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We construct a new multisource supply chain stochastic optimization model when the supply and demand are both uncertain.
-is model is nonconvex because the decision variables are truncated by the random variable in the objective function. It is a
common technical challenge encountered in many operations management models. To address this challenge, we adopt a novel
transformation technique to transform the nonconvex problem into an equivalent convex optimization problem. -en, we
provide a smoothing sample average approximation (SAA) method to solve the transformed problem. -e SAA model is a good
approximation for the expected value function in the objective function when the number of samples is large enough. -e
smoothing technique can transfer the nonsmooth plus function into a smoothing function in the model, and thus, we can use the
numerical methods for the common nonlinear integer programming to solve the transformed model. Numerical tests verify the
effectiveness of the new model and the smoothing SAA method.

1. Introduction

In the upstream structure of a multisupplier-single-factory
supply chain, multisource decision-making is considered in
the environment of uncertain demand and supply. In order
to deal with the risk of these supply uncertainties, most
companies adopt multiple supply source strategies, i e., when
there is only one major partner supplier; in order to reduce
the risk of supply uncertainty caused by emergencies, most
enterprises will choose another supply source as a backup
supplier [1–5]. For example, in the aforementioned Philips
interruption of the provision of radio frequency chip events,
Nokia’s backup quickly responded and quickly put into
production, but Ericsson eventually exited the mobile phone
business market because of the lack of backup suppliers.

-e multisource supply chain stochastic optimization
model was first studied by Barankin [6] in the one-period
setting and then extended by Daniel [7], Fukuda [8], and

Whittmore and Saunders [9] to the various settings, see [6–9].
In 2012, Feng and Shi considered a joint inventory control
and pricing problem with multiple suppliers whose supply
capacities are uncertain [10]. -ey show that, with deter-
ministic capacities, ordering from a cheaper source first is
optimal. However, when the supply capacities are random,
such a policy is not optimal.-ey show that the optimal policy
can be characterized by a near reorder point. In 2014, Zhou
and Chao [11] provide a dual-sourcing problem with price
sensitive demand and a regular supplier; they characterize the
structure of the optimal policy of the dual-sourcing problem.
-en, Gong et al. [12] generalized the structural analysis to a
dual-sourcing problem with price sensitive demand and
Markovian supply interruptions. In all these models, there are
no capacity limits on the supplies. To the best of our
knowledge, most current research work simply assumed that
supply accounts for a certain proportion of orders, ignoring
supply uncertainties, i.e., uncertainties arising from unreliable
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product supply processing processes, such as suppliers de-
livering only part of the product or canceling orders [1–12].
Each potential supplier corresponded to a random supply and
a unit ordering cost, the enterprise must make a decision on
the quantity ordered by each supplier before the demand and
supply was realized, so the final volume of transportation was
the minimum between supply and order quantity. So, in this
paper, we introduce the decision variable truncated by ran-
dom variables and construct a multisource supply chain
optimization model which is more in line with the actual
construction of the supply uncertainty environment. Because
the random variable truncation destroys the convexity of the
problem, it is very challenging to solve and analyze this kind
of nonconvex optimization problem. Based on the work of
[4, 5], we first transform this problem into an equivalent
convex minimum problem and then give a smoothing SAA
algorithm to solve the problem. Finally, the validity of the
model and algorithm is verified by numerical examples.

-e structure of this paper is as follows. In Section 2, we
establish a stochastic optimizationmodel for themultisource
supply chain problem with decision variables truncated by
random variables. In Section 3, a novel transformation
technique is used to transform the nonconvex multisource
supply chain optimization model into an equivalent convex
optimization model. In Section 4, for the solution of the
transformed model, the expected value function is firstly
treated with the sample average approximation method, and
then, a smoothing algorithm is provided to deal with the
nonsmoothness in the model. In Section 5, we provide a
numerical test for a specific dual-source supply chain
problem and analyze the impact of the ordering cost, supply
capacity, and other factors on the enterprise’s ordering
strategy. -e conclusion of this paper is given in Section 6.

2. Establishment of the Model

Weconsider a single cycle and single product supply chainwith
multiple suppliers N � 1, . . . , n{ } in uncertain demand and
supply environment. It is assumed that there is no fixed cost,
and the quantity supplied by supplier j ∈N is Kj. Here, we
assume that the sequence Kj , j ∈N, is independent of each
other, and they are random variables of the same distribution.
Demand d is also random, and the random distribution of
supply quantity Kj is independent of each other. -e unit
ordering cost at the supplier is cj; without loss of generality, we
assume that c1 ≤ c2 ≤ · · · ≤ cn. -e event is divided into two
phases: the ordering phase and the selling phase. In the or-
dering stage, the enterprise first reviews the existing inventory
level and the unprocessed orders and sets the order before
observing the supplier’s supply quantity Kj. Let qj represent
the ordering quantity at supplier j ∈N, and we use kj to
represent the realized supply quantity of Kj. -en, the actual
supply obtained by the enterprise is qj∧kj, where
·∧· � min(·, ·) is the minimum component symbol (see the
same definition in [4]). Noting that the supply uncertainty of
the supplier has been solved at this time, the same settings were
set in the study on the stochastic production problem in [13]
because the supply uncertainty at this time is mainly due to the
unreliable production process and production time. In the
selling phase, the requirements are realized, the remaining
products are processed, and the unmet requirements are
backlogged. -e unit shortage cost and the unit residual value
are h− and h+, respectively. Let p represent the unit retail price
of the product.-e enterprise’s goal is to develop amultisource
ordering strategy to minimize the total expected cost. Based on
random variable truncation, we establish the following un-
constrained multisource supply chain optimization model:

minE[f(q∧k)] � E 
j∈N

cj qj∧kj  + h
−

d − 
j∈N

qj∧kj ⎛⎝ ⎞⎠

+

− p d − d − 
j∈N

qj∧kj ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠ − h
+


j∈N

qj∧kj  − d⎛⎝ ⎞⎠

+

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(1)

where (x)+ � max(x, 0), f: Fn⟶ R is the function of the
decision variable qj, here F is either the real space or the
space with integers Z and R � R∪ +∞, kj, d are random
variables, and the support sets of the random vectors k �

(k1, k2, . . . , kn) and d � (d1, d2, . . . , dn) are
Supp(k) � X ⊂ Fn and Supp(d) � Y ⊂ F, respectively.

In model (1), the first and second items in the objective
function represent the total order cost and the total shortage
cost, respectively, and the third and fourth items represent
the total profit on the sale and the residual value, respec-
tively. As a matter of convenience, model (1) can be arranged
as follows:

minE[f(q∧k)] � E 
j∈N

cj qj∧kj  + h
−

+ p(  d − 
j∈N

qj∧kj ⎛⎝ ⎞⎠

+

− h
+


j∈N

qj∧kj  − d⎛⎝ ⎞⎠

+

− p d⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (2)

3. Equivalent Transformation Technique

In general, even if f is convex, problem (2) is a nonconvex
optimization problem due to the existence of truncated item

(qj∧kj). As Ciarallo et al. pointed out in [14], for the
production planning problem of single product and single
cycle supply chain with uncertain supply and demand,
random supply will lead to the generation of a single peak
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and nonconvex objective function, and they also verified that
the objective expectation function has quasi-convexity.

Recently, Chen Xin et al. [4, 5] proposed an effective
conversion technique to transform a nonconvex minimi-
zation problem into a convex minimization problem and
further showed that this method could maintain some good
structural properties, such as convexity, submodality, and
L♮− convexity. -erefore, based on the result in [4, 5], we get
the following theorem for problem (1).

Theorem 1. Assume that (a) function f: Fn⟶ R is a
lower semicontinuous function and satisfies f(x)⟶∞,
|x|⟶∞; (b) f is the component convex function (if
F � Z, f is the component discrete convex function); (c) the
components of the random vector k are independent of each
other, and the corresponding realization is kj ∈ X � Supp(k).
Let ϑ∗ represent the optimal value of model (2); then, ϑ∗ is also
the optimal objective value of the following optimization
model:

min , E[f(υ(k))] � E 
j∈N

cj · υj kj  + h
−

+ p(  d − 
j∈N

υj kj ⎛⎝ ⎞⎠

+

− h
+


j∈N

υj kj  − d⎛⎝ ⎞⎠

+

− p d⎤⎥⎥⎥⎦,⎡⎢⎢⎢⎣

s.t.,
υj kj  � qj∧kj, υ(k)

� υ1 k1( , . . . , υn kn( ( .

(3)

Proof. Let σ∗ be the optimal target value of model (3), since,
for any q ∈ Fn, the equality constraint υj(kj) � qj∧kj is
feasible in model (3), so we get σ∗ ≤ ϑ∗.

Next, we just need to prove that ϑ∗ ≤ σ∗. Obviously, the
conclusion is right when σ∗ �∞, so in the following
analysis, we firstly assume σ∗ <∞; then, combining con-
dition (a), we can know that models (2) and (3) both have
finite optimal solutions. In the following, we can prove that
given any optimal solution υ∗ � υ(kj)|kj ∈ X , we can find
a solution q ∈ Fn that satisfies E[f(q∧k)] � E[f(υ∗(k))] by
mathematical induction.

When n � 1, let q � argminq∈Fn f(q) (take the minimum
value if there are multiple optimal solutions), and for any
feasible solution of model (3), according to Lemma 3.1 in [4],
we have f(q∧kj ≤f(υ(kj))), for ∀kj ∈ X, so we get
E[f(q∧k)]≤ σ∗. Note that q is a feasible solution of model
(2), which means that ϑ∗ � E[f(q∧k)]≤ σ∗; combined with
σ∗ ≤ ϑ∗, we get σ∗ � ϑ∗.

When n> 1, let q∗j , j � 1, . . . , n, be the jth element of q∗;
starting with the first element, we define

σ1 q1(  � E f q1, υ
∗
2 k2( , . . . , υ∗n kn( (  . (4)

In condition (b), the component convexity of f means
that σ1(q1) is convexity on q1. Since all components of the
vector k obey a relatively independent and identical dis-
tribution,
Ek1

[σ1(υ∗1(k1))] � Ek1
[f(υ1(k1)), υ∗2(k2), . . . , υ∗n (kn)]) is

valid for any measurable function υ1(k1), and based on the
previous analysis of case n � 1, we have that there is a q1,
which satisfies the following equation:

σ∗ � min E σ1 υ1 k1( (  |υ1 k1( ≤ k1, ∀k1

∈ X1, υ1 k1(  ∈ F

� minq1∈FE σ1 q1∧k1(  

� E σ1 q1∧k1(  .

(5)

-en, we go on to define
σ2(q2) � E[f(q1∧k1, q2, υ∗3(k3), . . . , υ∗n (kn))], and

obviously, σ2 is also convex; similarly, there is q2 that satisfies
the following equation:

σ∗ � min E σ2 υ2 k2( (  |υ2 k2( ≤ k2, ∀k2 ∈ X2, υ2 k2(  ∈F 

� minq2∈FE σ2 q2∧k2(  

� E σ2 q2∧k2(  .

(6)

Repeat the above steps, and define
σi(qi) � E[f(q1∧k1, . . . , qi−1∧ki−1, qi,

υ∗i+1(ki+1), . . . , υ∗n (kn))]. In the same way, we can find
qi, i � 3, . . . , n, which satisfies the following equations:

σ∗ � min E σi υi ki( (  |υi ki( ≤ ki,∀ki ∈ Xi, υi ki(  ∈ F 

� minqi∈FE σi qi∧ki(  

� E σi qi∧ki(  .

(7)

So,

σ∗ � E σn qn∧kn(  

� E f q1∧k1, . . . , qn∧kn(  .
(8)

Since q is a feasible solution of model (3), we know that
ϑ∗ ≤E[f(q∧k)] � σ∗; combined with σ∗ ≤ ϑ∗, we get
σ∗ � ϑ∗.

Based on the above theorem, we successfully trans-
formed the nonconvex supply chain optimization model (2)
into an equivalent convex supply chain optimization model
(3), see [4, 5]. □

4. Solution Method of Model (3)

To solve model (3), we firstly use the SAA method to ap-
proximate the expected value function in the objective
function. It is well known that Shapiro have proved that,
under some regularization conditions, the optimal value of
SAA problem converges to the optimal value of the original
stochastic programming problem according to probability 1
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as the number of samples approaches infinity (Chapter 6 of
[15]). Assume that km

j , m � 1, . . . , M, and dl, l � 1, . . . , L, are
the random samples generated by supply kj, j � 1, . . . , n,

and demand d, respectively; then, the SAA model for
multisource supply chain problems is

min
1
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(9)

Obviously, there is a nonsmooth plus function (·)+ in
model (9) which will cause difficulty in computing this
problem. So, we use a smoothing approach in [16–19] to deal

with nonsmoothness in multisource supply chain problems.
For the sake of simplicity, we denote

G(υ(k)) �
1

M
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Let t> 0 be a smooth parameter; we construct the fol-
lowing smoothing approximation functions by using the
same technique in [14]:

gt(t, υ(k)) � t ln 1 + exp
d

l
− j∈Nυj k
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(11)

where gt(t, υ(k)), ht(t, υ(k)), and G(t, υ(k)) are the smooth
approximation functions of g(υ(k)), h(υ(k)), G(υ(k)), re-
spectively. We can prove that the smooth functions have the
following properties.

Theorem 1. For ∀t> 0, we can obtain

(i) G(t, υ(k)) is an increasing function of t, and we have

‖G(t, υ(k)) − G(υ(k))‖ ≤ t ln t. (12)

(ii) G(υ(k)) is a convex function of υ(k), and G(t, υ(k))

remains convex of G(υ(k)).
(iii) G(t, υ(k)) is a continuous differentiable function

whose first derivative is

∇υ(k)G(t, υ(k)) �
1
ML



M
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L

l�1
h

−
+ p(  ·

exp d
l
− j∈Nυj k

m
j /t  

1 + exp d
l
− j∈Nυj k

m
j /t 

− h
+

·
exp d

l
− j∈Nυj k

m
j  − d
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1 + exp j∈Nυj k
m
j  − d

l/t 
+ 

j∈N
cj

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (13)

(iv) For any fixed υ(k) ∈ RN×M, there is
∇υ(k)G(t, υ(k)) − zG(υ(k))

����
���� � o(t). (14)
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Proof. According to Lemma 3.1 in [16], conclusion (i), (iii),
and (iv) are obviously valid. For conclusion (ii), since
G(t, υ(k)) is the sum function of linear functions gt(t, υ(k)),
ht(t, υ(k)), and gt(t, υ(k)) and ht(t, υ(k)) are convex
functions and the sum function of convex functions remains
convex, conclusion (ii) is valid.

According to -eorem 1, we know that the smooth
functions gt(t, υ(k)), ht(t, υ(k)), and G(t, υ(k)) are all
convex functions, and when the smooth factor t⟶ 0+, the
smooth functions have a good approximation effect.
-erefore, we can construct the following smoothing model
of multisource supply chain to solve model (2):

minG(t, υ(k))

s.t. υj k
m
j ≤ k

m
j , j � 1, . . . , n, υ k

m
( 

� υ1 k
m
1( , . . . , υn k

m
n( ( .

(15)

Model (15) is a smooth nonlinear convex programming
problem with dimension n × M (n is the number of
suppliers). □

5. Numerical Tests

In this section, we give numerical tests for the new model (1)
and the smoothing SAA method. -e computation is per-
formed inMATLAB R2021b, in a computer with CPUApple
M1 and RAM 16GB.

Consider a double source supply chain problems when
supply and demand are both uncertain. -e experimental
data are from [1] in which the enterprise has two suppliers:
the unit ordering costs of each supplier are c1 and c2, re-
spectively; the unit shortage cost and the rest of the residual
value are h− and h+, respectively; the retail price of unit
product is p. Assume that the market demand of the
product d is uniformly distributed on (a, b). In order to
describe the positive dependence between random sup-
plies, we consider the case where suppliers share a “market
risk.” For example, in reality, suppliers suddenly receive
urgent orders from enterprises, and the supply of each
supplier j is set as kj � yj + z, j ∈N, where yj and z are
mutually independent random variables subject to uniform
distribution, the market risk factor z obeys the uniform
distribution on (c, d) and is embedded into the supply
provided by each supplier, and yj obeys the uniform
distribution on (ej, fj).

Set the number of samples M � L � 100, the smooth
parameter t � 0.001, and the basic parameters are set as
c1 � 50, c2 � 80, h− � 30, h+ � 20, p � 100, a � 5000,
b � 10000, c � 2500, and d � 5000, when the supply capacity
of the two suppliers is the same, that is, e1 � e2 � 2500 and
f1 � f2 � 5000. Based on the above initial number, we solve
the smoothing model (15) and get the optimal ordering
strategy q∗ � [7643, 2188]T, and the expected profit is
−E[·] � 419300. -e results show that when the supply
capacity of the cooperative suppliers is the same, the en-
terprise gives priority to place orders to supplier 1, that is, the
enterprise chooses the supply source based on the ordering
cost, which is consistent with the data results in [1].

-en, we consider the influence of smooth parameter t in
the algorithm. Set the number of samples M � L � 100; the
results are shown in Figure 1. It can be seen that the optimal
target value does not change significantly. -is indicates that
the smoothing algorithm is not sensitive to the parameter t

and further indicates that the original model is equivalent to
the smoothing model when t⟶ 0+.

In the following, we consider the influence of supply
capacity on decision-making. Let the sample size M � L �

100 and smooth parameter t � 0.001; the results are given in
Table 1 and Table 2.

From Table 1 and Table 2, we can see that the optimal
order quantity of an enterprise is determined by the
wholesale price and supply capacity of the supplier. As we
can see in Table 1, in the case of c1 < c2, when the supply
capacity of the fixed supplier 1 is y1 ∼ U(2500, 5000), no
matter how good or bad the supply capacity of supplier 2 is,
the enterprise will choose to place an order with supplier 1
firstly; this may be due to the high supply capacity of supplier
1, and it can make the market demand reach the saturation
state, so the enterprise will tend to choose the supplier with
the lower order cost. From Table 2, we can see that, although
c1 < c2, the optimal ordering strategy is q∗2 > q∗1 when the
supply capacity of supplier 1 is much lower than that of
supplier 2. Of course, when the supply capacity of supplier 1
increases, so does its order quantity q∗1 . -is indicates that
when themarket demand does not reach the saturation state,
the ordering decision q∗ of the enterprise is influenced by the
ordering cost cj and supply capacity kj of the supplier.
Moreover, it seems that, in order to meet the demand of the
market, the enterprise will even ignore the loss caused by
higher costs and choose suppliers with higher supply
capacity.

6. Summary

In this paper, we establish a multisource supply chain
optimization model with random variable truncation to
deal with the uncertainty of the supply and demand. By
introducing a new variable, we transfer the nonconvex
multisource supply chain model into a convex problem;
then, we provide a smoothing SAA algorithm to solve the
equivalent problem. -e equivalence of the transformed
models and the convergence properties of the smoothing
approximation function are also given, and numerical
tests show that (i) the smoothing SAA method can solve
the multisource supply chain optimization model effi-
ciently, (ii) when the supply capacity of the supplier is
consistent, the enterprise will choose the supply source
based on the ordering cost of the supplier, and (iii) the
ordering decision of enterprises is influenced by both
ordering cost and supply capacity. In other words, when
the supply capacity of suppliers with low ordering cost is
large enough to make the market demand reach saturation
state, enterprises tend to choose suppliers with low or-
dering cost. When the supply capacity of suppliers with
lower ordering costs cannot meet the market demand,
enterprises tend to trust suppliers with higher supply
capacity.
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