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Age of Information (AoI) is a metric to describe the timeliness of a system proposed in recent years. It measures the freshness of
the latest received data from the perspective of the target node in the system.�is work studies a kind of dynamic data acquisition
system for urban security that can update and control the situation of urban environmental security by collecting environmental
data. �e collected data packets need to be uploaded to the cloud center in time for data update, which has high requirements on
the timeliness of the system and freshness of data. However, due to the limited computing capacity of mobile terminals and the
pressure of bandwidth for data transmission, problems such as high data execution delay and transmission interruption are
caused. Emerging mobile edge computing (MEC), a new model of computing that extends cloud computing capabilities to the
edge network, promises to solve these problems.�is work focuses on the timeliness of the system, as measured by the average AoI
across all mobile terminals. First, a timeliness optimization model is de�ned, and a multi-agent deep reinforcement learning
(DRL) algorithm combined with an attention mechanism is proposed to carry out computing o�oading and resource allocation
through the continuous interaction between agent and environment; then, in order to improve algorithm performance and data
security, the federated learning mode is proposed to train agents; �nally, the proposed algorithm is compared with other main
baseline algorithms based on deep reinforcement learning. �e simulation results show that the proposed algorithm not only
outperforms other algorithms in optimizing system timeliness, but also improves the stability of training.

1. Introduction

�e concept of MEC originated from the content delivery
network (CDN) and was developed in traditional cloud
computing. Its key idea is to deploy servers and storage
devices at the edge of the network, making the edge of the
network also have powerful computation and storage ca-
pabilities [1]. Its overall framework can be divided according
to its computation capacity and service functions, as shown
in Figure 1. �ere are three layers of cloud, edge, and end,
respectively. �e cloud layer is mainly composed of large
servers with powerful computation resources and super-
computation capacity. �e edge layer is mainly made up of
base stations, edge gateways, edge servers, etc., which is
slightly weaker than the cloud layer. �e end layer is mainly
composed of sensors, mobile devices, etc., which are widely
distributed and numerous, and generate a large amount of
raw data. However, due to the limited computation and

storage capacity of a single device, the computation task
often needs to be o�oaded to the server. Computing o�-
loading refers to the process in which the terminal device
allocates the intensive computation tasks to the server with
su�cient computation resources for processing through the
wireless channels according to certain strategies, and the
server returns the computation results to the terminal de-
vices [2]. �e traditional way is to upload to a cloud server.
However, with the explosive growth of user data, this
method has exposed some shortcomings, namely, high
transmission costs and delay issues caused by transmission
bandwidth, data processing, and physical distance. �us,
edge computing comes into being, which is a new com-
putation model, but edge computing is not meant to replace
cloud computing, but rather to extend cloud computing.

MEC technology can be applied to many promising real-
time applications, such as Internet of vehicles, smart city,
and smart home. Traditional performance indicators, such
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as latency and throughput, do not fully measure the
freshness of the data. On the basis of this, the concept of Age
of Information was proposed. It is defined as the time
elapsed since the information was generated from the source
node at the time of observation. AoI measures the freshness
of the data from the perspective of the target node. It should
be noted that it takes into account the frequency of the data,
which differs from previous indicators [3, 4].

.e dynamic data acquisition system for urban security
belongs to the state update scenario, which has high re-
quirements on the timeliness of the system and the freshness
of the data, the collected data packets need to be uploaded to
the cloud center in time, and if the collected data packets are
delayed or fail to be sent due to bandwidth or channel, the
status update will lose its significance. .e main contribu-
tions of this work are listed as follows:

(1) AoI is proposed to analyze the timeliness of the
dynamic data acquisition system for urban security,
which is of great significance for the data system
sensitive to timeliness and data freshness.

(2) .e optimization problem of minimizing the average
AoI of all mobile terminals is proposed and de-
scribed by the corresponding system model and
Markov decision process (MDP) for further research.

(3) A multi-agent deep reinforcement learning algo-
rithm combined with attention mechanism is pro-
posed. .rough the continuous interaction between
the agent and the environment and the federated

learning, agents are trained to perform computing
offloading and resource allocation.

2. Related Studies

2.1. Age of Information. As a new indicator, AoI was first
proposed by Kaul et al., which is used to measure data
freshness from the perspective of target node [5]. Since then,
many researchers have carried out relevant studies on AoI
from the perspectives of data source update frequency and
data generation rate from different application scenarios
combined with different queuing models and optimization
algorithms. In literature [6], the computation and iteration
process of AoI is studied by combining queuing theory, and
in literature [7] the influence of service rate on average AoI is
studied. Literature [8, 9] compares and analyzes AoI under
different computation modes for edge computing scenarios.
Literature [10] studies the optimization method of AoI
under throughput and energy constraints. .e data gener-
ation mode is generally random (such as Poisson distri-
bution and exponential distribution), and queuing rules
usually include first-come-first-served (FCFS), etc. In lit-
erature [11, 12], AoI under different computation modes is
analyzed, respectively, for MEC scenarios with single source
node and single target node. In the literature [13, 14], data
are transmitted through a single-channel wireless network.
In literature [15], in a multi-channel symmetric network
containing multi-source nodes and a single target node,
multiple links are simultaneously scheduled to send real-
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Figure 1: MEC architecture [1].
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time data to optimize the average AoI, and channel conflict
in the process of data transmission is considered. .e lit-
erature [8, 16] considers the energy constraint in wireless
sensor networks, constructs the transmission model under
the energy constraint as an MDP, and decouples complex
scheduling problems. Talak et al. also minimize the average
AoI in the network when the channel state is known and
unknown, respectively.

At present, researches on AoI optimization mostly focus
on single-channel wireless network, and most of them are
about the offloading strategies when the data generation
time is known. However, due to the complexity of the en-
vironment, some algorithms are hard to consider the link
between the entity and the environment or estimate the
constraints of the environment on the entity; in order to
solve this problem, DRL, which combines deep learning with
reinforcement learning, is adopted. It can solve high-di-
mensional state and action space and solve more complex
optimization problems.

2.2. Multi-Agent Deep Reinforcement Learning Algorithm.
It is difficult to obtain the information needed globally to
optimize the timeliness of the system when there are a large
number of mobile terminals involved. .ere are typical
policy-based algorithms such as AC and DDPG in DRL,
which are used to deal with continuous action space
problems. Double neural networks are used to approximate
the value function and the policy function, respectively.

2.2.1. Deep Reinforcement Learning. Reinforcement learn-
ing is an important branch of machine learning, mainly by
modeling the target as an agent, which initially may learn
nothing and perform a random action, waiting for the
environment to update its status and give it a reward as
feedback. .rough this reward, the agent can constantly
adjust its policy to adapt to the variation in the environment,
making the action more scientific, so as to obtain the
maximum reward.We are concerned about the agent getting
a maximum long-term return. .is process is usually de-
scribed as an MDP, (S, A, R, T, c), where S is the agent’s
state, A is the action performed by the agent, R is the reward,
T is the probability of environment state transition, and c is
the reward discount factor. .e agent policy function rep-
resents the mapping from the state space to the action space.
.e goal of reinforcement learning is to continuously op-
timize the agent’s policy so as to obtain themaximum return,
and the policy optimization is usually by optimizing the
value function.

Deep learning extracts the features of the original input
through deep neural network, so as to have powerful per-
ceptual ability; combining with the learning ability of re-
inforcement learning, it can be used to deal with decision
problems in high-dimensional and complex environments
[17, 18]. .e DRL is divided mainly into value-based
learning and policy-based learning. Value-based learning
uses a deep neural network to approximate the value
function and generally uses the temporal difference (TD)
algorithm or the SARSA (State, Action, Reward, State,

Action) algorithm to iterate and update the value network to
optimize agent’s policy. Similarly, a policy network is
established based on policy gradient learning, and the
network parameters are updated by the policy gradient.
Because the former needs to sample the action, it can only
deal with the discrete action space, but the policy gradient-
based learning directly uses the policy network to search for
actions, so it can deal with the problem of continuous ac-
tions. In this work, the actor-critic is a combination of the
two algorithms. Actor network uses the policy gradient
algorithm to choose the action, and the critic network scores
the action. It is noteworthy that the two networks have the
same structure but different parameters. During training, the
parameters of the two networks are updated alternately.

2.2.2. Multi-Agent Collaboration. In recent years, DRL has
been widely used in multi-agent collaboration. Multi-agent
collaboration refers to the cooperation of agents with each
other to achieve a common goal, to obtain a joint reward
[19]. .ere are two main methods. One direct method is to
regard other agents as part of the environment and train
each agent individually tomaximize the cumulative return of
each agent. However, due to the instability of the envi-
ronment, this method may make it difficult for each agent to
completely converge. Another method is to regard all agents
as a whole, and its action space is the action set of all agents,
but it needs an efficient communication mechanism, which
is difficult to achieve. Later, some researchers proposed the
multi-agent deep deterministic policy gradient (MADDPG)
algorithm. Each agent is independent and generates actions
by observing local environment, while the critic network
observes global information and optimizes itself by com-
bining information from itself and other agents.

3. System Model

.e dynamic data acquisition system is shown in Figure 2;
according to the three-level architecture of the MEC net-
work, its end layer is composed of mobile terminals, mobile
terminals dynamically collect and preprocess data in a
certain area, the edge layer is mainly composed of edge base
stations, mainly responsible for data offloaded from mobile
terminals to edge base stations, and the cloud layer consists
mainly of remote cloud centers that gather all data for
storage and analysis.

3.1. Computation Model. We consider an MEC scenario
consisting of N mobile terminals and M edge base stations.
.e edge base stations are vehicle-mounted and move in a
certain area. .e mobile terminals collect data and offload
the data to the appropriate edge base stations. We divide the
continuous time into time slots, denoted by an integer t. A
list Dn(t) � [b(t), l(t), x(t)] is used to define the data col-
lected by each mobile terminal in the time slot t, where b(t)

is the size of data, l(t) is the elapsed time of data, and x(t) is
the index of mobile terminal. It is assumed that the collected
data are randomly generated with probability p

g
n in each
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time slot t, and data size follows a Poisson distribution with
arrival rate λn. .e process can be described as follows:

P bn(t) � b  � p
g
n

e
− λnλb

n

b!
. (1)

.emobile terminal n has two data queues with capacity
Bcac

n and B
off
n , respectively, as shown in Figure 3: the first one

is the cache queue, which mainly stores the latest collected
data, waiting for local preprocessing on the mobile terminal,
and the other data queue is the offloading queue, which
mainly stores processed data, waiting for the mobile ter-
minal to offload to the edge base station..e two data queues
adopt first-come first-service (FCFS) principle; that is, in
each time slot, the mobile terminal can process only one
packet, and only after processing one packet, the next one
can be processed. .e strategies of the data queue of the
mobile terminal in each time slot are denoted as

en � e1(t), e2(t), . . . , eBcac
n

(t) , (2)

on � o1(t), o2(t), ..., o
B

off
n

(t) , (3)

where ei(t) ∈ 0, 1{ }, oi(t) ∈ 0, 1{ }, and what they satisfy is as
follows:



Bcac
n

i�1
ei(t) � 1, forn � 1, 2, . . . , N, (4)



Boff
n

i�1
oi(t) � 1, for n � 1, 2, . . . , N. (5)

We can calculate the local processing time of mobile
terminal n′s data in the time slot t as follows:

τn(t) �
 b(t)

fn

, (6)

where fn is the CPU cycle frequency of the mobile terminal,
which is used to measure computation capacity.

3.2. ChannelModel. Transmission channels between mobile
terminals and edge base stations are likely to be obscured by
some buildings, resulting in co-existence of line-of-sight
(LoS) and nonline-of-sight (NLoS) communication. In this
case, the line-of-sight channel model can no longer accu-
rately describe the transmission channel between the mobile
terminal and the edge base station, so we adopt the prob-
abilistic line-of-sight channel model [20, 21]. Line-of-sight
communication and nonline-of-sight communication have
a probability of occurrence, respectively, which is a function
of the environment, the density and height of the building,
and the elevation angle between the mobile terminal and the
edge base station. .e probability of line-of-sight commu-
nication in the transmission channel can be denoted as

PLoS �
1

1 + C · exp(−B[θ − C])
, (7)

where C and B are constant values determined by the en-
vironment (such as the village, the town, the dense city, or
other scenario), and θ is the elevation angle of the edge base
station relative to the mobile terminal, so the probability of
nonline-of-sight communication is PNLoS � 1 − PLoS

[22, 23]. Path loss between mobile terminal n and edge base
station m can be denoted as

Ln,m(t) � PLoS(t) · L
LoS
n,m(t) + PNLoS(t) · L

NLoS
n,m (t), (8)
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Figure 2: .e dynamic data acquisition system.
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LLoS
n,m(t) and LNLoS

n,m (t) represent line-of-sight communication
and nonline-of-sight communication model, respectively,
and are denoted as L(t) � (4πfc/c)2 · d2(t), where fc is the
carrier frequency, c is the speed of light, and d(t) is the
distance between the mobile terminal and the edge base
station. .e total channel transmission bandwidth is W, in
the time slot t, the bandwidth allocation rate between the
mobile terminal and the edge base station is ςn,m(t),
wn,m(t) � ςn,m(t) · W, and then the transmission rate is
denoted as follows:

Rn,m � wn,m(t)log2 1 +
Pn(t)

L
−

n,m(t)ηwn,m(t)

⎛⎝ ⎞⎠, (9)

where η denotes the noise power spectral density, Pn(t)

denotes the transmitted power, and what they satisfy is as
follows:

0≤Pn(t)≤P
max
n (t) (10)

3.3. Problem Formulation. .e dynamic data acquisition
system is very sensitive to timeliness. .e traditional indi-
cator of delay is defined as the difference between the re-
ceiving time and the sending time; it has a shortage that
cannot measure the freshness of data. Data generated earlier
may be sent later, and data generated later may be sent first
due to channel quality, which is not appropriate for systems
that require real-time status update. .us, in order to op-
timize the timeliness of the system, we propose AoI to
describe the freshness of the data received by the cloud
center. Timeliness of the system can reflect the frequency of
data collected, processed, and offloaded by mobile terminals
in the system. Supposing that at the time slot t, the edge base
station m receives the offloading data from the mobile
terminal n and the generation time stamp of the data is δ(t),
then we define the AoI as the difference between the two
time slots, which can be denoted as

Δn(t) � t − δ(t). (11)

According to the first-come first-service (FCFS) prin-
ciple and assumingΔn(0) � 0, the evolution of AoI over time
can be derived, as shown in Figure 4, where the peak point of
the curve is PAoI.

Our goal is to minimize the average AoI for all mobile
terminals, which is denoted as

P1: min
an(t),b(t){ }

Δ (t) �
1
N



N

n�1
Δn(t), (12)

s.t. equations (1) to (10).
.e real environment is complex, so the data in our

systemaregenerated randomly, and the transmissionchannel
between the mobile terminal and the edge base station is also
attenuated, which results in the strategies of the mobile
terminals being different in each time slot. In addition, AoI of
mobile terminals is not only related to the current state, but
also related to the previous state, and even affects the sub-
sequent state..erefore, wemodel this optimization problem

as a multi-agent MDP [24]. In the following part, we will
discuss the combination of DRL and FL to solve this opti-
mization problem.

4. Multi-Agent Actor-Critic Algorithm
Combined with an Attention Mechanism

In the optimization process of MADDPG algorithm men-
tioned above, each agent receives the state and action of
other agents indiscriminately, resulting in the mixing of
beneficial and profitless information, which will reduce the
optimization effect. To solve the problem of inaccuracy
optimization, we propose a multi-agent actor-critic algo-
rithm with attention mechanism [25]. Combined with the
attention mechanism, the agent can pay more attention to
the beneficial information when learning the strategies of
other agents, instead of using all the information, so as to
achieve more accurate optimization.

4.1. MDP Formulation. We deploy models on all agents.
First, we analyze their basic elements:

States: In our algorithm, the state S of the mobile ter-
minal agent is denoted as s � [l, I, B, w], where l is the lo-
cation information of the mobile terminal and the edge base
station, I is the data information to be offloaded, B is the
state of its two data queues, w is the allocated bandwidth,
and the state of the edge base station agent includes the state
of all mobile terminals.

Actions:.emobile terminals collect the data, preprocess
them locally, and offload them to the edge base station..us,
its actions include preprocessing and offloading strategy,
which can be denoted as an(t) � [cacn(t), offn(t)]; the edge
base station allocates bandwidth for eachmobile terminal, so
the action of the edge base station is the set of bandwidth
allocation ratio, which can be denoted as am(t) � [ζ1,m(t),

ζ2,m(t), . . . , ζn,m(t)].
Returns: .e goal of this work is to minimize the average

AoI of all mobile terminals, so the negative of Δ (t) is
regarded as the reward of the agent and can be denoted as

rn � −Δ (t)forn � 1, 2, . . . , N. (13)

To study the global optimization problem of the system,
consider a long-term return, denoted as

∆ (t)

Time Slot0 t1 t2 t3 t4

∆1

∆2

∆3

Figure 4: .e evolution of AoI over time.
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Rn � 
T

i�0
c

i
r(t + i), (14)

where c is the reward discount factor and T is the length of
time.

4.2. Deep Reinforcement Learning Combined with an Atten-
tion Mechanism. We hope that the agents can focus on the
information beneficial to itself when learning, so the former
actor-critic algorithm is improved by combining the at-
tention mechanism, which is a mapping relationship
[26, 27]. Agents can determine the importance of other
agents to themselves by querying the state and actions of
other agents and integrate this information into their own
action value estimation function. Taking into account the
information of other agents, the value function is denoted as

Q S, A; θn(  � f ϕn Sn, An( φn , (15)

where f is the neural network, ϕn is an integration function,
and φn is the coded value of the weight sum of other agents,
namely, the contribution of other agents. .e formula is
described as follows:

φn � 
N

i≠ n

βiVi � 
N

i≠ n

βi · L Y · ϕi Si, Ai(  ,

βi∝ exp e
T
i M

T
k Mpen , i � 1, 2, . . . , N{ },

(16)

where ei is encoded by substituting the action and state of
other agents into the integration function. Similarly, the
action and state of the agent n can be encoded into en. After
normalizing the similarity between en and ei, weight βi is
generated through softmax layer. In this process,Mk converts
ei into “key” and Mp converts en into “query.” .e coding
value Vi can be obtained by linear transformation of ei and a
sharedmatrixY, and then substituting anonlinear functionL.

.e actor-critic network is divided into two parts: the
actor network is improved by policy gradient and can easily
choose the appropriate action in the continuous action
space, but because the actor network is round update,
resulting in slow learning efficiency. .erefore, we add a
value-based critic network to achieve single-step update
using the TD algorithm and thus get the actor-critic algo-
rithm. .e actor network is the approximation of the policy
function, according to the agent’s current state to choose
action, the critic network is the approximation of the value
function, and then the actor network updates the probability
of action according to the score, so that the actor network
makes it easier to choose the better action.

.e updating method of actor network is usually the
policy gradient, and the policy gradient of continuous action
space is denoted as

z

zθ
V(S; θ) � EA∼π(·|S;θ)

z

zθ
logπ(A|S; θ) · Qπ(S, A) . (17)

But this expectation is difficult to calculate directly, so we
use the Monte Carlo approximation to randomly choose an
action according to the policy function

g(a; θ) �
z

zθ
log π(a|s; θ) · qπ(s, a). (18)

Random selection guarantees unbiasedness. Input the
current state of the agent and the randomly selected action
into the critic network, and output the action value based on
the attention mechanism; then, the actor network can be
updated by random gradient:

θt+1 � θt + βq st, at; θt( , (19)

where β is the learning rate of the actor network. .e critic
network is updated by minimizing the loss function of the
mean square error (MSE). Firstly, the state and action of the
agent are input into the attention mechanism to obtain the
weighted sum of the encoded values, and the action value is
calculated by (15)

l(w) � E q st, at; wt(  − yt



2

 , (20)

yt � rt + cq st+1, at+1; wt( , (21)

where wt is the parameter of the target critic network, rt is
the agent’s reward, and c is the reward discount factor.

Both actor and critic networks have corresponding target
networks which have the same structure and initialization
way as the original network. Its function is mainly to esti-
mate the next action at+1 and score q(st+1, at+1; wt)

according to the next state st+1. Meanwhile, it improves the
stability and convergence of training. It learns once every Tu

round and updates through the original network parameters
with fixed weight ξ.

As a common method to improve data utilization, ex-
perience replay is also used in this algorithm. A complete
interaction between an agent and the environment is called
transition, which is denoted as a tuple: (st, at, rt, st+1, at+1).
All transitions are stored in the experience replay D as
training samples. It has a limited capacity and when the
capacity is full, new transition will replace the old transition,
because the new transition is more valuable. Every time the
model is trained, a certain sample is taken from it. To avoid
missing the exploration of an action when an agent interacts
with the environment, we will randomly select the action
with probability ε.

Our framework is shown in Figure 5.

4.3. TrainAgents inFederatedMode. We deploy agents on all
mobile terminals and edge base stations, not just edge base
stations or remote cloud centers, for the following reasons:

Data are generated mainly from the mobile terminal. If it
is only deployed in the edge base station or cloud center, it
needs to transmit a large amount of data, increasing the
transmission pressure of the channel. Furthermore, when
data are transmitted with a high secret level, such as location
information of the target buildings in the urban environ-
ment, there is also the risk of leakage.

.e deployment scheme we chose can solve the two
problems, but there are also disadvantages: the training data
of nonindependent and identical distribution (non-IDD)
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and unbalanced distribution, which is mainly due to training
data that do not represent the characteristic of mobile
terminals training data and the limited channel bandwidth
makes it difficult to ensure that all equipment are online [28].
.erefore, we propose federated learning to train agents,
which can avoid transmitting a large number of training

data, but only need to share model parameters. It can not
only solve the previous shortcomings, but also solve the
problems of data privacy and security and reduce the impact
of limited communication resources. After each Ef round of
learning, all agents share their model parameters and update
them. To be specific, the actor and the critic network of each
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Figure 5: Deep reinforcement learning framework with an attention mechanism.
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mobile terminal agent retain parameters of weight σ, re-
spectively, and update them in combination with parameters
of other agents. .e update mode is denoted as follows:

θt+1 � θt ·Ω, (22)

wt+1 � wt ·Ω, (23)

where θt and wt, respectively, denote the parameters of the
actor and the critic network of all mobile terminal agents at
the time slot t and Ω is the federated update matrix.

Ω �

σ
1 − σ
N − 1

. . .
1 − σ
N − 1

1 − σ
N − 1

σ . . .
1 − σ
N − 1

⋮ ⋮ ⋱ ⋮

1 − σ
N − 1

1 − σ
N − 1

. . . σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

.e Fed-DRL algorithm [29] proposed in this paper is
shown in Algorithm 1:

5. Performance Evaluation

In this section, we analyze the performance of the proposed
algorithm through simulation experiments and compare it
with other baseline algorithms based on deep reinforcement
learning.

5.1.Experiment Settings. In thiswork, experiment simulation
was carried out by Python. .e experiment was run on a
server configured with an Intel Core I7–9700H 3.6GHz CPU
and 8GBmemory..e virtual environment was TensorFlow
GPU 2.x. Some experimental parameters are shown in
Table 1.

(1) Algorithm 1 Fed-DRL
(2) Initialization: Initialize system parameters and hyperparameters for learning.
(3) for t � 1,2, . . ., 5000 do
(4) Reset the environment for each agent, get local state st;
(5) Randomly generate q ∈ [0, 1];
(6) for each agent n in 1,2, . . ., N do
(7) if q< ε then
(8) Randomly choose action at;
(9) else
(10) Generate actions at ∼ π(A|S; θ);
(11) end if
(12) end for
(13) .e resulting action interacts with environment, generate st+1 and rt;
(14) Add (st, at, rt, st+1, at+1) of each agent into D

(15) for each agent n in 1,2, . . ., N do
(16) Sample (st, at, rt, st+1, at+1) from D;
(17) Calculate qt(at, st; wt) using the critic network;
(18) Predict at+1 using the target actor network;
(19) Calculate qt+1(at+1, st+1; wt) using the target critic network;
(20) Update the actor network according to equation (20);
(21) Update the critic network according to equation (21);
(22) end for
(23) if t mod Tu � � 1 then
(24) Update the target actor network and the target critic network with following method;
(25) θt+1 � ξθt+1 + (1 − ξ)θt

(26) wt+1 � ξwt+1 + (1 − ξ)wt

(27) end if
(28) if t mod Ef � � 1 then
(29) Run edge-federated updating according to equations (23) and (24);
(30) end if
(31) end for

ALGORITHM 1: Fed-DRL algorithm.

Table 1: Some experimental parameters.

Parameter Value Parameter Value
λn 1Kb/slot ε 0.3
Bcac

n , B
off
n 5 Ef, Tu 8

fn 2 × 104 D 500
W 100MHz B 128
c 0.8 Pmax

n (t) 0.2W
ξ 0.8
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5.2. Simulation Results and Discussion

5.2.1. Parameter Analysis. First, we set different parameters
to compare the performance of the algorithm and get the
optimal value. Figure 6 shows the convergence performance
of the proposed algorithm for different learning rates. We
assume that the learning rates of the actor and the critic
networks are different. It can be seen that when
αActor � 0.1, αCritic � 0.2, the proposed algorithm vibrates
greatly and is difficult to converge..emain reason is that the
large learning rate makes both actor network and critic net-
work take large update steps. When αActor � 0.001, αCritic �

0.002 or αActor � 0.00001,αCritic � 0.00002, the proposed al-
gorithm can converge. However, when the learning rate is too
small, the convergence speedwill be very slow, requiringmore
iteration rounds to converge..erefore, the best learning rate

of the actor network and the critic network is αActor � 0.001,

αCritic � 0.002, respectively.
In Figure 7, we compare the influence of different data

generation rates on the convergence performance of the
algorithm. .e results show that the algorithm performs the
best when the data generation rate is 0.3. When it increases
to 0.5, it will be difficult for the proposed algorithm to
optimize the timeliness of the system, which may be due to
the limitations of environmental resources and the system
itself. .erefore, in the following experiment, we set the data
generation rate to 0.3.

5.2.2. Performance Comparison. Figure 8 shows the com-
parison results between the proposed algorithm and the
baseline algorithm under the same environment settings. In
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Figure 8(a), the horizontal axis is the number of episodes and
the vertical axis is the average AoI of the system. It can be
seen that the average AoI for the actor-critic algorithm is
significantly higher than the results of the other two algo-
rithms, and it is difficult to converge. However, under the
multi-agent actor-critic algorithm and Fed-DRL algorithm,
the result is very stable and always keeps a low value.

Figure 8(b) shows the worst AoI of the three algorithms,
and the Fed-DRL algorithm also performs best. Under the
actor-critic algorithm, some resources are ignored for a long
time, which may be because the algorithm requires complex
neural network to extract the relationship between the global
input state and the policy of each agent, which increases the
difficulty of training. Furthermore, Figure 8(c) and 8(d),
respectively, show the number and length of data offloaded

received by the remote cloud center. .e results show that,
by the proposed algorithm, the data utilization rate is also
improved, so that more collected data are uploaded to the
cloud center, and the system status is updated in time, thus
maintaining the timeliness of the system.

.en, we study the performance of the algorithm under
different environment settings. Figure 9 shows the algorithm
performance analysis for different numbers of edge base
stations and mobile terminals. Figure 9(a) shows the average
AoI of the system. It can be seen that the system can basically
keep a low average AoI, which is consistent with common
sense. In the box plots in Figure 9(b), when M � 4, N � 60,
the performance is obviously the worst, which may be be-
cause the substantial increase in mobile terminals exceeds
the service capacity of the edge base stations in a certain area.
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When the number of edge base stations is increased to 8 and
12, the performance recovery can be even better. As shown
in Figure 10, we test the performance of the proposed al-
gorithm in the general urban environment, the dense urban
environment, and the high-rise urban environment; the
result of the high-rise city environment is not very ideal. .e
reason may be that the shielding of buildings interferes with
the data transmission channel, and it performs well in the
general urban environment and dense urban environment,
indicating that the proposed algorithm can adapt to the
general urban environment.

Finally, we compare the performance under different
federated factors σ (N � 4, M � 30), as shown in Figure 11;
we know that the federated factor measures the weight of

each agent’s own parameters when the parameters are
updated, if σ is too small; intuitively, when σ ≥ 0.25 � 1/N,
the diagonal elements of the federated matrix will be smaller
than the other elements, so that each agent will not learn
much useful knowledge from their own observations, and
agent will lose its own individuality. However, when σ � 1,
the update matrix becomes an identity matrix, so that each
agent learns the policy independently without parameter
sharing, so we mainly study the cases of σ ≥ 0.25 � 1/N, and
we also study the case of σ � 0.1 for comparison.
Figure 11(a) is a line plot, and Figure 11(b) is a box plot. It
can be seen that when σ � 0.1, although the system tends to
converge at last, its performance is unstable. When σ � 1,
there is no federated update, the performance of the system
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is poor and does not converge even after 5000 episodes. In
addition, the deviation of the gradient is minimized when
σ � 0.25.

6. Conclusion

.e dynamic data acquisition system used for urban security
is sensitive to timeliness. To solve this problem, AoI is
proposed in this work to measure the freshness of data, so as
to optimize the timeliness of system. A multi-agent deep
reinforcement learning algorithm combined with attention
mechanism is proposed; through the continuous interaction
between the agents and the environment, federated learning
is used to train the agent for computing offloading and
resource allocation. .e proposed algorithm is evaluated by
simulation experiments. .e results show that the proposed
algorithm can achieve lower system average AoI and more
stable training.

For further work, based on the proposed framework,
more operations can be expanded, such as adaptability to the
environment and mobility management. At the same time,
the rewards in MDP can be flexibly defined, bringing more
applications to the MEC systems.
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