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)is research presents a review of an analytical simulation of heat and mass transmission features of steady, non-Newtonian Casson
fluid motion across a permeable medium through a stretching surface. )e effects of heat production and thermal emission are put
into discussion. Mathematically, the governing model is manipulated by a series of nonlinear partial equations, which are then
modified into ordinary differential equations with the assistance of appropriate conversion. Analytical results for such equations are
then achieved by invoking the notable technique of the homotopy analysis method (HAM), and its solution sounds good while
achieving the convergence guaranteed in the convergence table. Some achievements have beenmade.)e consequence of raising the
value of the Casson parameter is comprehended to be putting down the velocity field while increasing the temperature field. Also, the
concentration field falls with an increase in the Schmidt number, while it rises with an enhancement in the Soret number.)e electric
parameter due to Lorentz’s force is capable of accelerating the temperature of the fluid but downsizing the velocity.

1. Introduction

In advanced technology, several flow properties are not
understood with the Newtonian flow model. As a result, the
non-Newtonian fluid concept is becoming more beneficial.
Some of the significant and recent studies [1–5] about it are
useful for the readers. )e research scientist has gained
attention for Casson fluids because of their impressive
technical and industrial science characteristics. Casson fluid
is among the significant types of fluid in the class of non-
Newtonian substances. It is a shear-diminishing substance
that is expected to have a zero-shear rate of infinite viscosity,
i.e., beyond yield stress, no flow keeps going and viscosity
tends to be zero at a shear rate of infinity. Common examples
of Casson fluids are synthetic lubricants, sugar solutions,

mud drilling, coating of clay, certain oil paints, and bio-
logical fluids. Widely available Casson fluid models are
categorized as conscious rheological properties such as
Oldroyd-B, Eyring-Powell, Seely, Cumbersome, Oldroyd-A,
Casson, Maxwell, Carreau, Jeffrey, and Burger. Pramanik [6]
studied the heat transfer properties of Casson fluid by
utilizing thermal radiation and porous media. Akbar [7]
explored the magnetic field’s impact over Casson fluid of
peristaltic model in the symmetrical tube. Alamri et al. [8]
analyzed plane Poiseuille fluid and examined the conse-
quences of second-order slip. Abou-Zeid [9] examined the
incompressible non-Newtonian micropolar fluid move-
ment, including heat exchange. Hassan et al. [10] analyzed
the movement of water-based nanofluid over wavy surfaces
into a permeable medium. Heat exchange features in a
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turbulent MHD Casson fluid are explained by Kataria and
Patel [11]. Saravana et al. [12] surveyed the effects of aligning
the magnetic field over Casson fluid through a stretching
layer. Flow and heat exchange applications beyond
stretching sheets have a broad variety of technical appli-
cations. Fluid flow through the (stretching) surfaces is ef-
fective in practicing such as warm evolution, cord drawing,
exclusion, and copper twisting. )e effects on the Casson
fluid by entropy generation and hall impact are explained by
Aziz and Afify [13]. Pop and Khan [14] adopted the tech-
nique of series solutions on Casson fluid flows over an
infinite plate and found their approximate solutions for a
dimensionless scheme of ordinary differential equations.
Kashif et al. [15] recently put an effort into approximating
the results of the nanofluid phenomena with the help of an
analytical technique called HAM. However, the same
technique has been exercised on the MHD flow analysis by
Bayones et al. [16] with mixed convection moving through
the plane surface. Seadawy et al. [17] discussed the en-
grossing non-Newtonian model, advanced for chemical
engineering systems as the tangent hyperbolic fluid model,
implemented the HAM approach, and discussed the impact
of the flow control variables to conceive the complete ap-
prehension of the ongoing pagination and determined that
the surface drag factor and convective thermal for the plate
are larger in magnitude than for the other geometry. Tripathi
and Beg [18, 19] proposed a mathematical simulation of the
bioengineering design with the aid of peristaltic structure
and nanofluids. In their two studies, Jamshed et al. [20, 21]
studied the non-Newtonian nanofluid flow to explore its
effects induced by elastic sheets of different nature by finding
some approximate solutions and presented some remarkable
results. Muhammad et al. [22] present the attributes of a
magnetic dipole in a ferro-viscous fluid derived by a plate
that is linearly stretched and disclose the prominent effects
in regulating the heat transfer effects where the ferro factor is
responsible to reduce the axial velocity but raise the tem-
perature distribution. El-dabe et al. [23, 24] considered the
Casson MHD flow and examined the various features of
substantial parameters. Abou-zeid et al. [25, 26] used the
homotopy perturbation method for non-Newtonian MHD
nanofluids. 2-D mixed convection with heat transfer effect
and concentration flow through a stretched layer was

expended by Zeeshan et al. [27]. Pal et al. [28] studied the
heat features with the non-Darcy flow in the existence of
ohmic distraction, and El-Dabe et al. [29] analyzed the non-
Newtonian case and expanded the research of Pal and
Mondal [28] for the shrinking surface.

)e current research has the novelty that it is an en-
hanced version in the field of stretching surfaces where the
simulations are carried out through the technique of HAM
towards the ambient Casson fluid’s flow with the involve-
ment of electric and magnetic fields. Also, the effects of
viscous dissipation, thermal diffusion, and heat generation
are considered or invoked in the energy equation. )e
convergence regulator through HAM is functional to get the
analytic approximation. No one researched it till now. In it,
the heat transportation and flow characteristics of Casson
fluid are reviewed across a permeable stretching layer with
heat production, and their appraisal in the form of series
solutions will be discussed. )e influence of various physical
constraints is examined by utilizing tables and graphs as the
heat effects have been investigated with the aid of the Nusselt
number in the tabulated form.

2. Problem’s Framework

A steady, non-Newtonian, incompressible, two-dimen-
sional, electrically conducting flow through a stretching
sheet immersed in a permeable medium is considered. A
consistent electric and magnetic field E

→
� (0, 0, −E0) and

B
→

� (0, B0, 0) is introduced over the flow region (see
Figure 1). Here, ∇ × E

→
� 0 and ∇ · B

→
� 0 are the Maxwell

equations, with Ohm’s principle J
→

� σ( E
→

+ v
→

× B
→

),
where J

→
be the fluid current, σ be the magnetic perme-

ability, and v
→ be the fluid speed. )e momentum and

thermal boundary surface equations are revealed in the
following along with the influence of the electric and
magnetic field. )e involvement of chemical reactions and
temperature differences in the mass transfer equation is
also considered.

)e mathematical model with the aid of boundary layer
(BL) approximations [28, 30, 31] is obeyed by
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Here, u and v are the directional parts of speed relative to
x and y axis, μ be the kinematic thickness, σ be the electrical
conduction, ρ be the flow density, k1 be the permeability of
permeable media, k be the thermal conduction, cp is the
specific heat, Dm and Kt are the mass and thermal diffusivity
parameters, A indicates the reaction value constant, and Tm

is the mean flow temperature with end conditions [32]:

u � Um(x) � bx,

v � 0,

T � Tw � T∞ + A0
x

l
 

2

,

C � Cw when y � 0,

u � 0,

T⟶ T∞,

C⟶ C∞ when y⟶∞,
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where Tw and T∞ represent the thermal reading of the sheet
and ambient surface, respectively, and A0 is the temperature
variation parameter over the stretching layer. )e thermal
radiation heat flux is
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where k0 and σ∗ are the parameters of mean absorption and
Stefan–Boltzmann law. We considered that the temperature
variations in the current flow of the fluid-phase are ex-
tremely low; therefore, T

4 can be displayed as a linear map.
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where f, θ, and ϕ are the dimensional free stream functions
and ϑ is the resemblance variable. )e above equations
(1)–(4) can be converted into the ordinary differential
equation
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Figure 1: Geometry of the EMHD model.

Mathematical Problems in Engineering 3



1
Sc
ϕ″ + fϕ′ − δϕ + Srθ″ � 0. (11)

It is obvious that the above equations are the nonlinear
ordinary differential equations for the Casson liquid. If
β⟶∞, the fluid becomes ordinary Newtonian, where
Ha2 � σB2

0/ρb be the Hartmann number, K1 � ]bx/k be the
porous measurement, E1 � E0/B0bx be the electric mea-
surement, Nr � 16σ∗T3

∞/3kK be the thermal radiation
measurement, Pr � ρ]Cp/K be the Prandtl value,
Ec � b2l2/A0Cp is the Eckert value, Sc � ]/Dm be the
Schmidt number, δ � ATm/Dmkt be the chemical reaction,
and Sr � Dmkt/]Tm(Cw − C∞) be the Soret number. Fur-
thermore, the appropriate boundary constants are as follows:

As ϑ � 0,

f(ϑ) � 0,

f′(ϑ) � 1,

θ(ϑ) � 1,

ϕ(ϑ) � 1,

As ϑ⟶∞,

f′(ϑ) � 0,

θ(ϑ) � 0,

ϕ(ϑ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

)e significant factors for the application point of view
are involved in equations (9)–(11) to find the rate of change
as a frictional factor. Heat transfer and mass transfer in
dimensionless shape are functional as
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ShxRe
−1/2
x � −ϕ′(0).

(13)

3. Solution by HAM

Equations (9), (10), and (11) are standard nonlinear ordinary
differential equations that are dealt with an analytical skill
named as homotopic analysis method. Liao was the first [33]
to present the homotopy analysis method and the analyzers
discovered that it is a dynamic technique to obtain an es-
timated solution to the problem. )e said procedure also
avows the choice of a series base solution. )e handy
guesswork in initial approximation, linear operator, and

auxiliary function (for details, see [34, 35]) in the present
problem are as follows:

f0(ϑ) � 1 − θ0(ϑ), θ0(ϑ) � e
− ϑ

� ϕ0(ϑ), (14)

where the auxiliary linear operators are
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having the following properties

Lf � C1 + C2e
− ϑ

,

Lθ � C3e
ϑ

+ C4e
− ϑ

,

Lϕ � C5e
ϑ

+ C6e
− ϑ

,

(16)

with Cj(j � 1 − 6) denoting the arbitrary constants. For this,
we (for details, see [36, 37]) constructed a zero-order de-
formation equation with one parameter function of the
equation in “s” as

(1 − s)Lf
f(ϑ, s) − f0(ϑ)  � sZfH(ϑ)Nf[f(ϑ, s)],

(1 − s)Lθ
θ(ϑ, s) − θ0(ϑ)  � sZθH(ϑ)Nθ[

θ(ϑ, s)],

(1 − s)Lϕ
ϕ(ϑ, s) − ϕ0(ϑ)  � sZϕH(ϑ)Nϕ[ϕ(ϑ, s)],

f(0, s) � 0,

f′(0, s) � 1,

f′(∞, s) � 1,

θ(0, s) � 1,

θ(∞, s) � 0,

ϕ(0, s) � 1,

ϕ(∞, s) � 0,

(17)

containing nonlinear operators
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Nf[f(ϑ, s)] � 1 +
1
β

 f
‴

(ϑ, s) + f(ϑ, s)f″(ϑ, s) − f′
2
(ϑ, s) + Ha

2
E1 − f′(ϑ, s)  − K1

f′,
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f′

2
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2

+ Gθ(ϑ, s),

Nϕ[ϕ(ϑ, s)] �
1
Sc

 ϕ″(ϑ, s) + f(ϑ, s)ϕ′(ϑ, s) − δϕ(ϑ, s) + Srθ″(ϑ, s).

(18)

If s � 0 and s � 1, then

f(ϑ, 0), θ(ϑ, 0), ϕ(ϑ, 0), f(ϑ, 1), θ(ϑ, 1), ϕ(ϑ, 1)  � f0(ϑ), θ0(ϑ),ϕ0(ϑ), f(η), θ(η), ϕ(η) , (19)

where sε[0, 1] is an inserting measurement and
Zf, Zθ, and Zϕ are nonzero ancillary measurements. H(ϑ) is
an ancillary function, Lf,Lθ, andLϕ are ancillary linear
operators, f0(ϑ), θ0(ϑ), and ϕ0(ϑ) are initial approxima-
tions, and f(ϑ, s), θ(ϑ, s), and ϕ(ϑ, s) are anonymous
functions (for nitty-gritty, see [36, 37]).

4. Recognition of HAM Solutions

)e main feature on which the current analytic solution of
an equation depends is the Z, a convergence regulator. An
eye for the convergence criteria is provided or plotted in
Figure 2, where the apposite Z values are selected from it. For
more recognition, Table 1 is presented ahead.

5. Discussion

In this section, the following points are highlighted: (i)
influence of the magnetic and electric field, (ii) significance
of the features of the permeability of the channel on the flow
attributes, (iii) involvement of viscous dissipation in the
energy equation, (iv) effect of diffusion species with the
addition of the first-order chemical reaction, (v) relative
response of the shear thinning fluid model in the feature of
uniform porous surface, and (vi) the dimension-free ODEs
(9), (10) and, (11) with the respective end-point conditions
are solved after utilizing the famous analytic technique
HAM. Figure 2 illustrates the curves of Z-cut for different
distributions of the system where the sequence convergence
of these series solutions depends strongly on the conver-
gence control parameters hf, hθ, and hϕ. It is worth
explaining that the suitable range for these parameters is
−1.0≤ hf ≤ − 0.10, −1.60≤ hθ ≤ − 0.20, and −2.80≤ hϕ ≤ −

0.50 as observed in Figure 2. Equations (9)–(11) with the
constraint of (12) are processedmathematically by the HAM.
)e different physical parameters such as β � 1, K1 � 0.2,
Ec � 0.1, E1 � 0.1, Ha � 0.1, Nr � 0.1, G � 0.5, Pr � 3,
Sc � 1.5, δ � 0.1, and Sr � 0.1 are proposed for the whole
impagination unless mentioned in tables. Table 1 presents
the features of solutions to convergence criteria via HAM

against the suitable values of Z as decided by Figure 1. Table 2
provides a distinction between the empirical findings of the
current analysis and those reported by Pal and Mondal [28]
and El-dabe et al. [23] for the local Nusselt number for the
separate values of Pr. It can be observed from the tables that
the present findings are in good concordance. It indicates
that the skin friction coefficient and local Nusselt number
appear as an increasing function of the Prandtl number.

Figures 3 and 4 display the influence of Hartmann value
for both velocity as well as temperature distribution, re-
spectively, by fixing the other physical quantities. )e
profiles explain that, in the absence of an electric field
(E1 � 0), raising the Hartmann value clearly reduces the
velocity description in the boundary surface. )is reduces
the boundary surface thickness because of the transverse
magnetic field and the temperature field tends to rise (see
Figure 4). It is verified from this assumption that, due to the
nihility of an electric field, the enforced transversal magnetic
field yields a force on the body classified as a Lorentz force
that defies the movement of Casson fluid flow. )e oppo-
sition of that body force over the flow is therefore the source
of temperature enhancement. Figures 5 and 6 display that
increasing the electric parameter increased the velocity as
well as the temperature profile. )is examination of the
profile declares that the impact of the local electric field
parameter E1 is to carry the streamlines away from the
stretching surface. )is transformation of streamlines is
notably a bit away from the stretching surface. )is is be-
cause of Lorentz’s force, resulting from the electrical field
that decreases the frictional opposition, which also helps to
reduce the temperature distribution. Figures 7 and 8 arrange
the permeability impacts where the velocity description
decreases with the rise of the porous permeability mea-
surement, while the opposite pattern is shown for the
temperature distribution because of the existence of a
permeable media which enhances the opposition to the flow
and decreases the fluid speed. As the value of porosity es-
calates, permeability level decreases, and temperature acts
more stable which strengthens the concept of the porous
medium. Vivid effects of a Casson factor, which is actually a
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non-Newtonian parameter, can be seen in Figures 9 and 10.
An increase in this parameter reduces the viscous charac-
teristic of the fluid; that is why, the larger the Casson factor,
the more the fluid is characterized as a Newtonian fluid. All
this happens due to the high rate of plasticity in Casson
liquid and joule heating within the surface of the plate, so it
protects to increase the temperature but decreases the ve-
locity. Figures 11 and 12 represent the influence of the Eckert
value and Prandtl value against the temperature description.
)e Eckert value is actually significant for measuring the

dissipation of energy of the flow control as observed in
Figure 11. )e temperature rises as Ec increases, evident
from the assumption that energy is retained in the fluid area
due to the viscous heat generation as a result of dissipation
due to viscosity. It is observed in Figure 12 that the tem-
perature profile decreases as the Prandtl value increases.)is
is because thermal BL thickness is shortened by raising the
Prandtl value and heat diffuses rapidly from the surface.
Also, the heat transfer rates are enhanced at the surfaces of
the stretched sheet for more Prandtl number influence.
Figure 13 represents that the temperature description in-
creases with the rise in Nr. It exists due to the relative
participation of transfer of conduction heat to the thermal
radiation relocation. )is is because increasing the Nr value
implies the increase of radiation in the thermal boundary
surface that rises the temperature description. Figure 14
displays that the increasing value of G raises the temperature
description due to the increase of heat generation. All this
happens in the thermal BL because of the generation of heat
which stimulates the temperature to step up. Figures 15 and
16 demonstrate the actions of the concentration for distinct
values of Sc and Sr. It has been noticed that the concen-
tration tends to increase with the increase in Sc.)is is due to
an increase in the Schmidt value, which means a decline in

Ha = 0, 0.3, 0.6, 0.9

0.0–0.8 –0.6 –0.4 –0.2–1.0–1.2
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(a)
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0.0

θ′
 (0
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–2.0 –1.5 –1.0 –0.5 0.0–2.5
hθ
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δ = 0.1, 0.2, 0.3, 0.4 

0.0

0.5

1.0

1.5

2.0

ϕ′
 (0

)

0–2 –1–3–4
hϕ

(c)

Figure 2: Z-curves of equations (9), (10), and (11).

Table 1: HAM solution’s convergence.

β � 1, K1 � 0.2,Pr � 3, E1 � 0.1, G � 0.5, Ha � 0.1, Ec � 0.1,
Nr � 0.1, Sr � 0.1, Sc � 1.5, and δ � 0.1.

Approximation’s order f″(0) −θ′(0) −ϕ′(0)

5 −0.7827 1.9855 3.8822
10 −0.77619 2.0032 4.3277
15 −0.7715 2.0079 4.3973
20 −0.7626 2.0114 4.4150
25 −0.7519 2.0231 4.4161
30 −0.7519 2.0231 4.4161
35 −0.7519 2.0231 4.4161
40 −0.7519 2.0231 4.4161
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Table 2: Numerical assessments for −θ′(0) with several values of Pr against Ha � 0.

Pr −θ′(0) (present) −θ′(0) (Pal and Mondal [28]) −θ′(0) (El-Dabe et al. [29])
1 1.33329 1.33333 1.19268
2 1.99996 1.99999 1.94141
3 2.50980 2.509715 2.79731
4 2.93876 2.93878
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Figure 3: Influence of velocity relative to ϑ for variation of Ha.
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Figure 4: Influence of temperature relative to ϑ for variation of Ha.
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Figure 5: Influence of velocity relative to ϑ for variation of E1.
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Figure 6: Influence of temperature relative to ϑ for variation of E1.
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Figure 7: Influence of velocity relative to ϑ for variation of K1.
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Figure 8: Influence of temperature relative to ϑ for variation of K1.

Mathematical Problems in Engineering 7



Ec = 0.1, K1 = 0.1, Pr = 3 , E1 = 0.1, Ha = 0.1, Sr = 1.5
Nr = 0.1, G = 0.5, Sc = 1.5, δ = 0.1
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Figure 9: Influence of velocity relative to ϑ for variation of β.

Ec = 0.1, K1 = 0.1, Pr = 3 , E1 = 0.1, Ha = 0.1, Sr = 1.5
Nr = 0.1, G = 0.5, Sc = 1.5, δ = 0.1
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Figure 10: Influence of temperature relative to ϑ for variation of β.
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Figure 11: Influence of temperature relative to ϑ for variation of Ec.
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Figure 12: Influence of temperature relative to ϑ for variation of Pr.
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Figure 16: Concentration field relative to ϑ for variation of Sr.
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Figure 13: Influence of temperature relative to ϑ for variation of Nr.
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Figure 14: Influence of temperature relative to ϑ for variation of G.
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Figure 15: Concentration field relative to ϑ for variation of Sc.
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molecular diffusion. Figure 16 displays that the rising values
of Sr, and the concentration of Casson liquid is growing in
the region of BL as the presence of temperature gradients in
species diffusion raises the concentration profile.

6. Conclusions

Analytic simulation has been carried out for the collective
study of the BL flow of the EMHD incompressible Casson
fluid flow, along with the heat and mass transfer properties
over the stretched surface, by taking the influence of Ohmic-
viscous dissipation, thermal radiation, chemical reaction,
and thermophoresis. From the application point of view,
such models are influential in the sector of energy pro-
duction, which is practicable without higher pumping
powers, and are useful in the thermal network for some
effective energy gadgets, especially in paper-making, poly-
mer, food processing, panacea’s inoculation, and dissipation
in arteries, etc. So, the minuscule layout reveals that in-
creasing the value of the magnetic number decreases the
temperature profile. Increasing the value of Ha exhibits the
reverse flow behavior to the velocity and temperature. Both
the profiles are elevated as the electric number increases.
Viscous dissipation, porosity, and the Casson parameter
(due to its resistive nature) strengthen the temperature
profile. But reverse effects against the Prandtl number and
rate of heat transfer are an increasing function of Pr. )e
value of Sc is responsible to weaken the concentration profile
but strengthen with Sr. Numerical results were identified
with the existing data found in the literature for some
confined cases, and good accordance was observed.

7. Future Recommendations

)e current impagination will be further probed in the
presence of some more conservation laws and then be
discussed with the help of some new physical parameters.
)e said model can also be further probed for fractional
order. )e considered model can also be solved with the
inclusion of entropy generation on different geometries and
conditions.

Nomenclature

u, v: Velocity parts along x, y directions ms− 1 

Um: Stretched velocity ms− 1 

B0: Magnetic field Wbm− 2 

T: Temperature K{ }

T∞: Ambient temperature K{ }

Tw: Surface temperature K{ }

Cp: Specific heat Jkg− 1K− 1 

Tm: Mean temperature K{ }

C: Fluid’s concentration kgm− 3 

qr: Radiative heat flux Wm− 2 

σ: Electrical conductivity (ω− 1m− 1)
g: Gravitational acceleration ms− 2 

Dm: Mass diffusion coefficient m2s− 1 

Cw: Concentration of the sheet kgm− 3 

C∞: Ambient concentration kgm− 3 

A: Rate of chemical reaction −{ }

Ha: Magnetic parameter −{ }

Pr: Prandtl number −{ }

E1: Eckert parameter −{ }

Sc: Schmidt number −{ }

K1: permeable parameter −{ }

Sr: Soret number −{ }

Nr: )ermal radiation parameter −{ }

Greek Symbols
β: Casson factor −{ }

α: )ermal diffusivity m2s− 1 

ρ: Density kgm− 3 

]: Kinematic viscosity m2s− 1 

f, θ, ϕ: Nondimensional velocity, temperature, and
concentration −{ }

ϑ: Nondimensional time −{ }

Ψ: Stream function
δ: Dimensionless buoyancy parameter −{ }.
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