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Anomaly detection is very important for system monitoring and security since successful execution of these engineering tasks
depends on access to validated data. 'e localization of the variable causing the fault is very essential. Indeed, the localization of
the fault is defined as the ability to determine the source of the fault on a system. Generally, the identification of faults is linked to
the detection procedure implemented. 'erefore, it is very important to choose the adequate fault detection model to locate fault.
For nonlinear uncertain systems, the most performed fault detection method is reduced rank interval kernel principal component
analysis (RRIKPCA), which enhances the computational skill by downgrading the kernel matrix dimension. We have proposed in
this article a new fault localization technique for uncertain systems, named partial RRIKPCA, which combines the benefits of the
RRIKPCA technique and the principle of partial localization. 'e principal of this method involves selecting partially reduced
rank data subsets and then building more accurate models with fewer PCs and isolating faults with higher precision.'e proposed
fault isolation method is applied for monitoring air quality monitoring network (AIRLOR) data.

1. Introduction

Industrial processes are uncertain, caused by the imprecision
of measurement; for more precision, data with incertitude
became an interval-valued form [1]. For this reason, many
researchers deal with this problem of uncertainties, and
several linear PCA models for interval-valued data are
presented in literature [2–4]. 'e center range PCA method
is the supreme current interval multivariate technique.

'ough in the nonlinear situation, author in [5] pro-
posed the nonlinear interval-valued data-based KPCA
approach (IKPCA). On the other hand, in the case of
interval-valued data, there are limited available recent

methods for dimensionality diminution with IKPCA; the
reduced interval kernel principal component analysis
(RIKPCA) [6], and the interval reduced rank KPCA based
on kernel generalized likelihood ratio test (IRR-KGLRT) [7].

'e next important step after fault detection is the
identification or localization, the goal of the identification is
to determine the source and the cause of the fault, and this
stage is related to the detection way employed. Some
techniques based on PCA have been proposed in the lit-
erature, like localization of defects by PCA which is the
approach of contribution diagrams [8]. Unlike the recon-
struction approach [9], the contribution approach does not
require any information on the defect to generate the plots.
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As an alternative to contribution diagrams, the authors [10]
proposed the use of reconstruction-based contributions
(BCRs) that address the aforementioned gap. We can cite
other approaches based on PCA such as the technique of
localization of defects using the structuring of the residues
[11]; this technique consists to form a set of residues, so that
every residue is not vulnerable to all defects. So, we get for
every defect a sign that simplifies the fault localization. An
extension of this approach based on maximizing the com-
passion of residues to defects, known as partial PCA, was
suggested by [12]-[13].

'ese majors fault localization treat only to certain
systems; to deal with this limitation, the key objective of this
study is to develop a new fault detection and localization
approach applied to the nonlinear uncertain process that is
capable to treat data learning characterized by nonlinear
uncertain large datasets, which is called partial reduced rank
IKPCA.

'is technique consists of generating RRIKPCA models
with reduced sets of variables. 'us, the aim of this tech-
nique of localization is to generate fault detection indices
sensitive to certain faults and insensitive to others.

'is study contains 5 sections: in Section 2, we present
briefly review to the interval reduced rank (RRIKPCA)
method. 'e proposed partial interval-reduced rank KPCA
for interval-valued data is introduced in Section 3. Section 4
illustrates the utility of the proposed fault detection and
identification using an air quality (AIRLOR) application.

2. RRIKPCA Review

2.1. Interval-Valued Data, Interval Midpoints-Radii. 'e
interval form of data sample xj(k) is composed by the lower
bound (LB) of the interval xj(k), and the upper bound (UB)
xj(k) is a result of the incertitude of measurement:
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'e standardization of [Xι(κ)] is given by
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2.2. Fault Detection Using IKPCA Based on Interval Mid-
points-Radii. 'e authors in [5, 14] suggested to involve
uncertainties to the KPCA approach, and two models are

developed: model based on LB and UB and model based on
midpoints and radii.

'e kernel matrix K is presented by
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Remember that ϕ is a nonlinear projection function in
the characteristic space H (feature space):
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So, the kernel matrix K can be defined with k(xι, xι′)
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To compute the selected PC (ℓ), we apply the cumulative
percent variance (CPV) [16]. 'e cumulative percent vari-
ance (CPV) can be expressed as
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where λj is the jth eigenvalue.
'e number ℓ of selected principal components is chosen

if the CPV is higher than 95%.
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1/ΒΝρTAΝ] ∈ RΝ×(− ℓ), the Ν − ℓ last principal loading ei-
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'e mapped data are arranged as
ρ � [ϕ(x1)ϕ(x2) . . . ϕ(xN)]T.

'e new kernel matrix KCR-based center and range in
the new form is given by
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where ACR and ΒCR are the eigenvector and the eigenvalue of
the matrix KCR, and ρT

CR is the mapped data.
Now, we present the squared prediction error (Q) sta-

tistics for fault detection [17, 18].
Fault detection index QrCR is given by

QCR(k) � kCR xCR,k, xCR,k  − k
T

xCR,k VCRk xCR,k , (14)

where VCR � PCRPT
CR.

If QCR(k)> θQCR
β , a fault is detected, where θQCR

β represent
the control limits.

2.3. RRIKPCA Method. In the case of reduced rank IKPCA
constructed on the centers and ranges of intervals
RRIKPCA_CR, a new reduced data matrix is given by
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C
R X
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'is reduction of data is a result of a selection by keeping

the most useful observations that designate properly the
system procedure this selection detailed in [18].

For each novel observation, the kernel matrix [19] is
reorganized:

'e general form of the kernel matrix is

K
t
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K
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with kxt
� k(x1, xt) . . . k(xi, xt) . . . k(xs, xt) .

'e procedure of the RRIKPCA_CR model is illustrated
in the flowchart (Figure 1).

3. Localization by Partial RRIKPCA

'e principle of the partial RRIKPCA fault localization
method consists subsets distinguishing data where some
variables are excluded compared to the original data. So,
some variables are missing in the partial RRIKPCA; in
celebration of the residual structuring approach, an RR-
IKPC is applied to a reduced vector.

'e partial RRIKPCA technique has four steps: first, we
create an extremely localizable incidence matrix; second, we
apply the RRIKPCA model; third, we build a set of partial
RRIKPCA models, each corresponding to a row of the
theoretical signature matrix; and finally, we define the
control thresholds to decide the fault detection. 'is pro-
cedure is shown in Figure 2.

After identifying the partial RRIKPCA models, they can
be used for the isolation of defaults.
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'e procedure of the isolation is shown in Figure 3, and
summarize in three steps: first, we must determine the index
for every partial RR-KPCA models at each time t. 'en, we
evaluate the index to their proper confidence limits and form
the experimental sign of the fault.

SEj �
0, if Qj(t) ≤ Seuilj(t),

1, if Qj(t)≻Seuilj(t).

⎧⎨

⎩ (16)

'e final step is to balance the experimental signature of
the defect with the columns of the incidence matrix to arrive
at a location decision.

'e advantage of this approach is that is makes the fault
localization easy; the principle of this approach is to build a
set of residues, so that each residue is sensitive to certain

faults and not to others. 'us, for each fault, a theoretical
signature is obtained which makes it possible to easily
identify the defective variable.

'e major disadvantage of this approach is that there is
no systematic method for choosing partial interval reduced
PCAs. In addition, we often face with the problem of the
insensitivity of the residues to certain faults, which results in
most cases of false locations.

4. Simulation Results

'e air quality monitoring network AIRLOR (Figure 4),
operating in Lorraine, France, consists in measuring and
controlling the percentage of appearance of some reactive
gases such as the ozone concentration O3 and the nitrogen
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Figure 1: RRIKPCA_CR method flowchart.

4 Mathematical Problems in Engineering



Interval data matrix

Partial interval data
matrix1

Partial interval data
matrix2

Partial interval
data matrixm

Impact
matrix

Model1 Model2 Modelm

RR_IKPCA1 RR_IKPCA2 RR_IKPCA1

Figure 2: Procedure for structuring indices using the partial RRIKPCA method.

Interval data matrix 

Q1 Q2 Qm

Raw comparison

Fault isolation

Partial interval data
matrix1

Partial interval data
matrix2

Partial interval
data matrixm

Impact
matrix

Model1 Model2 Modelm

Figure 3: 'e localization procedure by the partial RR-KPCA method.

Figure 4: Air quality monitoring station. A variation δx (7% of the variation range of each variable) has been added to the data generated to
simulate the presence of measurement uncertainties.
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Table 1: 'eoretical signature matrix.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18
r1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r3 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r4 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r5 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
r6 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
r7 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
r8 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1
r9 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
r10 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
r11 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
r12 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
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Figure 5: Q using the IKPCACR method with fault 18.
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Table 1: Continued.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18
r13 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
r14 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
r15 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
r16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
r17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
r18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
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FIGURE 8: Continued.
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Figure 8: Time evolution of Q index corresponding to the 18 partial RRIKPCA models in the case of fault 9.
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oxides NO and NO2 [20]. In this study, our work focuses on
the analysis of data from six stations located on different sites
in order to detect and locate faults.

x(k) � v1(k)v2(k)v3(k) 
√√√√√√√√√√√√√√

O3(k)NO(k)NO2(k)station1

· · · v10(k)v11(k)v12(k)
√√√√√√√√√√√√√√√√

O3(k)NO(k)NO2(k)station4

· · · v16(k)v17(k)v18(k)
√√√√√√√√√√√√√√√√

O3(k)NO(k)NO2(k)station5

.
(17)

For these systems, three faults have been experienced,
fault 8, 9, and 18, adding, respectively, 40% of the
standard variation of (NO2) from station 4 and 50% of the
standard variation of (O3) from station 6 from obser-
vations 400–600.

To have good fault localization, we need a good fault
detection approach. Comparing Figures 5 and 6, it is very
remarkable that the best performance of RRIKPCA_CR is in
accordance to IKPCA_CR.

'e best one named RRIKPCA_CR is chosen in the
following for the localization step.

A comparative examination between the used method
and the conventional method is illustrated to estimate the
efficiency of the developed monitoring techniques.

'e fault detection performances considered for the
comparative study are the false alarm rate (FAR), the good
detection rate (GDR), and the cost time (CT).

Figure 7 shows the monitoring success of IKPCA and
RRIKPCA. Based in this figure, it is clear that the methods
based on reduced rank kernel principal component
analysis for interval-valued data process provide a good
result, especially based on the mean value of FAR and
GDR and cost time values compared to other fault de-
tection methods. 'erefore, we can observe that the
developed method based on center and range approach
with reduced rank ensures a good result for the fault
detection performances. So, we will choose to use this
efficient method in the fault localization part.

To illustrate these localization approaches by the
partial RRIKPCA method, we applied the localization of
faults on the AIRLOR system. 'e matrix incidence
developed for this application is given in Table 1.

'us, the procedure for structuring indices by partial
RRIKPCA, a set of 18 RRIKPCA partials models, has been
generated. Each partial RRIKPCA is insensitive to two
variables.

An additive fault (d9) is introduced between the times
400 and 600 with an amplitude equal to 25% of the variation
range of this variable.

Figure 8 shows the time evolution of the 18 indices Q;
from this figure, it is shown that the signature is structured as
follows: (1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1).

We see that this signature experimental is identical to
the ninth column of the theoretical signature matrix
(Table 1). 'erefore, the variable nine is the offending
variable. 'us, we can conclude that the fault localization
procedure with the partial RRIKPCA method is validated
with sucked for the AIRLOR process.

5. Conclusion

Majors fault localization treats only certain systems; to deal with
this limitation, we have anticipated in this study a novel fault
localization approach applied to the nonlinear uncertain process
that is capable to treat data learning characterized by nonlinear
uncertain large datasets. 'e proposed method is called partial
reduced rank IKPCA; this method combines the benefits of
downsizing of the kernel matrix in the characteristic space
assured by RRIKPCA and the principle of partial localization.
'e obtained results exposed that the application of the partial
RRIKPCA method guarantees the good detection and locali-
zation of the defects.'e proposedmethod is incapable to locate
faults correctly in the case of fast uncertain dynamic systems
because the RRIKPCA model is static; to surmount this limi-
tation and as future plant, we propose to extend these methods
in the case of dynamic uncertain systems.
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Analyse en Composantes Principales,” de l’Institut National
Polytechnique de Lorraine, France, Europe,'èse de doctorat,
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