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Short-term Origin-Destination (OD) flow prediction plays a major part in the realization of Smart Metro. It can help traffic
managers implement dynamic control strategies to improve operation safety. Also, it can assist passengers in making reasonable
travel plans to improve the passenger experience. However, there are problems that the dimension of OD short-term traffic
prediction is much higher than the base number of metro stations and the OD matrix is sparse. To resolve the above two problems,
a threshold-based method is proposed to extract key OD pairs first. OD passenger flow contains the attribute information of the
Origin-Destination station and exhibits similar time evolution characteristics, so the spatial and temporal correlation needs to be
considered in the prediction. Pearson correlation matrix is used to build a virtual graph and model the virtual connection between
OD pairs. A spatiotemporal virtual graph convolutional network (ST-VGCN), which combines the advantages of a graph neural
network and gated recurrent neural network, is proposed to identify spatial associations and temporal patterns simultaneously.
The proposed method is evaluated on 39 days of real-world data from Shenzhen Metro, which outperforms other benchmarks. The
research in this work can contribute to the development of short-term OD flow forecasts and help to provide ideas for the research
on real-time operation and management of rail transit. Furthermore, it can help to establish passenger flow prediction and early

warning mechanisms to quickly evacuate a large number of passengers in case of emergency.

1. Introduction

In the wake of developments in intelligent cities, the analysis
and mining of big traffic data have attracted widespread
attention in the field of intelligent transportation. As an
important means of transportation to alleviate road traffic
congestion in big cities, urban rail transit has gradually
entered the era of network operation. At the same time, a
large amount of passenger flow data is generated, which
makes the research on passenger flow prediction more and
more important [1]. The most basic thing is modern tech-
nology has greatly guaranteed the safety of train operation
[2], ensuring the growing demand for safe travel of residents.
Shenzhen Metro, for example, the average travel scale of

which in a single day is up to 5 million person-times, carries
more than one-third of the traffic flow of the entire city and
occupies an important position in the urban public trans-
portation system. However, the ever-increasing travel de-
mand has brought greater and greater pressure to the
operation of urban rail transit. Especially during the
morning and evening rush hours, the demand for com-
muting is very large, so the operating efficiency of the metro
directly affects the overall commuting efficiency of the city.
In addition to the research on the operation safety of train
control systems [3], more and more researchers have paid
attention to the passenger flow data generated by metro
operations and conducted multilevel analysis [4] on it to
ensure the operation safety. Because of the enormous scale of
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the current metro network system, passenger travel shows
great complexity. Most of the existing research pays more
attention to the prediction of inbound and outbound pas-
senger flow, daily ridership, hourly ridership, and sectional
passenger flow. OD passenger flow reflects the direction of
flow in and out of the station, which is a visual display of
passenger travel needs and contains precious information.

Because of the good connectivity between stations in the
metro network, the travel demand of passengers is usually
expressed by an abstract OD matrix. The elements in the
matrix represent the OD passenger flow. As important
carriers of the metro passenger flow, they represent the travel
times between station O and station D within a specific time
interval. OD matrix can well describe the source and des-
tination of the ridership between any two stations, which is
the foundation for travel behavior characteristic analysis.
The existing information platform establishes a channel of
communication between the metro system and passengers to
provide passengers with metro network status prediction
information and help passengers plan their trips reasonably.
At the same time, OD passenger flow prediction combined
with real-time detection of passengers in densely crowded
areas of metro stations [5] can provide better services for
ensuring operational safety. However, the prediction results
may differ from the actual situation, especially during peak
periods. This inaccuracy disrupts travel plans and creates a
sense of mistrust for the information while affecting metro
managers to make judgments. Therefore, how to accurately
predict the OD passenger flow of the whole network is an
important issue for the refined and comprehensive pre-
diction of the rail transit network. By predicting the fine-
grained passenger flow and its dynamic changes in the
network state, metro managers can timely adjust the op-
eration plan and carry out reasonable passenger flow or-
ganization and control [6], which is of great practical
significance to ensure traffic safety. Among them, passenger
flow organization and control includes, but is not limited to,
adjusting schedules, adding services, disseminating infor-
mation to passengers in response to the condition of demand
surge, and incentivizing passengers to delay or change travel
time.

The research of metro OD passenger flow based on AFC
data mainly includes three aspects, OD matrix, the main
passenger flow direction of the origin station, and key OD
pairs. Since the OD matrix is sparse and highly skewed,
combined with the analysis of the main direction of the
origin station, it can be known that the key OD pairs reflect
the travel routes of large demand, which largely determines
the metro operation status of the network. Meanwhile, they
are the main object of metro vehicle allocation which means
higher requirements for ensuring efficient and orderly trains
[7]. At the same time, the OD pair implicitly includes the
information of station O and station D and is regular in time
varijation like time series. For instance, most of the flow in
the morning rush is commuters whose commuting routes
are relatively fixed. OD pairs with O as residential areas and
D as business areas show a similar regularity. That is, OD
pairs show some dependence on the consecutive time in-
tervals and the similar spatial properties of the Origin-
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Destination station. Therefore, how to determine the key OD
pairs and capture the spatiotemporal dependence between
them at the level of metro network becomes a key problem.

In this work, we propose a method to extract and predict
flow of key OD pairs in metro network. According to the
historical data of the AFC system, we extract the OD matrix
and then obtain the key OD pairs through filtering. We
introduce a spatiotemporal virtual graph convolutional
network (ST-VGCN) to model the spatiotemporal depen-
dencies between key OD pairs. The virtual topology is used
to establish a similarity map. The graph convolution com-
bined with GRU is used to extract spatiotemporal features
and predict the key OD passenger flow. We carry out an
experiment on the real-world dataset from Shenzhen Metro
to prove the advantage of ST-VGCN. The main contribu-
tions of this study are as follows:

(1) We obtain OD matrix by processing AFC historical
data and extract the key OD pairs that have a large
demand for metro travel by setting reasonable
thresholds

(2) We propose a spatiotemporal virtual graph con-
volutional network (ST-VGCN) model, in which we
establish a similarity graph based on the Pearson
coefficient as a virtual topology, to capture the spatial
and temporal dependencies between key OD pairs

(3) We have verified our method through a case study of
Shenzhen Metro, and the validity of the model was
confirmed by comparative tests

The rest of this paper is organized as follows: In Section
2, we review related work on OD traffic forecast. In Section 3,
we describe our main work on the key OD flow prediction.
In Section 4, we evaluate our method based on real data and
present our results and analysis. In Section 5, we summarize
our paper and discuss several possible directions for future
work.

2. Related Work

Most of the researches concentrate on the prediction of road
traffic flow and traffic speed [8]. More and more researchers
focus on urban rail transit forecasting, among which the
research on OD prediction is relatively less. Considering the
similarity between OD sequence data and inbound/out-
bound data of urban rail transit stations, we will introduce
relevant studies on traffic prediction in related work and
further summarize the research on OD passenger flow
prediction.

Early researchers used methods based on statistical
learning, such as Historical Average [1] (HA), Autore-
gressive Integrated Moving Average [9] (ARIMA), Vector
Autoregressive model [10] (VAR), etc. Later, traditional
machine learning and neural network methods were applied
to traffic flow prediction. Wu et al. [11] studied the travel
time prediction problem using support vector regres-
sion(SVR). Zhu et al. [8] came up with a linear conditional
Gaussian Bayesian network model for short-term traffic flow
forecast, which took into account spatiotemporal
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characteristics and velocity information. Yang and Hou [12]
used a hybrid model based on wavelet analysis and least
squares support vector machine to complete short-term rail
transit passenger flow prediction. Jiao et al. [13] proposed an
improved Kalman filter model based on Bayesian combi-
nation and nonparametric regression, in which real-time
passenger traffic is deviated from historical data to mitigate
the volatility of original data.

Because of the good performance of deep learning
models in other fields, many scholars try to use them in
traffic prediction. Zhang et al. [14] presented deep-ST, which
is the first model that uses convolutional neural network to
mine spatial dependence between grids. On this basis, ST-
ReSNet [15] adopted the framework of residual convolution
network and considered the time series of three different
trends to mine the spatiotemporal relationship; then, ex-
ternal factors such as weekdays and weather were integrated
to improve the accuracy of traffic flow prediction. Liu et al.
[16] used Long Short-Term Memory (LSTM) and full
connection layer(FC) to predict passenger flow inbound and
outbound of metro stations. Ma et al. [17] converted the data
of metro passengers (i.e., Destination station) in Beijing into
images by using Convolutional Neural Networks(CNN) and
a bi-directional LSTM layer. Yang et al. [18] proposed a
novel attention mechanism-based end-to-end neural net-
work to predict the inbound and outbound passenger flow,
which improved the prediction effectiveness.

All the above models can effectively capture complex
time features, and the proposed Graph Convolutional
Neural Network (GCN) solves the problem of Network
spatial correlation effectively. Traditional neural networks
can only effectively extract some features from standard grid
data and cannot deal with the complex and nonlinear traffic
data well. In this case, we need to consider using graph
convolutional neural network. Chen et al. [19] constructed
topology, similarity (based on dynamic time-warping dis-
tance), and correlation graph to represent the dependency
between passengers at different transfer stations, and then
used a variant of graph neural network to conduct demand
forecasting. Defferrard et al. [20] applied a three-dimen-
sional convolution operation to seamlessly capture irregular
spatiotemporal dependence on metro network. Guo et al.
[21] proposed the ASTGCN model, which added an at-
tention mechanism to take into account the dynamic in-
fluence of different time periods and different places on
adjacent time periods and adjacent places. Yan et al. [22]
proposed a spatiotemporal graph convolution model
(STGCN) combining graph convolution and CNN based on
spatial domain. Zhao et al. [23] put forward a special pas-
senger flow forecasting prediction model based on temporal
graph convolutional network (T-GCN), which combines a
graph convolution network (GCN) and gated recursive
network (GRU). In this model, GCN learns complex non-
linear structures to capture spatial topology, while the gated
loop unit understands dynamic changes of traffic and
captures time-dependent data.

There are many studies on the estimation and prediction
of short-term traffic origin and destination, especially in the
area of taxi and car-hailing travel [24]. The research on

passenger flow OD prediction starts from residents travel,
road traffic, and urban public transportation network, which
is called travel distribution prediction or traffic distribution
prediction.

One of the important differences between OD prediction
of traffic and public transport is the high dimension of data.
A network with N sites consists of N x N OD pairs, and it is
not extensible to exploit a model with a traditional method
for each OD pair. Matrix/tensor decomposition is an ef-
fective method to solve the high-dimensional problem of
OD matrix prediction, and many researches [25] have ex-
plored this based on it. Deep learning is also one of the
mainstream OD prediction methods. Because the data is
high dimensional, Toqué et al. [26] applied LSTM networks
to selected high-traffic OD pairs with heavy traffic. Wang
et al. [27] improved OD flow prediction network of
GCN + LSTM by multi-task learning. Shen et al. [28] mixed
CNN with gravity model to predict the OD matrix of the
metro system. The effect of deep learning model is usually
affected by noise in sparse Metro OD matrix. To reduce the
influence of noise, Zhang et al. [29] developed an index
called OD attraction degree (ODAD) to cover up non-
important OD pairs, indicating that shielding OD pairs close
to zero can improve the prediction of LSTM. Meanwhile, a
Channel-wise Attentive Split-CNN (CAS-CNN) model [30]
is developed for metro OD matrix prediction. Gong et al.
[31] proposed a real-time delayed data collection problem
and discussed how to address it. Peyman et al. [32] con-
sidered the issue of delayed data availability, which is a
challenge in the prediction of dynamic Origin-Destination
(OD) demand.

From the traditional method to the current artificial
intelligence method, it is all to better capture the regularity of
the prediction content. Most of the predictions for inflow
and outflow are at the station level, while the prediction of
OD flow often involves stations in the entire network. The
traditional method mainly makes predictions based on
statistical laws, but it cannot show the influence of various
factors, and the prediction accuracy is low. The GRU method
is often used for simple time series prediction, which is very
effective, but it lacks the capture of spatial information in the
problem of rail transit OD passenger flow prediction. Using
the knowledge of graph theory and convolution, GCN can
well capture the physical space information brought by the
metro network and the virtual space information brought by
the OD passenger flow. Masking unimportant OD pairs was
proposed in previous methods, which has a strong inspi-
ration for us. Therefore, in this work, we study how to extract
important OD pairs for research. At the same time,
according to the analysis of the properties of key OD pas-
senger flow, GRU combined with GCN is selected to capture
spatiotemporal information to achieve good results.

3. Methodology

3.1. Key OD Pairs Prediction Problem. The Metro AFC
system records the original travel data of passengers, in-
cluding card number, entry station number and time,
transaction type (inbound or outbound), and other data. In



this way, we know the entry and exit stations and the
corresponding time. We summarize them at a fixed time
interval and calculate the traffic demand from O to D in the
statistical period based on O, regardless of whether the
journey is completed or not. We finally form an N x N OD
matrix, where N represents the total number of metro
stations in the dataset. We extract the key OD pair set as

Kop ={ky» ky ..ok, }. (1)

In our work, a virtual graph between key OD pairs
denoted as G = (V,E) is established, which is built to
represent the connection relationship between OD pairs. V
and E denote the set of nodes and the set of edges, re-
spectively. In our work, V is equivalent to the set of key OD
pairs used to encode the characteristics of nodes, which
refers to the traffic time series of each OD pair. The adja-
cency matrix A that only contains elements of 0 and 1
represents the virtual connection relationship between OD
pairs. The corresponding element is 1 if there is an asso-
ciation relationship between nodes, otherwise, it is 0. The
data collected by the key OD pair within t consecutive
moments is expressed as X = [x',...,x'], where
xt =[x (k) x(ky), ..., x (kn)]T represents the data collected
by each key OD pair at the time ¢. The feature matrix X"**?
represents the attribute characteristics of the node, n rep-
resents the number of key OD pairs, and p represents the
historical time sequence length. The purpose of our paper is
to predict the passenger flow of the future m time intervals
according to the historical passenger flow data of key OD
pairs in previous n time intervals, which can be expressed as
the following learning function:

X)L [

where X! represents the values of all OD pairs at time
interval T and f is a mapping function.

3.2. Key OD Pairs Extraction. The OD matrix describes the
number of travels between each OD pair in the system during
the time interval. The amount of stations in the metro system is
N, and the size of the generated OD pairs is N x N, which
means a huge number. The heat map formed by the OD matrix
at the 10-minute granularity is shown in Figure 1(a). As shown
by the color bar on the right side of Figure 1(a), the brighter the
color indicates the greater the amount of OD between the two
stations. It can be seen that the graph has a large black part, that
is, most of the elements in the OD matrix are 0, which means
that there is no passenger travel demand between most of the
stations. Therefore, not all OD pairs are the ones we need to pay
attention to. The passenger flow of some noncritical OD pairs is
scarce, and the travel demand is very random. The contribution
of this kind of OD passenger flow is very small, implying that
relatively few key OD pairs account for the vast majority of the
overall OD passenger flows. So we use the historical passenger
flow data set H = {h!, h?, ..., h*} of each OD pair to filter OD
pairs, where s is the length of the selected historical data, A’
represents the OD value of the period. In order to achieve the
extraction of key OD pairs, we set three thresholds, including
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the proportion z of nonzero value, the randomness judgment
value r and the proportion p of value that is greater than the
randomness judgment value. The key OD pairs meet the
following conditions:

|5

- % 100% <z and +—
|H] |H]
where H® = {hi|h e H and h' = 0,i=1,2,...,s} means a
subset of key OD pairs set in which elements value is zero and
H = {W|h' € H and W' >r,i =1,2,...,s} asubset in which
elements value is greater than randomness judgment value r.
We selected 14 OD pairs and showed them in Figure 1(b).
The horizontal axis represents time. From this picture, we can
see that the critical and noncritical OD pairs exhibit large
differences. And different OD pairs show different time-
varying laws. The color bar of OD14 is all black, indicating that
there is no OD demand between the two stations. OD11-OD13
have some faint colors, indicating that the passenger travel
demand between such noncritical OD pair is very random. The
remaining OD pairs show different color distributions, rep-

resenting different passenger flow characteristics.

i

*100% > p, (3)

3.3. Virtual Graph Construction. Graph neural network
performs graph convolution based on the relationships be-
tween nodes. We conduct research and prediction based on key
OD pairs, so it loses the dependency information that comes
with the physical topology of the real stations. However, the
OD pairs combine the spatial properties of the origin-desti-
nation station by themselves. For example, if station O is a
residential area and station D is an office area, this kind of OD
pair has similar properties. The OD pairs show correlation, that
is, OD pairs may have similar traffic distribution characteristics
because of similar functionality. So virtual connection edges
can be established to generate an adjacency matrix.

To measure the degree of correlation between two
variables, researchers usually use the Pearson correlation
coefficient. In the quantification of the correlation between
time series, it can be used to measure how two continuous
signals change together with time, and the correlation co-
efficient shows their relationship. The Pearson correlation
coefficient can be calculated by the following formula:

. IX-X-Y)
XYy — - —
VI (X - X 3(Y - 7

p

(4)

where X and Y represent two variables and X and Y rep-
resent the mean of the variables.

According to the above calculation formula, we obtain
the correlation matrix R that describes the relation between
key OD pairs. R;; represents the Pearson correlation coef-
ficient between observed historical passenger flow data series
of the iy, and j,;, OD pair. Classical GCNs encode adjacency
between nodes to represent arbitrarily structured graphs. A
binary-encoded adjacency matrix A is usually used to
represent the connectivity between nodes. A;; = 1 if nodes i
and j are directly connected in the graph, otherwise 4;; = 0.
According to the meaning of the correlation coefficient, if
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FiGure 1: Visual display of raw data. (a) Heat map formed by an OD matrix. (b) Heat map of some OD pairs over time.

the absolute value of the relative coefficient is larger, the
correlation between variables is stronger. We set a threshold
¢ to determine whether to establish a virtual connection
between OD pairs. The formula is as follows:

1, Rz
Aij = (5)
0, R,-j <c.

3.4. Spatiotemporal Virtual-Graph Convolution Network.
After completing the virtual graph construction, we use the
combined model of GCN and GRU to model the spatio-
temporal dependencies of key OD pairs. The prediction
framework of this paper is shown in Figure 2. The main
structure of the model is divided into three parts, which are
the input layer, feature extraction layer, and output layer.
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FiGure 2: The structure of the ST-VGCN model.

The input layer receives raw historical OD matrix data. After
Key OD pairs extraction, feature matrix X that represents
multiple time steps historical flow of all key OD pairs is
generated. And through virtual graph construction, adja-
cency matrix A is generated. The feature extraction layer is
composed of a graph convolution module and a GRU
module, and the inputs of it are X and A. Firstly, the graph
convolution module receives the data from the input layer
and learns both node features and structural information
end-to-end through graph convolution operation to obtain
rich node information and aggregate spatial features. Then
the result with spatial features of each node is sent to the
GRU module to capture the time series features. The final
output layer gets the prediction result.

There are two main categories of GCN methods: spec-
tral-based and spatial-based. In our work, we use a graph
convolutional network based on the spectral method. Given
a feature matrix X representing node features and an ad-
jacency matrix A representing structural features, the graph
convolution operation computes the information of nodes
using the information of related nodes. The core calculation
formula is as follows:

F(X,A) = a(D’”ZZxD* mXW). (6)
Here, A = A + I,y represents the sum of the adjacency

matrix A and the identity matrix Iy; D represents the degree

S V- PP 1 - .
matrix of A;D “AD " represents the A is normalized; W

represents the weight matrix; and o denotes the activation
function.

GRU is one of the most widely used recurrent neural
networks for processing series data. It can be regarded as a
combination of reset gate and update gate. It is used to model
the sequence information that has undergone graph convo-
lution operations to capture its temporal features and com-
plete the prediction task. After the original sequence
X = [x',...,x"] passing through the graph convolution
layer, new sequence data containing spatial information is
obtained as X' = [xl/, R xt,]. We input the new sequence
data into the GRU network. The feature extraction layer
improves the basic GRU structure in combination with graph
convolution operation. The result is shown in Figure 3.

wa

F1GURE 3: Basic GRU structure in combination with graph con-
volution operation.

This process can be described by the following equations:
o(W,[f(X',A), k] +b,),

o (W, [f(X',A)h ] +b,),

h, = tanh (W, [ £(X', A), (r, * hy)] +by),
h=z,% h_,+(1-2,)*h,

2y

Ty

(7)

In the formula, h,_, is the hidden state at time ¢ — 1; X" is
the flow information of all key OD pairs at time ¢; r, is the
reset gate in the GRU model, which is about how the new
input information is integrated with the previous memory;
the z, update gate indicates the amount of previous memory
saved to the current time step; h, is the memory content
stored at time ¢; ki, is the output state at time £. GRU takes the
hidden state at time ¢ — 1 and the current key OD pair flow
information that has undergone graph convolution opera-
tions as input, and obtains the flow state at time ¢. The key
OD flow is predicted in order to make the forecast result as
close as possible to the actual traffic demand. Therefore, we
need to select the loss function to estimate the degree of
inconsistency between the predicted value and the real value
of the model. Our ultimate goal is to minimize loses during
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training process. The loss function chosen in this paper is
shown as follows:

1 n
loss = - Z (-3 (8)
p

where y, and y, are the true OD flow and predicted values
and n represents the length of observation window.

4. Experiments

4.1. Data Description. Because of few public benchmarks for
metro passenger forecasts, we construct the dataset Met-
roSZ2020 with 39 consecutive days of metro smart card data
which records card number, origin number, destination
number, and the entry and exit time of each metro trip from
Shenzhen, China. Because some data in the Shenzhen metro
network cannot be obtained, after data cleaning, the data of
205 stations are available. As shown in Table 1, MetroSZ2020
covers 205 metro stations in Shenzhen from August 23rd to
September 30th, 2020. We select 6:00-24:00 as the metro
operating period. We count the OD matrix every 10 minutes,
which means 108 matrixes per day and contains a total of
42025 OD pairs per matrix.

Three thresholds for z, 7, and p are set as 80%, 10 and 10%
respectively. We test different threshold combinations in
experiments and obtain different numbers of key OD pairs.
However, considering the hardware resource problem and the
model training situation, the above threshold combination is
finally selected. By analyzing the OD matrix heat map similar
to Figure 1(a), it can be seen that it is meaningful to set the
nonzero value ratio z to at least 80%. The randomness
judgment value r needs to be changed according to the change
of time granularity. The time granularity selected in this paper
is 10 min. For the OD matrix of 205 stations, setting r to 10
can already indicate that the OD passenger flow has a certain
regularity. For a station with regular passenger flow, it takes a
sustained period of time to express the regularity, so setting p
to 10% is a reasonable choice. The key OD pairs that meet less
than 80% of the historical time series data is zero and more
than 10% of the data value is greater than 10 are extracted. A
total of 490 key OD pairs of data are used as input and we scale
the data to (0, 1], divide by the maximum value into the data.
When proceeding with virtual graph construction, we set the
threshold c as 80%. The data is divided into training data and
validating data according to the ratio, which is 0.8 in our
research.

4.2. Model Configurations. Our experiment is completed in
the Pytorch environment on a workstation equipped with an
Intel(R) Core(TM) i7-6800k processor whose cache is 15M
and working frequency is up to 3.40 GHz, 16 GB memory
space, and NVIDIA GeForce GTX 1080 Ti graphics card. We
train the model using the Adam optimizer. To obtain the best
experimental results, we manually adjust the determined pa-
rameters including the number of hidden units and the
number of training epoch which may greatly affect the pre-
diction precision. As shown in Figure 4, the horizontal axis
indicates the different parameter choices and the vertical axis

7
TaBLE 1: The description of the dataset.

Description MetroSZ2020
Date 2020/8/23-2020/9/30
Time 6:00-24:00
Station number 205
Matrix dimension 205%205
Key OD pairs number 490
Time interval 10 min

indicates the variation of the different metrics. The red dots
indicate the performance of each metric under the selected
parameters. First, we test the training epoch in the set [500,
1,000, 1,500, 2,000, 3,000, 3,500, 4,000, 4,500, 5,000] and an-
alyze the variation of the model performance. Figure 4(a)
shows the results of metrics for different training epochs,
and Figure 4(b) shows the variation of metrics for different
hidden units. With the increase of training epoch value, the
variation of evaluation metrics stabilizes, and there is a turning
point at 3,000. So we fix the training epoch at 3,000 and select
the number of hidden cells from the set [32, 64, 100, 128, 256].
As shown in Figure 4(b), the model becomes stable when
hidden units reach 128. Therefore, the training epoch is
affirmed as 3000 and the number of hidden cells as 128. Be-
sides, the time step is affirmed as 12, the batch size as 64, and
the learning rate as 0.001.

4.3. Evaluation Metrics. In this work, we choose root mean
square error (RMSE), mean absolute error (MAE), and
linear regression coefficient of determination (R?) as eval-
uation metrics. In real experiments, each evaluation metric
represents a different meaning. RMSE and MAE represent
the error between the predicted value and the actual value.
R’ reflects the fitting effect of the model, which measures the
ability of prediction results to represent actual data by
calculating correlation coefficients. As we all know, the
smaller the error, the closer the predicted value is to the real
value, and the higher the fitting degree, the better the
prediction effect of the model. The specific calculation
formulae are as follows:

RMSE =
n
MAE =% My, -7, ()
i=1
2 Zizl (Yt - ?t)z
Zi:l(Yt - Y5

where Y, represents the real OD information, Y, represents
the predicted OD information, Y, represents the mean of the
predicted OD information, and # is the number of nodes.

4.4. Results and Discussion. In this section, we select the
following five baseline methods for comparison with the
model in this paper, including three traditional time series
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FIGURE 4: Parameter tuning results. (a) Variation of predicted performance under different epochs. (b) Variation of predicted performance

under different hidden units.

models as well as two generalized deep learning models,
namely (1) Historical Averaging model (HA), (2) Autore-
gressive Integrated Moving Average model (ARIMA), (3)
Support Vector Regression model (SVR), (4) Graph Con-
volutional Network model (GCN), and (5) Gated Recurrent
Unit model (GRU). To verify the effectiveness of the model
in our work for the key OD flow prediction problem, we
compare the evaluation metrics with some comparative
experiments, as shown in Table 2.

We explore the performance of ST-VGCN for key OD
pair flow prediction at 10-minute time granularity. We can
find that ST-VGCN performs much better than HA model
on all performance metrics, and its RMSE is reduced by
approximately 26.15% and 0.6% compared to ARIMA and
SVR models, respectively. GCN and GRU are both deep
learning methods, but GCN only focuses on spatial

TaBLE 2: Comparison of performances of different models.

Models RMSE MAE R?

HA 15.134 5.787 0.360
ARIMA 11.321 6.065 0.105
SVR 8.416 3.748 0.802
GCN 13.619 5.191 0.482
GRU 12.071 5.015 0.593
ST-VGCN 8.360 3.492 0.805

relations while GRU only focuses on temporal relations.
ST-VGCN model takes both into account and its RMSE is
reduced by about 38.62% and 30.74% compared to GCN
and GRU models, respectively. Other indicators also
perform significant improvements. Through the above
analysis and comparison, we verify the improvement of the
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FIGURE 5: The real and predicted time series of three selected OD pairs.

proposed ST-VGCN model in three indicators. And we
believe that the model in our work is effective. The
comparison results validate the superiority of the proposed
ST-VGCN model.For the 10-minute granularity of key OD
pairs flow, the prediction result is visualized. As shown in
Figure 5, three different passenger travel patterns can be
seen. Figures 4(b) and 5(c) have explicit spike moments,
and the spike moment in 5(c) is later than that in 5(a).
After analysis, it is concluded that the nature of the OD
pair of stations represented in Figure 5(a) is that station O
is a residential area and station D is an office area.
Figure 5(c) represents that station O is an office area and
station D 1is a residential area, which is in line with the
residents’ commuting pattern. Figure 5(b) maintains a
relatively flat trend, where station D is an airport station, so
it maintains a certain level of passenger travel demand
throughout the day.

As can be seen, our model can well model different
passenger flow demands. Accurate predictions can provide
effective reference information for passenger travel. At the
same time, the modeling and analysis of the key OD pairs
flow can assist the emergency response [33] when an un-
expected event occurs, and reduce the continuous impact
caused by the occurrence of emergencies.

5. Conclusions

Our work mainly defines and studies the key OD pair flow
prediction problem and proposes a complete set of proce-
dures for accomplishing the prediction. The key steps are to
obtain key OD pairs, model the correlation between them,
and use the ST-VGCN model to complete the prediction.
The ST-VGCN model achieved the best prediction results on
a real-world dataset when compared with five preexisting
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models. Through experiments and analysis, we have ob-
tained the following conclusions:

(1) OD flow has the problem that the data is too sparse
and its dimension is too high, yet most OD pairs have
a small contribution to the overall passenger flow. So
it is necessary to extract key OD pairs for research by
setting a threshold filter.

(2) The OD pairs exhibit certain correlations with each
other due to the same nature of the origin-desti-
nation station and time variation pattern. It makes
sense to consider the spatiotemporal characteristics
of OD passenger flow when predicting.

(3) The proposed ST-VGCN model can combine tem-
poral and spatial information to improve the ability
of prediction. By establishing a virtual graph, GCN is
used to capture spatial properties. GRU is used to
capture time series information.

Opverall, research on key OD pair flow prediction can
provide important insights for metro operation and man-
agement. In the future, the impact of multiple sources of data
needs to be considered which can further improve the
prediction ability of the model. It is also an open question
worthy to be explored how to determine the threshold value
for filtering key OD pairs more reasonably. Also, the
problem of not being able to obtain real-time OD infor-
mation due to trip duration is not explored in this study, and
we will consider the problem of how to obtain real-time
information in the next work.

Data Availability

Due to the nature of this research, participants of this study
did not agree for their data to be shared publicly, so sup-
porting data are not available.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded by the Beijing Municipal Natural
Science Foundation (Grant No. L201015); the National Key
R&D Program of China (Grant No. 2020YFC0833104); and
the Green, Intelligent and Safe Mining of Coal Resources
(Grant No. 52121003).

References

[1] B. L. Smith and M. J. Demetsky, “Traffic flow forecasting:
comparison of modeling approaches,” Journal of Trans-
portation Engineering, vol. 123, no. 4, pp. 261-266.

[2] Li.Zhu, Y. Li, F.R. Yu, B. Ning, T. Tang, and X. Wang, “Cross-
layer defense methods for jamming-resistant cbtc systems,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 11, pp. 7266-7278, 2021.

[3] Y. Li, Li. Zhu, H. Wang, F. R. Yu, and S. Liu, “A cross-layer
defense scheme for edge intelligence-enabled cbtc systems

Mathematical Problems in Engineering

against mitm attacks,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 4, pp. 2286-2298, 2021.

[4] K. Kumar, M. Parida, and V. K. Katiyar, “Short term traffic
flow prediction for a non urban highway using artificial neural
network,” Procedia - Social and Behavioral Sciences, vol. 104,
pp. 755-764, 2013.

[5] J. Yang, Y. Zheng, K. P. Yan et al,, “SPDNet: a real-time
passenger detection method based on attention mechanism in
subway station scenes,” Wireless Communications and Mobile
Computing, vol. 2021, Article ID 7978644, 13 pages, 2021.

[6] G. Filmon, “Habtemichael and Mecit Cetin. Short-term traffic
flow rate forecasting based on identifying similar traffic
patterns,” Transportation Research Part C: Emerging Tech-
nologies, vol. 66, pp. 61-78, 2016.

[7] Li. Zhu, H. Liang, H. Wang, B. Ning, and T. Tang, “Joint
security and train control design in blockchain-empowered
cbtc system,” IEEE Internet of Things Journal, vol. 9, no. 11,
pp. 8119-8129, 2022.

[8] Z. Zhu, Bo. Peng, C. Xiong, and L. Zhang, “Short-term traffic
flow prediction with linear conditional Gaussian bayesian
network,” Journal of Advanced Transportation, vol. 50, no. 6,
pp. 1111-1123, 2016.

[9] B. M. Williams and L. A. Hoel, “Modeling and forecasting
vehicular traffic flow as a seasonal arima process: theoretical
basis and empirical results,” Journal of Transportation Engi-
neering, vol. 129, no. 6, pp. 664-672, 2003.

[10] E. Zivot and J. Wang, “Vector Autoregressive Models for
Multivariate Time Series,” Modeling Financial Time Series
with S-Plus®, Springer, New York, NY, USA, pp. 385-429,
2003.

[11] C. H. Wy, J. M. Ho, and D. T. Lee, “Travel-time prediction
with support vector regression,” IEEE Transactions on In-
telligent Transportation Systems, vol. 5, no. 4, pp. 276-281,
2004.

[12] J. Yang and Z. Hou, “A wavelet analysis based ls-svm rail
transit passenger flow prediction method,” China Railway
Science, vol. 34, no. 3, pp. 122-127, 2013.

[13] P. Jiao, R. Li, T. Sun, Z. Hou, and A. Ibrahim, “Three revised
kalman filtering models for short-term rail transit passenger
flow prediction,” Mathematical Problems in Engineering,
vol. 2016, Article ID 9717582, 10 pages, 2016.

[14] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based
prediction model for spatio-temporal data,” in Proceedings of
the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, SIGSPACIAL
’16, New York, NY, USA, 2016.

[15] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual
networks for citywide crowd flows prediction,” in Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAT Press, San Francisco, CA, USA, February 2017.

[16] Y. Liu, Z. Liu, and R. Jia, “Deeppf: a deep learning based
architecture for metro passenger flow prediction,” Trans-
portation Research Part C: Emerging Technologies, vol. 101,
pp. 18-34, 2019.

[17] X. Ma, J. Zhang, B. Du, C. Ding, and L. Sun, “Parallel ar-
chitecture of convolutional bi-directional Istm neural net-
works for network-wide metro ridership prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20,
no. 6, pp. 2278-2288, 2019.

[18] J. Yang, X. Dong, and S. Jin, “Metro passenger flow prediction
model using attention-based neural network,” IEEE Access,
vol. 8, Article ID 30953, 2020.



Mathematical Problems in Engineering

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

J. Chen, L. Liu, H. Wu, J. Zhen, G. Li, and L. Lin, “Physical-
virtual collaboration graph network for station-level metro
ridership prediction,” 2020, https://arxiv.org/abs/2001.04889.
M. Defferrard, X. Bresson, and P. Vandergheynst, “Con-
volutional Neural Networks on Graphs with Fast Localized
Spectral Filtering,” 2016, https://arxiv.org/abs/1606.09375.

S. Guo, Y. Lin, F. Ning, C. Song, and H. Wan, “Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting,” in Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial, AAAI Press, Honolulu,
HI, USA, February 2019.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph con-
volutional networks for skeleton-based action recognition,”
2018, https://arxiv.org/abs/1801.07455.

L. Zhao, Y. Song, M. Deng, and H. Li, “Temporal graph
convolutional network for urban traffic flow prediction
method,” 2018, https://arxiv.org/abs/1811.05320.

L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang, and L. Lin,
“Contextualized spatial-temporal network for taxi origin-
destination demand prediction,” IEEE Transactions on In-
telligent Transportation Systems, vol. 20, no. 10, pp. 3875-
3887, 2019.

J. Liu, F. Zheng, H. J. van Zuylen, and J. Li, “A dynamic od
prediction approach for urban networks based on automatic
number plate recognition data,” Transportation Research
Procedia, vol. 47, pp. 601-608, 2020.

F. Toqué, E. Come, M. Khalil El Mahrsi, and L. Oukhellou,
“Forecasting dynamic public transport origin-destination
matrices with long-short term memory recurrent neural
networks,” in Proceedings of the 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC),
pp- 1071-1076, IEEE, Rio de Janeiro, Brazil, November 2016.
Y. Wang, H. Yin, H. Chen, T. Wo, J. Xu, and K. Zheng,
“Origin-destination matrix prediction via graph convolution:
a new perspective of passenger demand modeling,” in Pro-
ceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1227-1235,
Anchorage AK USA, August 2019.

L. Shen, Z. Shao, Y. Yu, and X. M. Chen, “Hybrid approach
combining modified gravity model and deep learning for
short-term forecasting of metro transit passenger flows,”
Transportation Research Record, vol. 2675, no. 1, pp. 25-38,
2021.

J. Zhang, F. Chen, Z. Wang, and H. Liu, “Short-term origin-
destination forecasting in urban rail transit based on at-
traction degree,” IEEE Access, vol. 7, Article ID 133452, 2019.
J. Zhang, H. Che, F. Chen, W. Mae, and Z. He, “Short-term
Prediction of Urban Rail Transit Origin-Destination Flow: A
Channel-wise Attentive Split-Convolutional Neural Network
Method,” Transportation Research Part C: Emerging Tech-
nologies, vol. 124, 2020.

Y. Gong, Z. Li, J. Zhang, W. Liu, and Yu. Zheng, “Online
spatio-temporal crowd flow distribution prediction for
complex metro system,” IEEE Transactions on Knowledge and
Data Engineering, vol. 34, no. 2, pp. 865-880, 2022.

N. Peyman, H. N. Koutsopoulos, and J. Zhao, “Dynamic
origin-destination prediction in urban rail systems: a multi-
resolution spatio-temporal deep learning approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23,
no. 6, pp. 5106-5115, 2022.

J. Yang and Z. Hou, “A grey Markov based on large passenger
flow real- time prediction model,” Journal of Beijing Jiaotong
University, vol. 37, no. 02, pp. 119-123, 2013.

11


https://arxiv.org/abs/2001.04889
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1801.07455
https://arxiv.org/abs/1811.05320

