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Stationarity is an essential concept in time series forecasting. A reliable stationarity test that yields unbiased test outcomes is vital
as it is the gateway before a suitable forecasting model development. Renewable generation time series is inherently seasonal,
comprising trend components, and often volatile.  ese characterizing facets alongside time series length tend to bias stationarity
tests’ outcomes. A critical comparison study to check the tests’ reliability is carried out in this paper using di�erent synthetic data
required for the case-to-case analysis. Based on the tests’ working, reliabilities are analyzed for di�erent time series lengths and
group sizes, varying from 200 to 1000 with an increment of 200. is provides information about changes in reliabilities of the tests
for various time series lengths or group sizes.  is comprehensive comparison report with a necessary set of well-illustrated
�gures, table, and thorough explanation of the obtained results is expected to help novice readers to select an apt combination of
tests for stationarity check for renewable generation applications.

1. Introduction

In renewable generation forecasting, stationarity is a crucial
notion [1]. As a result, knowing whether a renewable
generation time series is e�ectively stationarized is impor-
tant [2, 3]. A reliable stationarity test that can deliver im-
partial results for a particular application is necessary on this
note.  erefore, a set of tests’ reliability information would
instill enough con�dence in the user for the apt selection of
tests.  e calculation of the power of a test used for the
reliability study con�rms whether the test behavior is ideal
for a set of parameters associated with the test. Any devi-
ations from the ideal for speci�c parameters indicate that the
test is unreliable [4].  us, a complete reliability record of
tests by analyzing the plot of power vs. test parameters is
crucial for the appropriate selection of tests for a given
application.

Reliability analysis through power calculation is well-
documented in the literature for various tests. Unit root tests
examine time series stationarity using the concept of unit

root, and power for some of these tests is calculated in [5]
and is analyzed for various time series lengths. Similarly, the
power calculations in [4, 6] for various data distributions,
time series lengths, and signi�cance levels expose the MK
test’s limitations.  e power calculation of Levene’s test is
well explained in [7, 8], along with a comparison of type-I
error probabilities enlightening the test’s sensitivity for
variance di�erences, various data distributions, and sample
sizes. Besides, the power study and error analysis of the KW
test considering sample sizes and data distribution notify the
test’s limitations [9, 10]. Power plots were also computed for
SW and KS tests and are analyzed for various data distri-
butions to study tests’ behavior against nonnormal distri-
butions [11–14].

 ough reliability analysis of the above well-established
tests is presented through detailed reasoning, a comparative
analysis of the above tests in a common platform which is
vital for assisting in the apt selection of tests for a particular
application was not performed in the literature. Further-
more, in the above studies, the analysis of the e�ect of time

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 5687518, 8 pages
https://doi.org/10.1155/2022/5687518

mailto:b.r.prusty@ieee.org
https://orcid.org/0000-0003-4040-4993
https://orcid.org/0000-0002-6332-5481
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5687518


series lengths on tests’ reliability was studied only for a few
specific tests. Besides certain tests, for example, Levene’s and
KW tests whose work is based on dividing the data samples
into various clusters open up opportunities to perform the
reliability analysis for different selections of group sizes.
However, such an analysis was never carried out in the
literature. Furthermore, for KS and SW tests, no reliability
analysis was done with respect to the tests’ integral pa-
rameters, such as skewness and kurtosis. Lastly, a com-
parison table of the above tests’ merits, demerits, and key
application tips for identifying the best set of tests for a
particular application is always of interest for novice re-
searchers in time series forecasting.

*e authors have considered all the above-highlighted
research gaps to provide a unique reliability analysis, and the
significant contributions are mentioned as follows. Firstly,
the importance of power calculation for reliability study is
enlightened, and then power calculation steps for the nine
well-established tests are pictorially represented. *e basis
for stationarity outcome for the above tests alongside their
ideal reliability plots is given special attention. Secondly, five
different time series lengths/groups are considered for the
above tests’ reliability analysis to compare their reliability
performance critically and to expose the reason for a test
being reliable or not reliable for a particular case. Finally,
considering their merits and demerits, a critical comparison
of the above tests is tabulated and recommended with each
test’s key application tips for a better outcome.

*e remainder of the paper includes a thorough dis-
cussion on the importance of reliability analysis, power
calculation steps, and comparison of reliability plots.

2. Reliability Analysis of Well-Established
Stationarity Tests

A reliable stationarity test is expected to indicate that a time
series is stationary if the time series satisfies the conditions
for stationarity. Nevertheless, in some instances, a test de-
clares a stationary time series as nonstationary. *e calcu-
lation of the power of a test, defined as “the probability with
which a test detects a divergence from the null hypothesis
conditional that the divergence exists,” helps indicate the
test’s capability in yielding a fair outcome. For ADF, PP,
Breitung, MK, Levene’s, KW, KS, and SW tests, the power 1-
β is the probability that the test rejects the null hypothesis
conditional that it is actually false [4, 5, 8, 10, 13]. Here, β is
the probability of accepting the null hypothesis when it is
actually false whereas, for the KPSS test, the power calcu-
lation metric is different as the hypothesis in the KPSS test is
reversed compared to other unit root tests [5].*erefore, the
power 1-α for this test indicates the probability that the test
does not reject the null hypothesis conditional that it is true,
where α is the probability of rejecting the null hypothesis
when it is actually true.*e plots of power of the test indicate
the deviations in the test behavior compared to that of in the
ideal case.*e ideal plots of power for all the well-established
tests for reliability analysis are presented in Figure 1. Fur-
thermore, the basis for tests’ outcome is highlighted, and
various symbols used in Figure 1 are described underneath.

Power is calculated according to the test properties. For
example, unit root tests are designed to detect the presence
of a unit root. *e unit root can be easily characterized using
AR(1) process. When the AR(1) parameter (φ) is less than 1,
the unit root is absent, whereas the unit root is present if φ≥
1. In an ideal case, for φ< 1, the power values should be 1,
and it is zero for φ� 1.

MK test confirms time series stationarity by detecting
the presence of a monotonic trend. Hence, for any value
of its slope (s) other than 0, the test should reject the null
hypothesis. *us, MK test power values are calculated
against the slope of the added trend component. Ideally,
for s � 0, the power value for the MK test should be 0, and
for all other s values, it should be 1. Levene’s test detects
the equality of variances between equal/unequal sized
groups created of the original time series. *e test must
reject the null hypothesis if inequality in standard de-
viation is present. *erefore, power values for Levene’s
test are calculated with respect to the difference in
standard deviation (d) among the groups. Ideally, the
power value should be 0 for d � 0, and the power values
should be 1 for the rest of the values of d. KW test is used
to test the equality of mean values of various groups.
*us, power values for this test are calculated against the
difference in mean values (m). In an ideal case, the power
value should be 0 form � 0, and for all other values ofm, it
should be 1.

Lastly, SW and KS tests check whether a time series
follows the normal distribution. For a normal distribution,
the skewness (c1) and kurtosis (c2) values are 0, and thus,
for any other values of c1 and c2, the null hypothesis must be
rejected by the tests. *us, power values are computed for
these tests with respect to varying c1 and c2 values, keeping
the mean and standard deviation constant for all the cases.
Ideally, for 0 values of c1 and c2, power should be 0, and the
power values should be 1 for all other values of c1 and c2.

3. Power Calculation for Stationarity Tests

Time series length “T” or group size “G” tends to affect
stationarity tests’ outcomes [5, 7]. *erefore, their impact on
the well-established tests’ reliability is always of interest.
Power calculation being essential for reliability analysis,
Figure 2 systematically elucidates power calculation steps for
the well-established tests.

3.1. Power Calculation for Unit Root Tests. *e power of a
unit root test for a specific value of φ can be calculated by
following the set of steps as suggested in Figure 2. Cal-
culation of the same for different values of φ ranging from
0 to 1 [5], that is, 0.01, 0.02, . . ., 0.99, yields a grid of
values of power corresponding to the set of φ. *e plots of
power vs. φ for various values of “T” can help note how
much a test is complying with the ideal behavior, con-
firming the test’s reliability for a particular value of “T.”
*is approach is suitable for unit root tests, and hence,
ADF, PP, KPSS, and Breitung tests can be analyzed using
this approach.
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3.2.PowerCalculation forMKTest. *e power of theMK test
can be calculated for a specific value of s. *e values of s
range from −0.01 to 0.01 [4], which will provide a set of
power values corresponding to the s values. *erefore, the
plots of power vs. s for various values of “T” can help
comprehend the test’s conformity with the ideal case.

3.3. Power Calculation for Levene’s Test. *e power for
Levene’s test is calculated for a specific value of d. *e values
for d range from 0.01 to 1 [7] yield a set of power values
corresponding to the d values. Hence, the plots of power vs. d
for various values of “G” can help visualize the test’s con-
formity with the ideal case.

3.4. Power Calculation for KW Test. *e power of the KW
test is calculated for a specific value of m. *e values for m
range from 0.01 to 1 [10] yield a set of power values cor-
responding to the m values. *e plot of power vs. m for

different values of “G” can be envisaged for comprehending
the test’s conformity with its ideal case.

3.5.PowerCalculation forKSandSWTests. *epower for KS
and SW tests can be calculated for different time series
lengths against various values of c1 and c2. A plot of power
vs. c1 and power vs. c2 will clarify the behavior of the tests for
normal and nonnormal distributions and further comment
on tests’ reliability.

4. Result Analysis

*e selection of a suitable stationarity test for a specific ap-
plication requires a critical study of well-established tests by
revealing their efficacy while handling datasets with various
lengths. A thorough survey is always of interest to expose a test’s
inability or failure to yield unbiased results with respect to
critical parameters related to the basic working of the tests. To
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Figure 1: Ideal plots for reliability analysis of stationarity tests.
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provide a detailed comparison report of the reliability of well-
established stationarity tests and to reveal the pertinent issues,
the analyses carried out in this section are twofold, as listed
underneath.

(i) Firstly, the powers of all the well-established tests for
different time series lengths/group sizes are com-
pared and critically analyzed

(ii) Next, the merits and demerits of the well-established
tests are compared, further suggested with tips for
better test outcomes

4.1. Analysis of Power Values of Stationarity Tests. To inspect
the tests’ reliability, the primary task is to determine the
number of replications, that is, the value of “R” (refer to
Figure 2). For all the analyses in the simulation study, the
value of “R” is set to 3000. *e steps as suggested in Figure 2
are followed to construct reliability plots. For randomly
chosen five different values of “T/G,” the comparison of
reliability plots using the nine tests is portrayed in
Figures 3–6.

Authors in [5] have carried out a reliability analysis con-
sidering only a few selective stationarity tests. *e time series
lengths chosen for analysis were also very small for real-time
applications. *erefore, this work includes other established
unit root tests like the Breitung test, and the time series lengths
considered for the analysis are suitable for real-time applica-
tions. Similar problems are associated with the MK test too.
Furthermore, Levene’s andKWtests are analyzedwith relatively
low and high-sized groups to notice any vital changes in the
results. *e KS and SW tests have been analyzed previously for
various data distributions in the literature [12–14]. But this

approach does not provide any useful information about the
tests’ reliabilities based on their working; instead, it provides
information on the usability of these tests for various distri-
butions.*erefore, a novel approach is used forKS and SW tests
where reliability is analyzed for changing skewness and kurtosis
values that notify about any possibilities of discrepancies in
outputs of the tests based on their basic working of detecting the
normal distribution of data. *e ensuing paragraphs critically
elucidate the reliability performance of unit root and nonunit
root tests.

*e power values for the ADF test can be seen to start
approaching zero at a lower value of φ for smaller lengths.
And, for the increase in length, the power of the ADF test
increases (refer to Figure 3). However, no such pattern of
change in power is seen for the KPSS test. *e KPSS test
power value begins to fall to zero for T� 800 at the lowest
value of φ compared to other lengths. Furthermore, the power
plot for T� 200 begins to fall at the highest φ value. It is to
highlight that the overall performance of the test is better for
shorter lengths. Hence, the KPSS test is suggested to be used
along with other tests due to its disadvantage of frequently
committing a type-I error, leading to discrepancies in the
obtained power values. PP test power values follow a similar
trend to that of the ADF test, but, for shorter lengths, the PP
test is significantly reliable compared to the ADF test. *is is
because the former uses nonparametrically adjusted test
statistics. For the Breitung test, the output is the same for all
lengths except for T�1000. It is noticed that the power for
T�1000 falls by a small amount for φ � 0.98 while, for other
lengths, the values do not approach zero even for φ � 1. Here,
the test statistic is based on that of the KPSS test, with specific
changes made to counter the disadvantages of the KPSS test.
Although the power problem of the KPSS test is solved, the
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issue of power value not approaching to zero for φ � 1 arose, that is, while solving the type-I error of the KPSS test, the test
statistics of the Breitung test became prone to type-II error.

MK test has very low reliability (refer to Figure 4) due to
frequent type-I errors.*e test formulations cannot differentiate
between trend effect and general data highs and lows. Levene’s
test is completely reliable as the plots obtained are analogous to
the ideal plot (refer to Figure 5). KW test fails to detect a very
small difference in mean values between groups, and hence,
biased results are seen.*is biased nature is prominent for lower
group sizes. ForG � 200, power values begin to rise for higherm
value as compared to that of G � 1000 (refer to Figure 5).
Reliability for SW andKS tests is checked against various c1 and
c2 values. SW test performs better than the KS test in both
aspects, but a very high rate of committing type-I errors in the
SW test results in biased power values with respect to c2.*eKS
test is designed to be sensitive to every form of difference
between two distributions leading to low power.

4.2. PerformanceComparison ofWell-Established Stationarity
Tests. It is quite clear from the results that all the sta-
tionarity tests are not perfectly reliable. Also, the
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Table 1: Performance comparison of stationarity tests.

ADF

Merit (i) Test is reliable for high time series length.

Demerits
(i) Calculates low power for a smaller time series length, often resulting in unit root conclusions even for a stationary
time series
(ii) Inappropriate choice of lag number adversely affects the test results

Suggestion (i) Reliable for apt selection of lag number

KPSS
Merits (i) Test is nonparametric

(ii) Test outcome indicates stationary if the time series is strongly stationary
Demerit (i) *e test statistic is vulnerable to type-I errors lowering the test’s reliability

Suggestion (i) Reliable for low time series lengths and recommended to be used along with another test

PP
Merits (i) Test is reliable for high time series lengths

(ii) Test is nonparametric
Demerit (i) Low reliability for small and moderately large time series lengths due to severe size distortions

Suggestion (i) Reliable for higher time series lengths and shorter time series lengths having low parameter value

Breitung

Merits (i) Reliable for any time series length
(ii) Test result is unbiased by any time series characteristics

Demerit (i) Fails to detect the presence of unit root for φ � 1 in absence of other nonstationary components for lower lengths

Suggestion (i)*e test is helpful in accurately understanding the impacts of trend, seasonality, and volatility effects through test
results

MK
Merit (i) Presence of the slightest trend component can be effectively detected

Demerit (i) Test is not reliable, particularly for higher time series length
Suggestion (i) Test cannot be solely used for assessing stationarity

Levene’s

Merit (i) Completely reliable

Demerits (i) Test is parametric
(ii) Cannot detect the presence of trend component if the variance is constant throughout

Suggestion (i) Test is very effective for assessing variance and is recommended for use with some other tests for trend
assessment

KW

Merits (i) Test is nonparametric
(ii)Test is fairly reliable for higher time series lengths

Demerits (i) Cannot detect small differences in mean values
(ii) Low reliability for lower time series lengths

Suggestion (i) Recommended for use with higher time series lengths

SW

Merits (i) Test is reliable
(ii) Best performing test in all normality tests

Demerits
(i) Nonstationary outcome does not mean that the time series is not stationary
(ii) Low reliability with respect to skewness
(iii) Significant type-I error for 0 kurtosis

Suggestion (i) *is test is to be used first. If the test outcome is nonstationary, then other tests are to be used

KS

Merit (i) Test is nonparametric (two-way) and low type-I errors
Demerit (i) Very low reliability with respect to skewness and kurtosis

Suggestion (i) Two-way KS test is useful for stationarity assessment, but the use of other tests for confirmation of results is
recommended
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limitations present in the working of these tests make it
evident that a single test is not entirely sufficient to prove the
stationarity of a test accurately. Some tests can be weak only in
areas like high or low time series lengths or group sizes. It is
also possible that other stationarity tests in the study prove
advantageous in that particular area. *erefore, a thorough
comparison of the performance of stationarity tests for their
reliability and working would help novice readers select a
group of tests for their respective applications. Using the
detailed analysis and comparison of tests’ reliability as carried
out in Section 4.1, the merits, demerits, and suggestions for
yielding the best outcome for all the tests are portrayed in
Table 1. *e best functioning tests for time series stationarity
are identified and summarized in Section 5 based on the
above-tabulated data.

5. Conclusion

*e objective of this paper was to effectively compare and
critically study nine well-established time series stationarity
tests taking reliability into account and assisting the reader
in selecting tests for a given application. *e tests’ reliability
was characterized using a metric known as power, and the
inferences from the reliability plots were examined. Fur-
thermore, the merits and demerits of the tests were com-
pared. And suggestions for the tests’ direct application with
apt setting(s) and information on other pertinent aspects are
expected to help novice readers build accurate forecasting
models.

Based on the obtained results, using PP, Breitung, and
Levene’s tests combined is recommended as the combo is
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highly reliable in handling inherent renewable generation
time series components, such as trend, seasonality, and
volatility. *e Breitung test suitably solves the reliability
problem of the PP test for lower time series lengths, while the
latter solves the same problem for higher time series lengths
with the former. But, the above two unit root tests suffer
from the incapability of detecting seasonality and volatility
effects in a time series.*erefore, their suitable hybridization
with a nonunit root test, such as Levene’s test, can solve the
above limitations. Levene’s test’s inability to detect the trend
component can be further resolved by the above two unit
root tests.
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*e figures and tables used to support the findings of this
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