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NURBS curves have been widely applied in the �eld of data points approximation, and their �tting accuracy can be improved by
adjusting the values of their weights.When applying the NURBS curve, it is di�cult to obtain the optimal weights values due to the
nonlinearity of the curve �tting problem with NURBS. In this paper, a weights iterative optimization method for NURBS curve
�tting is proposed, where the geometric property of weight has been adopted to iteratively obtain the adjusting values of the
weights with the least square method. �e e�ectiveness and convergence of the proposed method are demonstrated by numerical
experiments. �e results show that the proposed method can obtain higher �tting accuracy than other iterative optimization
methods. Meanwhile, it has the merits of data noise robustness, high accuracy with small-scale knots, and �exibility. Hence, the
proposed method is suitable for applications including noisy data approximation and skinned surface generation.

1. Introduction

With the excellent mathematical properties and modeling
�exibility, nonuniform rational B-splines (NURBS) curves
have been widely used in many �elds. For example, in re-
verse engineering, NURBS curves are usually applied to
reconstruct item contours from sampled points. One key
issue in NURBS engineering application is how to improve
�tting accuracy. Motivated by this requirement, researches
have performed on control point optimization, knot vector
optimization, the parameters of data points optimization,
and weights optimization.

�e least square method is usually used to obtain the
control points [1]. However, it cannot utilize the last cal-
culation result in its computing process, is not suitable to
solve big data, and is di�cult to optimize the �tting curve
locally. To this end, progressive iterative algorithm (PIA)
and its derivative algorithms [2, 3] are proposed to optimize
the control points. Although these methods e�ectively solve
problems such as big data solving and local optimization, the

total solving e�ciency is lower than the least square method.
In addition, they have certain convergency problems.

�e knot vector optimization methods can be divided
into two categories: one based on the geometric information
of data points, and one based on intelligent algorithms. Li
uses the discrete curvature information of data points, picks
up the curvature direction changed points, and integrates
the curvature to achieve the knots selection [4]. Park treats
the local curvature maximum points as the feature points
and generates knots from them [5]. Liang obtains the
geometric information by generating the initial �tting curve
and optimizes knots by that [6]. Aguilar groups the data
points by curvature then inserts and adjusts knots to achieve
higher accuracy [7]. Yeh utilizes the discontinuity of each
derivative of B-spline bases function to construct the
characteristic equation and gets the knot vector [8]. Laube
collects a series of geometric parameters and then uses
support vector machine to set the knots [9]. Its e�ciency and
accuracy are excellent but need to be trained by a large
number of samples, which is not easy to promote. Tegoeh
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splits data in a bisecting method to obtain coarse knots and
employs a nonlinear least squares technique to optimize
knots [10]. Various intelligent optimization algorithms are
applied to optimize the knot vector [11–18]. Despite having
high fitting accuracy, intelligent optimization algorithms
have a long calculation time and depend on the initial value.
Knot vector optimization can improve the accuracy of fitting
curves efficiently by optimizing the value of knots. However,
the change of knot is not suitable to extend the curve fitting
to skinned surface fitting. Meanwhile, the method of opti-
mizing the knot vector needs to increase knots for accuracy
improvement.+e fitting curve with a large number of knots
is sensitive to data noise.

+ere are relatively few researches on optimizing the
parameters of data points and weights. Ma proposes the base
curve projection method to optimize the parameters of
points, but the optimization mechanism is not explained [19].
+e symmetric eigenvalue decomposition is used to estimate
the values of weights [20]. However, this method has no clear
geometric meaning and calculates cumbersomely for special
calculation examples. Zhang uses the simulated annealing
algorithm to optimize weights [21]. +is method is inefficient
and relies on experience in the parameters set. Pandithevan
proposes a method to modify the weights of curve iteratively,
but it can only be used in two dimensions and cannot be
extended to three dimensions [22]. Meng proposes a method
based on the least square progressive iterative algorithm
(LSPIA), which optimizes the weights by calculating the
approximate partial derivative and combining the dichotomy,
but the optimization is not effective [23].

In summary, most of the current researches focus on the
optimization of B-spline curves, lacking the discussions on
weights optimization of NURBS curves. Limited researches
on weights optimization have problems, including the un-
certainty of geometric meaning, calculation cumbersomely,
inextensibility to three-dimension, and ineffective optimi-
zation. To solve these aforementioned problems, a weights
iterative optimization method for NURBS curve fitting is
proposed in this paper. In the proposed method, the geo-
metric property of weight has been adopted to iteratively
obtain the adjusting values of the weights with least square
method, which improves the fitting accuracy. Compared
with the existing researches, the proposed method has the
merits of flexibility and simplicity of implementation, noise
robustness, clear geometric meaning, and high accuracy.

+e rest of the paper is organized as follows: a brief
review of NURBS curve notations and basic steps of curve
fitting is in Section 2, details on the proposed method are
provided in Section 3, and calculation results and discus-
sions are provided in Section 4. Finally, conclusions are
drawn in Section 5.

2. NURBS Curve Fitting Notations

NURBS curve is expressed by

C(u) �
􏽐

n
i�0 ωi · Vi · Ni,k(u)

􏽐
n
i�0 ωi · Ni,k(u)

, (1)

where Vi is the control point of the curve, ωi is the weight of
each control point, and Ni,k(u) is the kth order B-spline basis
function at parameter u defined by a given sequence of
nondecreasing knot vector and deBoor recursive equation:

Ni,0(u) �

1, Ui ≤ u≤Ui+1,

0, otherwise,

⎧⎪⎨

⎪⎩

Ni,k(u) �
u − Ui

Ui+k − ui

Ni,k−1(u) +
Ui+k+1 − u

Ui+k+1 − Ui+1
Ni+1,k−1(u).

(2)

+e corresponding parameters of ordered data pointsQj,
j� 1,. . .,m on NURBS curve {t1、t2、. . .、tm}, order of
NURBS curve and knot vector U� {u1, u2, . . ., un + k+1} need
to be defined. +e knot vector is normalized generally. To
avoid singular equations in the process of getting control
points, the knot vector is calculated after the parameters of
data points are defined. +e parameters range from 0 to 1.
Define t1 � 0 and calculate other parameters by cumulative
chord length method (e� 1):

ti �
􏽐

i−1
j�1 Qj+1 − Qj

�����

�����
e

􏽐
m−1
j�1 Qj+1 − Qj

�����

�����
e i � 2, 3, . . . , m; e≥ 0. (3)

Although this method is simple and fast, it cannot get a
high accuracy fitting curve when the number of knots is
small.

To control the beginning and end location of the fitting
curve, the knot vector is set to be clamped, which means the
first and last k+1 knots are the same. +en, other knots are
calculated by NKTP method [24] to guarantee solvability:

d �
m

n − k
,

i � int(j d), α � j d − i,

uk+j+1 � (1 − α)ti + αti+1, j � 1, 2, . . . , n − p.

(4)

+e B-spline basis function of each data point can be
obtained according to parameter tj and knot vector U
through (2), and the matrix A can be built by

A �

N1,k t1( 􏼁 · · · Nn,k t1( 􏼁

⋮ ⋮

Nn,k tm( 􏼁 · · · Nn,k tm( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

+e weights are calculated using the eigenvector method
[24] in advance. Otherwise, set them to the same value to
degenerate the NURBS form to the B-spline form. +en, the
objective function is constructed:

f1 � 􏽘
m

i�1
Qi − C ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (6)

To minimize the objective function, the derivatives of f1
with respect to each control point,Vi(i� 1,. . .,n), are equal to 0:

zf1

zVi

� 0. (7)
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Finally, obtain the control points using the following:

V � A
T
A􏼐 􏼑

−1
A
T
(PAω), (8)

where P is the coordinate vector of data points and ω is the
vector of weights.

Although the solution minimizes the distances between
data points and corresponding points on the fitting curve, it
is not the optimal solution to get the highest accuracy. So, the
parameter of data point, knot vector, and weights still need
to be optimized.

3. Iterative Optimization of Parameters
and Weights

3.1. Optimization of Parameters. +e parameters of data
points on the final fitting curve cannot be estimated directly
because of the inaccuracy of the traditional parameterization
method. It is the reason that the small-scale knots NURBS
curve is difficult to get high accuracy. So, the number of
knots is increased to improve the accuracy. However, its
increase not only occupies more computing resources but
also deteriorates the robustness of curve fitting to data noise,
which leads to the deformation of the fitting curve. So, it is
necessary to improve the fitting accuracy by optimizing the
parameters of data points.

+e accuracy of fitting curve can be evaluated by the
following objective function:

f2 � 􏽘

m

i�1
C ti( 􏼁 − Qi

����
����, (9)

where C(ti) is the location corresponding to data point on
NURBS curve, Qi is the location of data point, and || || is the
Euclidean distance.

For the sake of simplicity, the value of ti is generally set to
be the data parameters used in curve fitting. However, it is
not the closest location to the data point on the fitting curve
because of the inaccuracy of the parameters. Figure 1 shows
the locations of data points and fitting curve. For the data
point Qj, P(tj) is the estimated location of Qj on fitting curve,
and P(t∗j ) is the closest point on fitting curve. +erefore, the
objective function f2 can be reduced by altering the pa-
rameters of data points without changing the fitting curve.

Obviously, when each parameter of data point is set to be
the value of the closest point on the fitting curve, the ob-
jective function f2 reaches the minimum value.

In the previously mentioned optimization process, fit-
ting curve is invariant, and only the parameters of data
points are changed. However, their change leads to the
change of the B-spline basic function matrix A, which results
in the fact that the control points obtained before optimi-
zation do not satisfy (7). In other words, the current solution
is not the least square solution anymore. So, the control
points through (8) after updating matrix A need to be
calculated. +e new fitting curve reduces the objective
function further. +e previously mentioned two steps make
up once optimization of data points parameters. Under the
condition of the current knot vector and weights, the fitting

accuracy can be improved by implementing parameters
optimization many times.

3.2. Calculation of the Closest Points on NURBS Curve. To
achieve the optimization of data points parameters and get
the value of fitting accuracy, the closest points on NURBS
curve need to be calculated. So, the following objective
function needs to be built:

g(u) � C′(u) · (C(u) − P). (10)

According to the continuity of the curve, the closest
location on the NURBS curve is the point whose parameter
makes g (u)� 0. It can be calculated by using Newton it-
erative method with the convergence condition [1]:

ui+1 � ui −
g ui( 􏼁

g′ ui( 􏼁

� ui −
C′(u) · C ui( 􏼁 − P( 􏼁

C′′ ui( 􏼁 · C ui( 􏼁 − P( 􏼁 + C′ ui( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2.

(11)

+e initial value of the iteration can be obtained by
sampling. Specifically, the interval of sampling is set to be
fixed on the parameter domain. +e distance between each
sampled point and test point is computed; then, the pa-
rameter of minimum distance point is selected as the initial
value of Newton iterative method. +e size of the interval
can be set according to the complexity of NURBS curve.

In once optimization of data points parameters, the value
of data parameter changes slightly. So, the initial value of
iteration can be set as the parameter used in the last least
square method fitting. A large number of examples prove the
effectiveness of this initial value selection method. It can
accurately obtain the closest point while improving efficiency.

3.3. Optimization of Weights. +e weights of the NURBS
curve have a clear geometric meaning. For a fixed point on
NURBS curve, it will move close to the corresponding
control point when increasing the weight of the control
point adjacent to it. Similarly, when the weight is decreased,
the point will leave the corresponding control point. +e
influence of weight is shown in Figure 2.

To improve the accuracy, the geometric property of
weight can be used to optimize the fitting curve. Figure 3
shows the locations of the NURBS curve, control points, and
data points.

C (t)

P (tj*)

Qj

P (tj)

Figure 1: Locations of data points and fitting curve.
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First, optimizing the single location of NURBS curve is
discussed. For simplification, we assume that the influence of
the weight on curve is linear. Specifically, assume the weight
alteration of single control point Vi is linear to the move of

the location at parameter tj. +e extent and direction of
influence can be represented by the partial derivative of the
curve with respect to the weight, and it is calculated by

αi,j �
zC(u)|u�tj

zωi

�
ωi · Ni,k tj􏼐 􏼑 · 􏽐

n
i�0 ωi · Ni,k tj􏼐 􏼑 − Ni,k tj􏼐 􏼑 · 􏽐

n
i�0 ωi · Vi · Ni,k tj􏼐 􏼑

􏽐
n
i�0 ωi · Ni,k tj􏼐 􏼑􏼐 􏼑

2 ,

(12)

where i is the number of control point and j is the number of
data point.

+en, the alteration of weight Δωi can be calculated
according to the distance δj between Qj and P(tj) by

Δωi �
δj

αi,j

. (13)

A single alteration is not effective enough due to line-
arization. Like the Newton iterative method, the alterations

can be implemented many times with convergence condi-
tions to improve the accuracy. However, the alteration of a
single weight can only move the point in a certain direction.
In order to achieve the alteration of any direction, multiple
weights of control points need to be altered.

+ere is a new problem that the influence of different
weights will couple with each other. To simplify calculations,
their influences are linearized either. +en, the coefficient
matrix B is constructed according to the partial derivatives of
the curve with respect to different weights at the current

weight decrease

weight increase

NURBS curve
control point
fixed parameter point

Figure 2: Influence of weight on NURBS curve.

Vi

Vi-1

Vi +1

Vi +2

C (t)

P (tj)

Qjδj
αi,j

αi-1, j

αi+1, j
αi+2, j

Figure 3: Locations of NURBS curve, control points, and data points.
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parameter. +e following linear equations in the form of
matrix can be solved to get the alterations μ of weights:

Bμ � δ. (14)

+e alterations of every weight should be as small as
possible for reducing the error of linearization. And the
precise adjustment of the curve can be achieved by multiple
times calculation of alterations.

In actual curve approximation, it is hard to make the
fitting curve passing through every data point due to the
limited number of control points. +erefore, the least square
method can be used to reduce the fitting error as a com-
promise. +e objective function is defined as follows:

h � 􏽘
m

j�1
δj − 􏽘

n

i�1
μiαi,j

⎛⎝ ⎞⎠

2

� 􏽘

m

j�1
δj − 􏽘

n

i�1
μiαi,j

⎛⎝ ⎞⎠ · δj − 􏽘

n

i�1
μiαi,j

⎛⎝ ⎞⎠

� 􏽘
m

j�1
δj · δj − 2􏽘

n

i�1
μiαi,j􏼐 􏼑 · δj + 􏽘

n

i�1
μiαi,j · 􏽘

n

i�1
μiαi,j

⎛⎝ ⎞⎠.

(15)

It is the function of n variables μ1, . . ., μn. To minimize
the function value h, let the partial derivatives of h with
respect to each variable equal 0. +en, the equation about
variable μl can be listed:

zh

zμl

� 􏽘
m

j�1
−2αl,j · δj + 2αl,j 􏽘

n

i�1
μiαi,j

⎛⎝ ⎞⎠

� 0.

(16)

After processing, n equations can be constructed:

􏽘

m

j�1
􏽘

n

i�1
μiαl,j · αi,j � 􏽘

m

j�1
αl,j·δj. (17)

+e equations are constructed in the matrix form as
follows:

􏽘

m

j�1
α1,j · α1,j 􏽘

m

j�1
α1,j · α2,j · · · 􏽘

m

j�1
α1,j · αn,j

􏽘

m

j�1
α2,j · α1,j 􏽘

m

j�1
α2,j · α2,j · · · 􏽘

m

j�1
α2,j · αn,j

⋮ ⋮ ⋱ ⋮

􏽘

m

j�1
αn,j · α1,j 􏽘

m

j�1
αn,j · α2,j · · · 􏽘

m

j�1
αn,j · αn,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

·

μ1
μ2
⋮

μn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

�

􏽘

m

j�1
α1,j · δj

􏽘

m

j�1
α2,j · δj

⋮

􏽘

m

j�1
αn,j · δj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

. (18)

When solving the previously mentioned equation, the
left matrix is in ill-condition generally. To prevent the in-
fluence of truncation error, the truncated SVD method is
used to solve the equation [25]. After the decomposition, the
value of the minimum and other singular values differ by
several orders of magnitude. So, the minimum value is
removed to aquire the solution stability.

+e solution is the alterations of the weights that
minimize the error. +e optimization of weights is realized
by adding the alteration to the weights of the current curve.
Combined with optimization of parameters, optimizing the
weights of the curve a couple of times can improve the fitting
accuracy iteratively.

It is worth mentioning that the previously mentioned
weights optimization method is implemented based on the
existing fitting curve. So, it has strong flexibility that can
combine with other optimization methods to generate a
higher accuracy curve.

3.4. Optimization Process of NURBS Curve Fitting. +e
NURBS curve fitting process based on the optimization of

parameters and weights is shown in Figure 4, which includes
the following steps.

Step 1. Set the number of knots and generate a knot vector
with NKTP method. +e number of knots should be set
according to the number of turns of data points.

Step 2. Use the least square method to generate the initial
NURBS fitting curve. Optimize the parameters of data point
and the weights of the curve.

Step 3. Check whether the current fitting accuracy meets the
requirement. +e curve fitting is completed when the ac-
curacy reaches the prescribe fitting error. Otherwise, insert
the knot at the parameter which has themaximum error, and
use the algorithm of closest point search to update the
parameters of data points. +en, execute Step 4.

Step 4. Calculate the new control points using the least
square method according to the current knot vector, pa-
rameters of data points, and weights of control points.
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Repeat Step 3 until the fitting accuracy is satisfied. Finally,
get the fitting NURBS curve that meets the accuracy
requirement.

+e pseudocode version of process is shown inAlgorithm 1.

4. Numerical Experiments and Discussions

To verify the effectiveness of the proposed method, the
desktop computer with a 3.0GHz Intel i7-9700 CPU and
16GB RAM is used to approximate the examples with
MATLAB software. +e accuracy of the approximation can
be evaluated as follows:

EIAE � 􏽘
m

i�1

C ti( 􏼁 − Qi

����
����

Qrng
,

EMAX �
1

Qrng
max

i
C ti( 􏼁 − Qi

����
����,

ERMS �
1

Qrng

����������������

1
m

􏽘

m

i�1
C ti( 􏼁 − Qi( 􏼁

2
,

􏽶
􏽴

(19)

where EIAE is the sum of the normalized fitting errors, EMAX is
the normalized max error, ERMS is the normalized root mean

squared error, and Qrng �max(xmax-xmin, ymax-ymin) is the
maximum length of an edge of the axis-aligned bounding box.

4.1. Fitting Parameters Selection. Due to the requirement of
the continuity of first derivatives, at least the quadratic
NURBS curve needs to be used. +e continuity of second
derivatives is also needed because of the implementation of
data parameters optimization. At least, the cubic NURBS
curve is needed. With the order of the NURBS curve in-
creasing, the timing is increasing because of the increment of
the nonzero element of (18). Meanwhile, the effect is reduced
when the order of the NURBS curve rises. It is because the
amount of control points that influence a single point on
NURBS curve is increasing, and the optimization of weights
is limited further. So, cubic is the best order to apply the
proposed method.

To investigate the iterative convergence, the proposed
method is implemented to reconstruct the fitting curve from
the sampled data points. +e number of knots is set as 14
(including the repeated clamped knots) and the knot vector
is obtained by the NKTP method. +e fitting curve is shown
in Figure 5. +e knots are represented by the small unfilled
blue diamonds.

As observed, the shape of the fitting curve gradually
converges to the data points after iterations. +e fitting error
decreases along with the increase of iterations. In order to
balance the accuracy and the calculation time, an appro-
priate number of iterations should be selected.

+e previously mentioned example is used to test the
change of the RMS error with respect to the number of
iterations.+e results for different knots curves are shown in
Figure 6. It can be observed that the rates of decrease of
errors are not constant. +e errors for the curves of different
knots decrease rapidly during the first 10 iterations. +eir
rates of decrease slowed down from 10 iterations to 20 it-
erations. +e errors are decreasing slowly after 20 iterations.
And the greater the number of knots is, the fewer the it-
erations used to make the error stabilize. Similar situations
exist in other examples. To improve the accuracy and ensure
efficiency, the number of iterations is set to be 20 in the
subsequent examples.

4.2. Comparison and Discussion of the Fitting Results. To
verify the effectiveness of the proposed method, take the
contour of “face” as an example. +e performance of the
proposed method is compared with other iterative methods,
including NCFO method [23] and LSPIA method [3], and
the method only performs optimization of data points pa-
rameters. +e 375 points sampled from the side face of the
cartoon character are shown in Figure 7(a). Considering that
the local curvature of contour change greatly, the knot
vectors of all methods are obtained using the discrete in-
tegral of data points [4]. +e fitting curves are shown in
Figure 7(b). +eir numbers of knots are set to 24 and
numbers of iterations are set to 20.+e knots are represented
by the small unfilled blue diamonds.+e errors are shown in
Table 1.

START

Set the number of 
knots and get the 
knot vector using 

NKTP method 

Use the least 
square method to 

generate the 
NURBS curve

Optimize data 
point parameter 

and weight of 
curve 

Does the accuracy meet 
the requirement? No

Insert the knot at 
the parameter 

location which has
the maximum 

error

Update the 
parameters of data 

points

END

Yes

Figure 4: Flowchart of the NURBS curve fitting for data points.
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As can be seen from Figure 7(b) and Table 1, the pro-
posed method has the highest accuracy in all kinds of
methods. Compared with the optimization without weight,
Emax, ERMS, and EIAE of the proposed method are reduced by
39.4%, 16.3%, and 15%, respectively. +e NCFOmethod has
the largest maximum error because of the inaccuracy of
approximate calculation. +e LSPIA method has the largest
RMS error and accumulated error because of the inefficiency
of each iteration. Compared with these methods, the pro-
posed method optimizes weights effectively and

approximates the large curvature locations better without
increasing the overall error.

To investigate the data noise robustness of the proposed
method, a curve fitting test is performed with the data points
containing random errors. +e 201 points sampled from a
six-degree Bezier curve with random errors that follow the
normal distribution N(0, 0.0012) of mean 0 and variance
0.0012. +e data points are shown in Figure 8(a). +e fitting
curves are shown in Figure 8(b). +e knot vectors of all
methods are obtained by NKTP method. +eir numbers of
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Figure 5: Optimizing the fitting curve iteratively.

{Initialization}
Generate the initial fitting curve in traditional method.
for i� 1 to m do
Calculate the minimum distance location on fitting curve to data point Qi.

end for
{Main Loop}
while (prescribe fitting error<max fitting error) do

Insert a knot at the location where has the maximum error on fitting curve.
for i� 1 to m do
Renew the data point parameter on fitting curve.

end for
Build the equation and get the alterations of the weights using proposed method.
Get the new fitting curve using the least square method.
for i� 1 to m do
Calculate the minimum distance location on fitting curve to data point Qi.

end for
end while

ALGORITHM 1: Pseudocode version of fitting data points with proposed method.
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Figure 6: RMS error of different knots curves with the numbers of iterations.
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Figure 7: (a) Data points of “face.” (b) +e fitting curves of each method.

Table 1: +e fitting errors of each method for “face.”

Optimize method
Error index

Emax ERMS EIAE
Proposed method 0.002975 0.000779 0.224482
Without weight 0.004906 0.000931 0.264127
NCFO 0.011497 0.001102 0.275200
LSPIA 0.007295 0.001402 0.417264
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knots are set to 12, and numbers of iterations are set to 20.
+e knots are represented by the small unfilled blue dia-
monds. +e errors are shown in Table 2.

From Figure 8(b) and Table 2, it can be seen that the
fitting accuracy of the proposed method is still higher than
othermethods. Due to the least squaremethod, the proposed
method is robust to the data noise. It can fit the high-
curvature location better and improve the accuracy when the
data points with noise.

To test the influence of the number of knots on the fitting
accuracy, the performance of the proposed method is com-
pared with other optimization methods of knot vector through
the “parameter curve” example.+ere are iterativemethods IKI
[6], AdpCrv [7], and an instant method FAKP [8].

+e data points shown in Figure 9(a) are sampled from
the parametric equations x(u) � u(cos(2u)+0.5) and y(u) �

usin(u). +e 401 points are sampled along the arc length,
with higher sampling density where curvature is higher.
+e sampling interval contains a variation that follows the
normal distribution N(0, 0.0032) of mean 0 and variance
0.0032. +e proposed method uses the basic NKTP method
to get the knot vector, which does not optimize the knot
vector. Each method runs 15 times with different numbers
of knots. +e size of knots is defined according to the

relative number between data points and knots. +e max
error and RMS error are selected as the evaluation index of
fitting accuracy. +e results are shown in Figures 9(b) and
9(c).

As indicated by Figures 9(b) and 9(c), the proposed
method achieves the highest accuracy when the number of
knots is much less than the number of data points (less than
50). +e reason is that the optimization of data points in the
proposed method works effectively when the knots are
small-scale. When the number of knots is limited, the effect
of optimization of knot vector is also limited. +e cor-
rectness of each parameter of data point plays a key role in
improving the accuracy of the fitting curve. So, the proposed
method can fit the data points better than other optimization
of knot vector methods at small-scale knots.

With the increase of knots, the fitting error of each knot
vector optimization method decreases more rapidly than the
proposed method. Actually, the optimizations of knots vector
and data points parameters are essentially optimizing the value
of B-spline basic function to each data parameter. +ey im-
prove the fitting accuracy by optimizing the coefficient matrix
A. +e knot vector can improve the accuracy effectively when
the number of knots increases. Meanwhile, the optimization
effect of the data parameters is limited at large-scale knots. So,
the accuracy of the proposed method is less than the FAKP
method and the AdpCrv method at the number of knots is
more than 50. +e IKI method has the highest error because it
inserts the knot at the middle of the segment, which is less
effective for the data with local high curvature.

It is worth mentioning that weight optimization is not
suitable for the fitting of curves with discontinuous parts.
However, due to the strong flexibility of the proposed
method, an appropriate optimization of knot vector can be

data points

-0.2

0

0.2

0.4

0.25 0.5 0.75 10

(a)

-0.2

0

0.2

0.4

0.25 0.5 0.75 10

data points
proposed method
without weight

NCFO
LSPIA

(b)

Figure 8: (a) Data points with noise. (b) +e fitting curves of each method.

Table 2: +e fitting errors of each method for “curve with noise.”

Optimize method
Error index

EMAX ERMS EIAE
Proposed method 0.006322 0.001757 0.232865
Without weight 0.006871 0.001975 0.263212
NCFO 0.006796 0.001912 0.254431
LSPIA 0.007500 0.002449 0.314092
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selected to make discontinuous parts on fitting curve. After
that, the proposed method can improve the accuracy of the
fitting curve further.

4.3. Running Time Experiment. In order to determine the
running time of the proposed method, the time experi-
ment is conducted. +e proposed method operates on the
dataset sampled from the parametric curve shown in
Figure 9(a). Different numbers of data points are sampled

to determine the influence of the number of data points.
+e convergence criteria are set to be a fixed ratio of RMS
error fall, which is equal to 5%. +e result is shown in
Figure 10(a). +e running time of the proposed method is
linear to the number of data points and knots. So, it is
feasible to solve the large-scale problem in the proposed
method. +e time experiments of other optimization
methods are conducted. +e number of data points
sampled from the parametric curve is set to be 4000. +e
result is shown in Figure 10(b).
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Figure 9: (a) Data points of “parameter curve.” (b) Maximum errors of each method with respect to different numbers of knots. (c) RMS
errors of each method with respect to different numbers of knots.
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As indicated by Figure 10(b), the proposed method is
time-consuming compared with other knot vector opti-
mization methods. +e reason is the implementation of
data parameter optimization and the calculation of partial
derivatives. So, the effect and efficiency of the proposed
method are unsatisfactory when the number of knots is
large. However, the proposed method can achieve higher
fitting accuracy and run within a finite time when the knots
are small. In others word, the proposed method is more
suitable to fit the small-scale data points in a small number
of knots.

4.4. Application in Skinned Surface Fitting. +e optimiza-
tions of data parameters and NURBS curve weights are
suitable to fit the skinned surface in which the knot
vector is constant. So, the proposed curve fitting method
can be applied in the skinned surface fitting. First, group
the data points sampled from the surface by row. Next, fit
each row by a fixed knot vector and optimize the curve by
the proposed method. +e knots can be set uniformly.

+en, replace the data points with rows of control points.
Because of the weights’ optimization, the control points
are in four dimensions. Fit them by column in a fixed
knot vector to get the control points of the surface. Fi-
nally, combine the surface control points and the knot
vector in u and v directions to get the NURBS surface.
+e pseudocode of fitting skinned surface is listed in
Algorithm 2.

To verify the effectiveness of the proposed method, the
“sine surface” is taken to be an example. +e equation of
surface is z� sin(r)/r, where the r is the distance between the
point and axis Z. +e x and y are range from −10 to 10. +e
201× 201 points are sampled from the surface. +e 16×16
knots bicubic NURBS surface is fitted. +e surface under
optimization (right) and the surface without optimization
(left) are shown in Figure 11. +e value of error is repre-
sented by color. Without increasing or changing the knots,
the proposed method reduces the maximum error from
0.01544 to 0.0066, which is a reduction of 57.2%. +e RMS
error is reduced from 0.0066 to 0.0045, which is a reduction
of 31.8%.

{u direction fits}
Set the number of knots in the u direction and generate a uniform knot vector.
for i� 1 to l do
Fit the ith row data points and get a NURBS curve in the proposed method.

end for
{v direction fits}
Set the number of knots in the v direction and generate a uniform knot vector.
for i� 1 to m do
Fitting the ith column control points of every NURBS curve in 4 dimensions.

end for
{generate surface}
Generate the NURBS surface using the control points obtained in v direction fitting and the knot vectors of u and v direction.

ALGORITHM 2: Pseudocode version of fitting skinned surface with proposed method.
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Figure 11: Fitting surfaces of “sine surface.”
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5. Conclusion

+is paper proposes a data parameters optimization-based
method for optimizing the weights of NURBS fitting curve. By
considering the geometric property of weight, the alteration
values of the weights are calculated with the linearization
assumption and the least square method. +e process of fitting
data points is provided and the effectiveness is demonstrated by
numerical experiments.+e experimental results show that the
proposed method has better fitting accuracy and data noise
robustness than other iterative optimization methods. Mean-
while, compared with the knot vector optimization method,
the proposed method can obtain the fitting curve at small-scale
knots with higher accuracy. Considering the merits of good
data noise robustness and high fitting accuracy, the proposed
method is suitable for applications such as fitting noisy data
and generating skinned surfaces.
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