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�e incidence of liver cancer (hepatocellular carcinoma; HCC) is rising and with poor clinical outcome expected, a more accurate
judgment of tumor tissues and adjacent nontumor tissues is necessary. �e aim of this study was to construct a diagnostic model
based on random forest (RF) and arti�cial neural network (ANN). It can be used to aid in the identi�cation of diseased tissue such
as cancerous tissue, for HCC clinical diagnosis and surgical guidance. GSE36376 and GSE121248 from Gene Expression Omnibus
(GEO) were used as training sets in this investigation. R package “limma” and WGCNA were used to �lter the training set for
statistically signi�cant (p< 0.05) di�erential genes. To better understand the biological function and characteristics, R software
was used to perform GO and KEGG enrichment analyses. To pick out and further understand the key genes, we performed PPI
analysis and random forest tree analysis. Next, we built the ANN to predict training sets and validation set (GSE84402), and ROC
curve was plotted to calculate area under curve (AUC). �en immune cell in�ltration indicated di�erence of immune cell subsets
between control and case groups. Finally, the survival analysis of key genes was also carried out based on data in TCGA database.
Based on the expression of these 9 genes, we built the arti�cial neural network (ANN) and the accuracy of the �nal models was
assessed with an ROC curve. �e areas under the ROC curve were 0.984 (95% CI 0.972–0.993) in training sets. Its predictive
capability was further assessed using the validation set. And the areas under the ROC curve were 0.929 (95% CI 0.786–1.000). In
summary, this method e�ectively classi�es hepatocellular carcinoma tissues and the corresponding noncancerous tissues and
provides reasonable new ideas for the early diagnosis of liver cancer in the future.

1. Introduction

Every year, more than 850 000 new cancer cases are diag-
nosed in the world’s livers, with hepatocellular carcinoma
accounting for over 90% of them [1]. �e burden of liver
cancer is projected to be over 1 million cases by 2030 [2].
Chronic hepatitis B and C virus infection, dietary toxin
exposure (such as a©atoxin and aristolochic acid), metabolic
illnesses (such as fatty liver disease and diabetes), and al-
cohol addiction are all key risk factors for HCC [3]. �e
neoplastic genesis of HCC is a multistep histological process.
Hepatocellular necrosis is followed by hepatocyte growth
after a hepatic injury. Chronic liver disease develops as a
result of continuous destructive-regenerative cycles,
resulting in liver cirrhosis, which is characterized by �brosis
and aberrant nodule development. �en hyperplastic and

dysplastic nodules appear, leading to the development of
HCC. HCC is further divided into three types: well-di�er-
entiated, moderately di�erentiated, and poorly di�erentiated
tumors, with the last being the most dangerous type of
primary HCC [4].

Hepatocellular carcinoma monitoring, diagnosis, and
therapy have all improved signi�cantly over the last decade
[3]. Despite the disease’s declining incidence rates, disease-
speci�c death rates remain high [5], and early diagnosis is
important to improving outcomes [6]. Biannual ultrasound
(US) with or without alpha-fetoprotein (AFP) testing is
recommended by international hepatic associations for
screening for HCC in at-risk individuals [7–9]. �e purpose
of these guidelines is to enhance the possibility of detecting
early-stage HCC that could be treated successfully [10].
However, alpha-fetoprotein (AFP), dynamic magnetic
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resonance imaging, and computed tomography have low
sensitivity and specificity: the combination of US and AFP
has a sensitivity of just 63 percent for early-stage HCC
identification [11], and more than 5% of MRI-diagnosed
HCC may be false positive or non-HCC lesions [12], calling
into question their value as primary screening tools for
hepatocellular carcinoma [9]. Furthermore, early diagnosis
is more challenging due to confounding variables such as the
presence of inflammation and cirrhosis [9].

)erefore, novel diagnostic models for HCC with higher
diagnostic accuracy are still urgently required.

Recently, the availability of omics data for illnesses, such
as tumors and HCC, is rapidly increasing [13, 14]. However,
because of the high dimensionality of this data, detecting
biologically relevant patterns might be difficult. )is cir-
cumstance needs the creation of new analytical methods,
such as using artificial intelligence (AI) and random forest to
analyze data. Now the most popular example of artificial
intelligence methods is the artificial neural network (ANN)
[15], which enables computer systems to improve forecast
accuracy by creating a probabilistic or statistical model based
on current data [16]. For data-driven precision medicine, a
hypothesis-free strategy to integrating huge data is essential.
In the field of liver diseases, which is associated with
multifactorial and complex characteristics, approaches
based on ANN to combine multiple factors using available
data appear to improve performance in diagnostic tasks and
decision-making tasks based on treatment response or
prognostic prediction [17].

ANNs, with all of their variants, are now the main tools
in machine learning tasks, such as disease diagnosis and
classification [18]. Allahverdi et al. [19] created a heart
disease classification system that used an artificial neural
network and attained an accuracy of 82.4%. Dongfang Jia
et al. [20] proposed a methodology based on artificial
neuronal networks that can accurately classify cancer tissues
and normal tissues and provides reasonable new directions
for the early diagnosis of cancer. In this context, we sug-
gested a novel diagnostic model that overcomes some of the
disadvantages of standard diagnostic approaches, fully uti-
lizing the advances in omics technologies and achieving a
more comprehensive optimization of diagnosis of HCC,
allowing for a faster, more sensitive, and radiation-free HCC
detection.

2. Materials and Methods

2.1. Materials

2.1.1. Data Collection. )e study’s workflow is depicted in
Figure 1. )e keywords “hepatocellular carcinoma/liver
cancer”, “normal”, “Expression profiling by array”, “Se-
ries”, and “Homo sapiens” were used to search the Gene
Expression Omnibus (GEO) databases for liver cancer
gene expression profiles. Datasets collected from human
case-control studies, with hepatocellular carcinoma tissues
as the case group and corresponding noncancerous tissues
as the control group, were included in our training set.
)erefore, three datasets (GSE36376, GSE121248, and

GSE84402) met the screening criteria. GSE36376 con-
tained 240 tumor and 193 adjacent nontumor liver sam-
ples, and GSE121248 contained 70 tumor and 37 adjacent
nontumor liver samples. GSE36376 and GSE121248 were
combined as the training set to screen for the key genes to
build the ANNmodel. GSE84402 (contained 14 tumor and
14 corresponding noncancerous samples) served as an
independent validation set to verify the accuracy of the
ANN model.

Flow diagram of the study. Data collection, analysis, key
gene selection and validation.

2.1.2. Differentially Expressed Genes (DEGs) Screening.
)e differentially expressed genes (DEGs) were screened by
limma [21]. )e R software package’s limma contains a
solution for DEA of microarray data. )e DEGs between
tumor and neighboring nonneoplastic liver were screened
using limma in the GSE36376 and GSE121248 datasets,
respectively. Both |logFC|≥ 2.0 and adjusted P< 0.05 were
used as the thresholds for DEGs. All DEGs were visualized
by a volcano plot.

2.1.3. Weighted Gene Coexpression Networks Construction
and Module Selection. )e gene modules were screened by
WGCNA. After obtaining the gene expression profile, the
WGCNA software tool in R [22] was used to create a gene
coexpression network using the gene expression data of
DEGs.

First, the appropriate soft-thresholding power (β) was
selected by using the ‘‘pickSoft)reshold’’ function with the
default parameters (herein, β� 7). Subsequently, Pearson’s
correlation matrix was calculated to evaluate the similarity
among all the pairwise genes by using the ‘‘cor’’ function
with the default parameters. )en, the adjacency was cal-
culated based on β and Pearson’s correlation matrix by using
the ‘‘TOMsimilarity’’ function with the default parameters,
and the corresponding dissimilarity (dissTOM) was also
calculated. Finally, average linkage hierarchical clustering
was conducted according to the dissTOM value with a
minimum size of 48 for each gene dendrogram.

Module eigengenes (MEs), considered the first principal
component (PC) of gene expression patterns of a corre-
sponding module, were obtained for each module. To fur-
ther strengthen the reliability of the modules, a cut line was
set at 0.25 so that modules bearing <0.25 would be merged
[23]. )e module with the highest MS was considered as the
key module related with liver cancer.

2.1.4. Candidate Gene Selection from the Most Significant
Module. )e intensity of intramodular interconnectivity
(also known as module membership (MM)) was computed
using the absolute value of Pearson’s correlation coefficient
between module eigengene and expression values to define
candidate genes. Candidate genes with an MM of r≥ 0.80
and a substantial gene connection with liver cancer (at
p≤ 0.05) were prioritized for further investigation. A
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volcano plot and heatmap were used to illustrate all of the
candidate genes.

2.1.5. Functional Enrichment Analysis. )e functional
analysis was performed by Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analyses. )e
KEGG and GO analyses were conducted by R package
“clusterProfiler.” [24].

2.1.6. Protein-Protein Interaction (PPI) Network Analysis.
)e information of the interaction of proteins and neigh-
borhood, gene fusions were provided using the Search

Tool for the Retrieval of Interacting Genes (STRING) da-
tabase (a publicly available database; https://string-db.org/)
[25]. In the present study, the input gene sets were 66
candidate genes and the species was Homo sapiens. To
further explore the potential relevance of the candidate
genes, the minimum required interaction score was 0.4.

2.1.7. Random Forest for Key Genes Screening. )e random
forest package in R was used with 500 trees and default
parameters to do the random forest analysis [26]. To
minimize overfitting, we used a decision tree-based method
that included internal cross-validation and took into account

Training set:downloading GSE36376
and GSE121248 from GEO
Validation set:downloading

GSE84402 from GEO

Analysis of differentially
expressed genes (DEGs)

by limma

Selection of the highest co-
expression modules using

WGCNA

66 candidate genes among DEG lists and co-
expression modules

GO
enrichment

KEGG
enrichment

Selection of key genes by
Random Forest and PPI

9 key genes to
built ANN module

Correlation analysis
and expression difference

analysis of key genes

Evaluate the ANN module
using training set

Predict validation set
with ANN model

Immune cell infiltration
and difference analysis

Survival analysis of
key genes

Figure 1: Flow diagram of the study.
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nonlinear data. We then obtained the best trees with the
fewest cross-validated errors for crucial gene screening.

2.1.8. Gene Scores for Removing Batch E�ects. For each key
genes screening by random forest, we calculated the median
value of that gene across all arrays. Among the upregulated
genes, whose expression is greater than the median value, we
marked 1; otherwise mark 0. Among the downregulated

genes, whose expression is greater than the median value, we
marked 0; otherwise mark 1.�en we get the scores for these
key genes in each sample to remove batch e�ects of training
and validation set.

2.1.9. Correlation Analysis and Expression Di�erence Anal-
ysis of Key Genes. Spearman correlation analysis was used to
analyze the correlation among key genes. �en we used the

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

Scale independence

Soft Threshold (power)

Sc
al

e F
re

e T
op

ol
og

y 
M

od
el

 F
it 

(s
ig

ne
d 

R^
2 

)

1

2

3 4 5
6 7 8 910 12 14 16

18 20 22 24 26 28 30

(a)

0 5 10 15 20 25 30

0
50

0
10

00
15

00

Mean connectivity

Soft Threshold (power)

M
ea

n 
Co

nn
ec

tiv
ity

1

2

3
4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30

(b)

0.
80

0.
90

1.
00

Cluster Dendrogram

H
ei

gh
t

Module colors

(c)

Module−trait relationships

−1

−0.5

0

0.5

1

cancer

0.061
(1)

−0.19
(0.3)
0.24

(0.06)
0.33

(0.001)
0.12
(1)

0.11
(1)

0.045
(1)

−0.19
(0.3)
0.036

(1)
−0.19
(0.3)
−0.48

(8e−08)
−0.0072

(1)
0.18
(0.3)
0.23

(0.09)
0.13
(0.9)
0.14
(0.9)

greenyellow

yellow

grey

cyan

purple

salmon

pink

brown

blue

turquoise

magenta

black

red

green

tan

midnightblue

(d)

Figure 2: �e results of weighted coexpression gene network analysis. An overview of the coexpressed genes in the current study, dem-
onstrating the relevance of gene modules and phenotypes. (a) Screening soft-thresholding powers. (b) Mean network connectivity of soft-
thresholding powers used in WGCNA. A soft threshold of 6 is the most suitable value. (c) Cluster dendrogram of the identi�ed coexpression
modules. In this �gure, each gene is represented as a leaf and corresponds to a color module. Each color indicates that each gene in its
corresponding cluster dendrogram belongs to the same module. If some genes have similar changes in expression, then these genes may be
functionally related. Moreover, all these genes can further be included into a single module. �e gray block represents the genes that do not
coexpress with genes of any other color module. (d) Module-trait weighted correlations and corresponding P-values for the identi�ed gene
module and pathologic type (tumor tissues). �e label of color on the right represents the strength of correlation, from 1 (red) to –1 (blue).
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grid represents the degree of gene expression in the sample.�e row of the volcano graph represents log |FC|, and the column represents −log10
(adjusted P-value), and each point is the degree of gene expression. (a) Heat plot of candidate genes. (b) Volcano plot of candidate genes.

Mathematical Problems in Engineering 5



terpenoid metabolic process

cellular response to cadmium ion

isoprenoid metabolic process

cellular response to copper ion

blood microparticle

pore complex

high−density lipoprotein particle

plasma lipoprotein particle

steroid hydroxylase activity

oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular
oxygen, reduced flavin or flavoprotein as one

donor, and incorporation of one atom of oxygen

arachidonic acid epoxygenase activity

monooxygenase activity

0 2 4 6 8 10

−Log
10 

(p.adjust)

BP

CC

MF

(a)

cellular response to copper ion

cellular response to cadmium ion

terpenoid metabolic process

isoprenoid metabolic process

pore complex

high−density lipoprotein particle

plasma lipoprotein particle

blood microparticle

arachidonic acid epoxygenase activity

oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen,

reduced flavin or flavoprotein as one donor, and
incorporation of one atom of oxygen

steroid hydroxylase activity

monooxygenase activity

0.02 0.06 0.10 0.14 0.18
GeneRatio

0.02
0.04
0.06

p.adjust

Counts
2

6

11

(b)
GO:0006721 GO:0071276

GO:0006720
G
O
:0071280

G
O
:0
01
02
73

GO
:00
08
39
5

GO:
0016

712

GO:0008392

GO:0004497

GO:0008391

G
O
:0072562

G
O
:0
04
69
30

GO
:00

34
36
4

GO
:00
343

58
GO:199

0777

LogFC
Up
Down

−2.5 −2.0 −1.5
Z−score

(c)

CYP1A
2

M
T1F

M
T1G

FCN
3

CYP3A4

M
T1MAPOFMT1XADH4

C9CYP2C8
MT1H

CYP2E1
FOS

RDH16

CYP2A6

ADH1B

ADH1C

AFM

LCAT

CYP2C
9

M
T2A

CY
P8

B1 C6
BC

H
E

A
K

R1
B1

0
G

PC
3

G
O

:0
00

67
21

GO:0071276

GO:0006720

GO:0072562GO:0046930
GO:0034364

GO:0008395

G
O

:0016712

0
LogFC

(d)

Figure 4: GO pathway enrichment analyses of candidate genes. (a) GO analysis indicated enrichment of the di�erentially expressed genes in
biological processes, cellular components, and molecular functions. (b) Functional bubble map of gene enrichment. �e size of the bubble
represents the number of genes in the signaling pathway or the number of genes involved in the function. Color represents P-value; the
darker the color the more signi�cant the result. (c) Nodes in the concentric circle graph represent coexpressed genes clustered in speci�c
biological process terms. �e inner sectors with larger size and darker color represented more signi�cant enrichment. (d) Ribbons with
di�erent colors corresponded to di�erent enriched pathways terms from Metascape. GO, gene ontology.
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Wilcox test to perform a differential analysis of the key genes
between control and treat groups and ggplot2 (version 2.2.1)
were used to construct boxplots of gene expression.

2.1.10. ;e Establishment of ANN Models and Test. In
general, artificial neural networks (ANN) consist of three
layers, namely, input, hidden, and output layers. We used
key genes scores as input layers. And the hidden layer’s main
job is to extract categorized data from existing data. )e
output layer displays the network’s ultimate output. )e
outputs of one layer’s nodes are a weighted linear combi-
nation that has been altered by a nonlinear function. )is
nonlinear function enables the neural network to under-
stand complex relationships between independent variables,
hence improving the effectiveness of data-driven machine
learning techniques [27–29]. In validation set, among the
upregulated genes, whose expression is greater than the
median value, we marked 1; otherwise mark 0. Among the
downregulated genes, whose expression is greater than the
median value, we marked 0; otherwise mark 1. )en we get
the genes scores so that we can examine the accuracy of the
ANN model in the validation set. At last, we plotted ROC
curve to calculate area under curve (AUC) to show model
accuracy. An area under the curve (AUC) value between 0.8
and 0.9 is considered an excellent classification, while greater
than 0.9 is considered as outstanding discrimination [30].

2.1.11. Immune Infiltration by CIBERSORT Analysis. To
forecast the infiltration of 22 different kinds of immune cells
in each tissue sample, the CIBERSORT algorithm is often
utilized [31]. Seven types of T cells [CD8+T cells, naı̈ve
CD4+T cells, resting memory CD4+T cells, activated
memory CD4+T cells, follicular helper T cells, regulatory
T cells (Tregs), and gamma delta T cells], three types of
macrophages (M0, M1, and M2), naı̈ve B cells, memory
B cells, plasma cells, resting natural killer (NK) cells, acti-
vated NK cells, monocytes, resting dendritic cells, activated
dendritic cells, resting mast cells, activated mast cells,

eosinophils, and neutrophils are among the 22 immune cells
identified.)e CIBERSORTmethod was used to transform a
normalized gene expression matrix into 22 different types of
immune cell matrix. )e immune cell matrix was filtered
using P0.05 criteria, and the relative expression of 22 cat-
egories of immune cells was determined using R packages
between tumor and neighboring nontumor samples. )e
difference between tumor and neighboring nontumor
samples was also determined using principal component
analysis (PCA).

2.1.12. Survival Analysis. All the expressions of key genes
were calculated, and patients were separated by the median
expression level of each gene (highly expressed group and
lowly expressed group). )e Kaplan–Meier (KM) survival
analyses were used to compare the survival difference be-
tween lowly and highly expressed groups based on each key
gene group, with log-rank test.

3. Results

3.1. Screening the Candidate Genes. Weighted gene coex-
pression network analysis can be used to screen out the gene
modules related to cancer tissues. First, we checked outliers
in the sample, which were found and deleted from all
samples (Figure 2(a)). )e proper power value was then
determined. Scale independence reached 0.8 and mean
connection was more than zero when the soft threshold
power value was equal to 7 (Figure 2(b)). As a result, the soft
threshold power value for further analysis was set at 7. And
16 coexpression modules were discovered, with the gray
module representing a gene that was not allocated to any
module (Figure 2(c)). )e genes of each part had been
matched with different colors. )e eigengene adjacency
heatmap was used to identify correlations between different
modules (Figure 2(d)). Modules that were grouped together
into a single branch may have functionalities that are
comparable. As shown in Figure 2(d), the highest connec-
tion with liver cancer was seen in the salmon module, which

Table 1: GO analysis of candidate genes.

Ontology ID Description
BP GO: 0006721 Terpenoid metabolic process
BP GO: 0071276 Cellular response to cadmium ion
BP GO: 0006720 Isoprenoid metabolic process
BP GO: 0071280 Cellular response to copper ion
BP GO: 0010273 Detoxification of copper ion
CC GO: 0072562 Blood microparticle
CC GO: 0046930 Pore complex
CC GO: 0034364 High-density lipoprotein particle
CC GO: 0034358 Plasma lipoprotein particle
CC GO: 1990777 Lipoprotein particle
MF GO: 0008395 Steroid hydroxylase activity

MF GO: 0016712 Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced
flavin or flavoprotein as one donor, and incorporation of one atom of oxygen

MF GO: 0008392 Arachidonic acid epoxygenase activity
MF GO: 0004497 Monooxygenase activity
MF GO: 0008391 Arachidonic acid monooxygenase activity
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contained 66 genes.�e heatmap of these 66 candidate genes
was shown in Figure 3(a), indicating that these 66 candidate
genes are di�erentially expressed between tumor and
neighboring nontumor samples. In the heat plot, each cell
represents the degree of gene expression, red represents
upregulation, and green represents downregulation.We take
log |FC| as the horizontal axis and −log10 (adj. P-value) as
the vertical axis to make volcano plots (Figure 3(b)), where
the red and green dots represent the upregulated and
downregulated genes, respectively.

3.2. Functional Enrichment of Candidate Genes. To explore
the functions of candidate genes, the GO and KEGG

Table 2: KEGG analysis of candidate genes.

Ontology ID Description
KEGG hsa00830 Retinol metabolism
KEGG hsa05204 Chemical carcinogenesis
KEGG hsa00982 Drug metabolism, cytochrome P450

KEGG hsa00980 Metabolism of xenobiotics by cytochrome
P450

KEGG hsa00591 Linoleic acid metabolism
KEGG hsa04978 Mineral absorption
KEGG hsa00350 Tyrosine metabolism
KEGG hsa00010 Glycolysis/gluconeogenesis
KEGG hsa00360 Phenylalanine metabolism
KEGG hsa00071 Fatty acid degradation
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Figure 5: KEGG pathway enrichment analyses of candidate genes. (a) KEGG pathway enrichment analysis. (b) Functional bubble map of
gene enrichment. �e size of the bubble represents the number of genes in the signaling pathway or the number of genes involved in the
function. Color represents P-value; the darker the color the more signi�cant the result. (c) Nodes in the concentric circle graph represent
coexpressed genes clustered in speci�c biological process terms. �e inner sectors with larger size and darker color represented more
signi�cant enrichment. (d) Ribbons with di�erent colors corresponded to di�erent enriched pathways terms from Metascape.
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enrichment analyses were conducted by R packages. GO
analysis was applied from 3 aspects: biological process (BP),
cellular component (CC), and molecular function (MF). In
the BP part, the upregulated robust DEGs were mainly
enriched in terpenoid metabolic process, cellular response
to cadmium ion, and isoprenoid metabolic process. For
CC, the upregulated genes were particularly enriched in
blood microparticle, pore complex, and high-density li-
poprotein particle. �e top three signi�cantly enriched
terms were oxidoreductase activity, steroid hydroxylase
activity, and aromatase activity in the MF group (Figure 4
and Table 1). �e result of KEGG pathway enrichment
analysis is shown in Figure 5 and Table 2. Retinol meta-
bolism, chemical carcinogenesis, and drug metabolism-
cytochrome P450 were highly associated with tumor
progression.

3.3. PPI Network Analysis. To pick out and further under-
stand the key genes, PPI network analysis was performed
using STRING.�e PPI network of candidate genes is shown
in Figure 6. A total of 65 nodes and 118 interaction pairs
were included in the network.

Using the STRING online database, a total of 65 nodes
and 118 interaction pairs were included in the network.

3.4. Key Genes Screened by Random Forest Tree to Build ANN
Model. Figure 7(a) shows the relationship between error
rate and the number of classi�cation trees. Genes with mean
decrease Gini greater than 10 are identi�ed as the �nal
signature shown in Figure 7(b) (9 key genes).�e heatmap of
these 9 key genes was shown in Figure 7(c). �en we used
these key genes scores to build ANN models, as shown in
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Figure 6: PPI network of the candidate genes.
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Figure 7(d), which consists of 9 input nodes, 5 hidden nodes,
and 2 output nodes. �e output layer can judge the prop-
erties of the samples and divide them into control groups
and case groups.

3.5. Correlation Analysis. �e major key genes were utilized
to explore the relationships among these genes by a cor-
relation analysis. Most of the genes had previously shown a
strong positive correlation, while CDC20 was negatively
correlated with the rest (Figure 8).

Blue represents negative correlation and red represents
positive correlation. �e depth of color indicates the

intensity of the correlation between covariates. �e darker
the color, the higher the correlation.

3.6. Expression Di�erence Analysis of Key Genes. Among
them, CDC20 showed signi�cantly high expression in tumor
tissues, while the other eight genes were low expressed in
tumor tissues (Figure 9).

3.7. Model Accuracy on Training and Validation Sets. �e
ROC curve was displayed to validate the predictive accuracy
of the model. �e area under the receiver-operating
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Figure 9: Continued.
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characteristic (ROC) curve (AUC) of the training and val-
idation set was 0.984 and 0.929, respectively (Figure 10).

3.8. Di�erence of Immune Cell Subsets between Control and
Case Groups. Figure 11(a) shows the in�ltration of 22
types of immune cells in all samples in the training set
using the CIBERSORT algorithm. Macrophages M0 ac-
count for a large proportion of case group immune
cell in�ltration. �e changes in immune cells between
control and case samples are further examined in
Figure 11(b). T cells CD4 memory activated and T cells
CD8 showed the strongest positive correlation (Pearson
correlation � 0.65), while macrophages M0 and mast cells
resting showed the strongest negative correlation (Pear-
son correlation �−0.63) in the target database at a
CIBERSORT p< 0.05 (Figure 11(c)).

3.9. Survival Analysis. We explored the prognostic roles of
each key gene by KM curves with the log-rank test. APOF
(log-rank p � 0.00063), CDC20 (log-rank p< 0.0001),
CLEC1B (log-rank p � 0.0014), CLEC4G (log-rank
p� 0.0095), CYP1A2 (log-rank p � 0.1), FCN3 (log-rank
p � 0.0011), IGFALS (log-rank p � 0.00072), LCAT (log-
rank p< 0.0001), and MT1H (log-rank p � 0.051) were
identi�ed as prognostic genes in the TCGA database
(Figure 12).

4. Discussion

�is work innovatively combined comprehensive biological
information analysis and arti�cial neural network (ANN) to
classify hepatocellular carcinoma tissues and the corre-
sponding noncancerous tissues. In this study, WGCNA was
performed to reveal key modules with clinical signi�cance,
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Figure 9: Expression di�erence analysis of key genes. �e boxplot shows the key genes expression level between tumor tissues and adjacent
nontumor tissues.
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Figure 11: Immune cells in�ltration analysis. (a)�e distribution of 22 types of immune cells between tumor tissues and adjacent nontumor
tissues. (b) Violin plot visualizing the di�erentially in�ltrated immune cells (P< 0.05). (c) �e di�erence of immune cells in�ltration
between tumor tissues and adjacent nontumor tissues visualized by heatmap.
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Figure 12: Continued.
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and salmon module was screened out through preservation
evaluation. �e GO and KEGG analyses revealed that the
genes in salmon module were signi�cantly enriched in the
biological processes of the cell cycle, cell division, and liver-
related functions. All these biological functions are closely
related to liver cancer.

�e basic unit of the ANN is neuron. To get better
performance, the weight and bias of each neuron were
constantly updated during training. Classi�cation results of
ANN indicated that the average accuracy is 0.929 in vali-
dation set which showed that the model in this paper is
highly accurate.

�rough immune cell in�ltration analysis, we compared
the in�ltration of immune cells in tumor and corresponding
noncancerous samples. �e results show that a high pro-
portion of macrophages M0 in�ltration existed in tumor
samples. Finally, survival analysis of hub genes based on the
TCGA database was also performed in our study.�e results
imply that these key genes are potentially associated with the
prognosis of HCC as well.

�is model can be applied to the early diagnosis of
cancer. In this method, probes are �rstly used to measure
gene expression, and then deep learning methods are used to
classify cancer samples. �ere is no instrument contact
during the whole diagnosis process, so there is no risk of
radiation compared with CT, ultrasonic imaging, X-ray
examination, and PET. In addition, CT and MRI scans for
individuals with HCC have a number of limitations. Con-
trast-related allergies, respiratory movements, renal

impairment, and cumulative radiation doses are all problems
to consider when getting a CT scan, especially in young
patients. Ultrasonography (US) is frequently used for
screening, sometimes almost entirely, and other times in
combination with CT or MRI, depending on the particular
patient’s risk factors, doctor preference, and advanced im-
aging approved by health insurance. If a lesion is discovered
on screening US, a contrast-enhanced scan is necessary to
better characterize the lesion [32]. Despite the use of dy-
namic contrast-enhanced MRI (DCE-MRI), the imaging
diagnosis of HCC is di²cult due to atypical imaging pre-
sentations and the variety of liver tumors [33]. Other di-
agnostic approaches, such as α-fetoprotein, are expensive
and lack sensitivity in HCC detection [34]. �is article’s
categorization is computer-assisted, and while pathological
diagnosis necessitates manual operation throughout the
procedure, this technique is more suited for quick diagnosis.

In addition, tumor individualized medical care is be-
coming increasingly important, relying on accurate risk
strati�cation systems. �ese systems aid in the selection of
the most appropriate therapy and the evaluation of the
treatment’s e�ectiveness. Gene sequencing is useful for
predicting therapy e�ects and assisting doctors in selecting
the best customized treatment approach for patients.

At the same time, preventing early recurrence is an
important issue in the management of HCC. Early recur-
rence, de�ned as recurrence within 1-2 years after resection
or ablation, is a signi�cant predictor of poor prognosis in
HCC patients [33]. By detecting recurrent lesions early, the
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Figure 12: Survival analysis. Gene changes of APOF (a), CDC20 (b), CLEC1B (c), CLEC4G (d), CYP1A2 (e), FCN3 (f), IGFALS (g), LCAT
(h), and MT1H (i) were signi�cantly correlated with the overall survival of HCC patients.
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first-line treatment for recurrences can be initiated early.)e
diagnostic model based on ANN and random forest analysis
can distinguish the tumor tissue from the normal adjacent
tissue, so as to predict early recurrence after surgery or
curative ablation in HCC patients.

A vast amount of single-cell sequencing data will need to
be investigated in the future. Classification and clustering
challenges are common research subjects. We can actually
construct small-scale quick diagnosis equipment for cancer
with the advancement of sequencing data and deep learning.
It gives people the chance to avoid and treat cancer.

Data Availability

)e expression profiling by array data used to support the
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