) (0.0002) (0.0007) (0.0012) (0.0011)

5 0.4866 0.4707 0.4481 0.4214 0.4011
(0.0005) (0.0001) (0.0006) (0.0010) (0.0010)

6 0.4862 0.4751 0.4526 0.4275 0.4058
(0.0006) (0.0002) (0.0007) (0.0011) (0.0011)

Bayes-II

1 0.4235 0.4562 0.4694 0.4575 0.4369
(0.0016) (0.0007) (0.0017) (0.0021) (0.0020)

2 0.4114 0.4418 0.4578 0.4449 0.4262
(0.0012) (0.0003) (0.0012) (0.0016) (0.0017)

3 0.4233 0.4548 0.4724 0.4579 0.4370
(0.0012) (0.0004) (0.0012) (0.0019) (0.0018)

4 0.4303 0.4389 0.4585 0.4424 0.4252
(0.0010) (0.0004) (0.0010) (0.0017) (0.0016)

5 0.4926 0.4338 0.4526 0.4365 0.4225
(0.0006) (0.0003) (0.0007) (0.0011) (0.0014)

6 0.4381 0.4403 0.4567 0.4407 0.4271
(0.0009) (0.0005) (0.0009) (0.0015) (0.0015)

Table 5: Estimation of stress strength reliability under progressively censored samples using LLF.

Estimate Censoring plans θ2/θ1 θ1 � 0.25 θ1 � 0.5 θ1 � 1 θ1 � 1.5 θ1 � 2

Bayes-I
2

θ2 � 0.25

0.51426 0.67805 0.80736 0.86388 0.89422
(0.08886) (0.12181) (0.14650) (0.15445) (0.15470)

5 0.50027 0.66433 0.79669 0.85634 0.88784
(0.08225) (0.12024) (0.14003) (0.14608) (0.14548)

Bayes-II
2 0.48080 0.64814 0.78576 0.84644 0.88038

(0.09999) (0.13125) (0.16861) (0.19427) (0.20230)

5 0.46667 0.63232 0.77394 0.83742 0.87351
(0.09319) (0.12940) (0.14568) (0.16190) (0.16945)

Bayes-I
2

θ2 � 0.5

0.32164 0.48536 0.65252 0.73837 0.79028
(0.07364) (0.11064) (0.13743) (0.15949) (0.17804)

5 0.30939 0.46824 0.63675 0.72506 0.77952
(0.05717) (0.08444) (0.11619) (0.13669) (0.15083)

Bayes-II
2 0.34745 0.51438 0.67823 0.76144 0.80958

(0.06150) (0.08600) (0.11421) (0.13720) (0.13995)

5 0.33487 0.49884 0.66339 0.74987 0.79925
(0.06032) (0.08128) (0.11981) (0.12558) (0.13846)

Bayes-I
2

θ2 �1

0.19776 0.32901 0.49401 0.59470 0.66206
(0.04299) (0.06627) (0.10241) (0.13527) (0.14445)

5 0.18892 0.31404 0.47681 0.57826 0.64767
(0.03826) (0.06063) (0.09188) (0.11906) (0.11756)

Bayes-II
2 0.21214 0.34881 0.51595 0.61747 0.68255

(0.03844) (0.06014) (0.09331) (0.12016) (0.11139)

5 0.20294 0.33483 0.49917 0.60255 0.66815
(0.03481) (0.05796) (0.09168) (0.11029) (0.10830)

Bayes-I
2

θ2 �1.5

0.14543 0.25290 0.40263 0.50322 0.57492
(0.03271) (0.05204) (0.08986) (0.11402) (0.12842)

5 0.13852 0.24015 0.38618 0.48626 0.55928
(0.02797) (0.04474) (0.07439) (0.09831) (0.11290)

Bayes-II
2 0.15365 0.26532 0.41815 0.52114 0.59177

(0.02652) (0.04739) (0.06910) (0.09006) (0.10086)

5 0.14651 0.25338 0.40190 0.50547 0.57581
(0.02637) (0.04473) (0.06718) (0.08997) (0.09959)
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censoring scheme with all the removals of the surviving
items at the time of �rst failure.

­e Bayes estimation for the stress-strength reliability
under progressive censoring has been reported in Table 5.
Since censoring Scheme 2 and censoring Scheme 5 pro-
vided the most e�cient estimation for the model param-
eters and reliability from the proposed model, the said
censoring schemes have been used to compute the stress-
strength reliability from the proposed model. From the
results, it can be assessed that the estimation of stress-
strength reliability is quite e�cient in almost all the cases. It
is interesting to observe that keeping θ1 �xed, the larger
choice of θ2 tends to improve the estimation of stress-
strength reliability. In converse, keeping θ2 �xed, the
smaller choice of θ1 results in an improved estimation of
the stress-strength reliability.

7. Real-Life Data Analysis

­is section provides a real-life data example to discuss the
applications of the proposed estimates. ­e dataset, used by
Ghitany et al. [29], is related to a clinical trial performed to
study the e�ectiveness of an antibiotic ointment in relieving
pain. ­is dataset represents the 20 failure times (time for a
patient to get relief from pain), as follows:

0.529, 0.554, 0.566, 0.653, 0.665, 0.683, 0.698, 0.786,
0.788, 0.828
0.829, 0.866, 0.879, 0.881, 0.899, 0.917, 1.037, 1.050,
1.110, 1.138

Before using this dataset for the estimation, one natural
question arises whether this dataset �ts the PF(θ, α) or not.
­e Kolmogorov–Smirnov (KS) test is performed for the

Table 6: Kolmogorov–Smirnov distances with their respective p values between the empirical distribution function and the �tted dis-
tribution functions.

Estimate K-S distance p-value

Bayes

MLE 0.2563 0.1203
SELF 0.2298 0.2070
PLF 0.2380 0.1759
WLF 0.2129 0.2838
DLF 0.2464 0.1483
LLF 0.2111 0.2919

0.0

1 2 3

Posterior distribution of θ

4 5
θ

0.2

0.4g 
(θ

|x
) 0.6

0.8

1.0

Baye-I
Bayes-II

(a)

1.24

0.0

1.20 1.28

Posterior distribution of α

1.32
α

0.2

0.4g 
(α

|x
) 0.6

0.8

1.0

Baye-I
Bayes-II

(b)

Figure 2: Marginal posterior distributions for θ and α.

Table 7: Bayes estimates and goodness-of-�t statistics for real data.

Estimates Schemes α θ KS value p-value R (t) R

Bayes-I
Scheme 1 2.0530 1.1410 0.2067 0.3148 0.3854 0.8592
Scheme 2 2.0680 1.1381 0.2051 0.3236 0.3897 0.8614
Scheme 3 2.0304 1.1431 0.2092 0.3016 0.3781 0.8576

Bayes-II
Scheme 1 1.9219 1.1591 0.2215 0.2421 0.3416 0.8458
Scheme 2 1.9881 1.1489 0.2139 0.2777 0.3644 0.8534
Scheme 3 1.9610 1.1542 0.2170 0.2629 0.3556 0.8494
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goodness of fit of the PF(θ, α). +e K–S distance Dn(F) is
computed to be 0.19912 with a corresponding p value 0.3579
at θ � 2.02 and α � 1.18. As the p value is quite high, the
PF(θ, α) provides good fit for the given failure times data.
+e dataset is used to compute the MLEs and the Bayes
estimates for the PF(θ, α).

+e MLEs of θ and α are given as 􏽢θMLE � 2.8224 and
􏽢αMLE � 1.1380, respectively. Similarly, the Bayes estimates of
θ and α are computed under the conjugate priors, where the
hyperparameters are chosen as a � 0.2, b � 1, c � 8, and
d � 1. +e Bayes estimates of θ and α under different loss
functions are given as (􏽢θSELF � 2.3928, 􏽢αSELF � 1.1596),

(􏽢θPLF � 2.4531, 􏽢αPLF � 1.1598), (􏽢θWLF � 2.2708, 􏽢αWLF �

1.1592), (􏽢θDL F � 2.5149, 􏽢αDL F � 1.1601), and
(􏽢θLLF � 2.2577, 􏽢αLLF � 1.1594), respectively. Following the
idea of Pradhan and Kundu [30], the comparison among the
MLEs and the Bayes estimates are performed on the basis of
the K–S test. +e K–S test is performed and the K–S dis-
tances along with their p values for various estimates are
given in Table 6.

+e comparison of the K–S distances showed that the
Bayes estimates better fit the (θ, α) , as compared to theMLE.
On the other hand, the Bayes estimates under LLF provided
better fits as compared to other loss functions.

Here, the above real-life data are used to construct the
graph of the marginal posterior densities for θ and α.

Figure 2 represents the graph of the marginal posterior
densities for θ and α at two sets of hyperparameter values
a � 0.2, b � 1, c � 8, d � 1 and a � b � c � d � 0, respec-
tively. +e figure shows that the shapes for marginal pos-
terior densities of θ are symmetrical, while the shapes for
marginal posterior densities for α are heavy-tailed and highly
skewed. +e figure also shows that the respective marginal
posterior distributions for θ and α under informative and
non-informative priors are of a similar type but quite
sensitive against the hyperparameter values.

+e dataset reported by Ghitany et al. [29] has been used
to illustrate the applications of the progressive censoring for
the power function distribution. Following schemes have
been considered for the real dataset. Scheme 1: n� 20,
m� 15, R1� . . . �R14� 0, R15� 5; Scheme 2: n� 20,m� 15,
R2� . . . �R15� 0, R1� 5; Scheme 3: n� 20, m� 18,
R1� . . . �R17� 0, R18� 2. From the results reported in
Table 7, it can be assessed that the p values for the K–S test
are slightly higher for censoring Scheme 2. +e p values for
Bayes-I are again higher than those for Bayes-II. +e esti-
mated values for the reliability function R(t) and stress-
strength reliability (R) are slightly higher for Bayes-I as
compared to those under Bayes-II.

8. Summary and Conclusions

+is paper presents the estimation for the unknown pa-
rameters of the two-parameter power function distribution
using the Bayesian estimation via Gibb’s sampling algorithm
and Tierney and Kadane’s Approximation. +e reliability
function and stress-strength reliability have also been esti-
mated from the proposed model. +e progressively censored

samples have been used for the estimation. +e posterior
distributions are constructed, using conjugates priors for
both parameters θ and α. +e conjugate prior for θ is as-
sumed as gamma prior, and the conjugate prior for α is
assumed as Pareto prior. +e Bayes estimates are computed
under different loss functions, such as SLEF, PLF, WLF,
DLF, and LLF. +e results from the simulation study sug-
gested that the Bayes estimates for the model parameters,
reliability function, and stress-strength reliability were quite
efficient. +e simulation results also suggested that the Bayes
estimates under LLF, as compared to the Bayes estimates
under other loss functions, are better. In comparison of
different progressively censored schemes, it was observed
that the Bayes estimators are better for censoring Schemes 2
and 5. +e said progressive censoring schemes suggest the
withdrawal of the surviving items at the time of first failure.
+e real-life data analysis also suggested the same perfor-
mance behavior of the estimates as shown by the simulation
study.
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