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Following earlier work by Gangl, Cathelineaue, and others, Siddiqui defined the Siegel’s cross-ratio identity and Goncharov’s
triple ratios over the truncated polynomial ring F[ε]]. ,ey used these constructions to introduce both dialogarithmic and
trilogarithmic tangential complexes of first order. ,ey proposed various maps to relate first-order tangent complex to the
Grassmannian complex. Later, we extended all the notions related to dialogarithmic complexes to a general order n. Now, this
study is aimed to generalize all of the constructions associated to trilogarithmic tangential complexes to higher orders. We also
propose morphisms between the tangent to Goncharov’s complex and Grassmannian subcomplex for general order. Moreover,
we connect both of these complexes by demonstrating that the resulting diagrams are commutative. In this generalization process,
the classical Newton’s identities are used.,e results reveal that the tangent group TBn

3(F) of a higher order and defining relations
are feasible for all orders.

1. Introduction

Polylogarithms have been known for almost three centuries
in various disciplines of mathematics such as Feynman
integrals, volume functions of hyperbolic tetrahedrons,
quantum field theory, and Dedikend Zeta functions. Since
the last two decades, it became important after Bloch’s work,
in which he introduced a group (Bloch Group) and found
connections of this group with algebraicK theory (see [1, 2]).
Suslin introduced the well-known Grassmannian Complex
and Bloch–Suslin complex (see [3, 4]). Later, Goncharov
used geometric configurations in order to define the motivic
complexes and to prove Zagier’s conjecture on poly-
logarithms and special L values for weight 2 and 3 (see [4]).
He also introduced the triple ratio together with Zagier by
antisymmetrization of his own formula f

(3)
2 . Moreover, he

related the Grassmannian subcomplexes to his trilogar-
ithmic motivic complexes by introducing several homo-
morphisms of the form f

(3)
i (see [2, 5, 6]). Cathelineau

studied variants (infinitesimal and tangential) of these
motivic complexes and presented a tangent group TB2(F)

which is, in fact, a F vector space (see [7]). Siddiqui defined
the tangent group TB3(F) and its complexes for the first
order. He used geometric configurations to construct cross-
ratio, triple-ratio, and Siegel cross-ratio identity for dual
numbers and then proposed various maps to relate Grass-
mannian complex and first-order tangent complex (see
[8, 9]). He himself attempted to extend his constructions to
the second-order tangent complex and gave some results for
a special case.

Hussain and Siddiqui [10] discussed the tangent group
and its associated complexes for the second order by
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introducing second-order tangent group, denoted by
TB2

2(F). ,ey extended cross-ratio, Goncharov’s triple-
ratio, and Siegel’s cross-ratio identity of the first order to
second order. ,ey also proposed morphisms such as τ20,ε2
and τ21,ε2 for weight two and τ30,ε2 , τ

3
1,ε2 , and τ32,ε2 for weight

three, in order to connect the second-order tangential
complex with the Grassmannian complex. Recently, the
degree of the tangent group of weight 2 is generalized by
introducing a group TBn

2(F) [11]. ,is group is used to
construct a generalized tangent complex:

TB
n
2(F)⟶

zεn
F ⊗∧

2
F

×
 ⊕ ∧

3
F . (1)

,is complex is further related to the Grassmannian
complex by introducingmaps π20,εn and π2

1,εn . As the order of the
tangent group is generalized only for weight two, it is still a
matter of great concern and motivates to introduce and analyse
higher order tangent groups of weight three which will even-
tually be used for the establishment of generalized tangent
complexes of weight three. In this work, we construct higher
order tangent to Goncharov’s complexes and its associated
algebraic constructions (cross ratio, Siegel’s identity, triple ratio,
etc.) of weight three and to obtain a generalized formula for the
order n≥ 3. We also propose general formula for the maps
which connect the trilogarithmic tangential complexes of order
greater than two to the Grassmannian complexes. For this, we
define nth-order tangent group TBn

3(F) of weight 3 along with
its functional equations. We define a map zεn to construct the
following tangent complex of general order:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( ⊕ F ⊗B2(F)( ⟶
zεn

F ⊗∧
2
F

×
 ⊕ ∧

3
F .

(2)

Our next goal is to connect the above complex to the
well-known Grassmannian complex. ,is will be achieved
through an inductive approach and using Newton–Girard
identities (see Section 2.4). Using the results from Siddiqui
[9], we will determine the coefficients of the cross-ratio and
Siegel cross-ratio identity and determinants of order n. After
these constructions, we will move to find morphisms of the
connection π30,εn , π31,εn , and π3

2,εn so as to relate Grassmannian
complex to Cathelineau’s trilogarithmic complex. ,e
consequence of this connection is the formation of diagram
(D), and at the end, we prove that this diagram is
commutative.

2. Materials and Methods

,is section is devoted to give brief introduction to certain
concepts and constructions related to this work. Many of the
terms also found in [1, 4, 9, 10, 12, 13] can be consulted for
more details.

2.1. Complex. Suppose that

Ai⟶
fi

A(i− 1)⟶
fi− 1

. . .⟶
f0

A0
(3)

is a chain of abelian groups with corresponding maps fk;
then, such a chain is said to be a complex if

f(i− 1) ∘fi � 0. (4)

2.2. Grassmannian Complex. Let X be any nonempty set.
Consider Cm(X) be any free Abelian group generated by the
elements of G/Xm, where G is a group which acts on X; then,
we define a differential map d: Cm(X)⟶ Cm− 1(X) as

d: x1, . . . , xm( ↦
m

i�0
(− 1)

m
x1, . . . , xi, . . . , xm( . (5)

Also, if we denote Cm(n) to be a free Abelian group
generated by the configurations of the elements of an n

dimensional vector space Vn and (xi|x1, . . . , xi, . . . , xm) be
the projective configuration of the jth component xj along
the ith component xi, where i≠ j, j � 1, . . . , m, then we
define a projective differential map
d′: C(m+1)(n + 1)⟶ Cm(n) as

d′: x1, . . . , xm( ↦

m

i�0
(− 1)

m
xi|x1, . . . , xi, . . . , xm( . (6)

By using these differential maps and free Abelian groups
generated by configurations, we have a bicomplex of the
form called Grassmannian bicomplex.

From this bicomplex, we can form many subcomplexes
such as

Cm+2(n + 2)⟶d
′

Cm+1(n + 1)⟶d
′

Cm(n) (7)

or

Cm+2(n)⟶d Cm+1(n)⟶d Cm(n). (8)

,ese subcomplexes are known as Grassmannian
complexes.

2.3. Tensor Product. Let A and B be two free Abelian groups
(Z—modules); then, the tensor product of A and B is
denoted as A⊗B and defined as a free Abelian group with
generators a⊗ b for a ∈ A and b ∈ B, satisfying the relations

a1 + a2( ⊗ b � a1 ⊗ b + a2 ⊗ b,

a⊗ b1 + b2(  � a⊗ b1 + a⊗ b2,

ra⊗ b � r(a⊗ b) � a⊗ rb,

(9)

where a, a1, a2 ∈ A, b, b1, b2 ∈ B, and r ∈ F.

2.4. Newton–Girard Identities. Girard introduced some
identities which describe relationship between roots of a
polynomial and its coefficients (see [14, 15]). Later, Newton
generalized these identities and gave a recursive formula. Today
these identities are known as Newton–Girard identities whose
explanation is as follows. Suppose f(y) is a polynomial like

g(y) � y
n

+ c1y
n− 1

+ c2y
n− 2

+ c3y
n− 3

+ . . . . . . + cn− 1y + cn,

(10)

with n of its roots r1, r2, . . . . . . rn. We use the notation δk for
the sum of the kth powers of roots as
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δk � r
k
1 + r

k
2 + . . . . . . + r

k
n, (11)

where k ∈ Z+ and δk � 0 for k〉n. And

δk + c1δk− 1 + c2δk− 2 + s3ck− 3 + . . . . . . + ck− 1δ1 + kck � 0.

(12)

,is identity allows us to deduce the relations:

δ1 + c1 � 0,

δ2 + c1δ1 + 2c2 � 0,

δ3 + c1δ2 + c2δ1 + 3c3 � 0,

δ4 + c1δ3 + c2δ2 + c3δ1 + 4c4 � 0.

(13)

Now, considering the most generalized form of the
polynomial,

f(y) � 
n

i�0
tiy

i
. (14)

And with the assumption that tk � 0 for k〈 0, we define
δk, for k⩾0, as

δk � r
k
1 + r

k
2 + . . . . . . + r

k
n. (15)

By interchanging “k” to “(− k),” we obtain

δ− k � r
− k
1 + r

− k
2 + . . . . . . + r

− k
n . (16)

Finally, we can conclude the general form of Newton’s
identity as

tj(n − j) + tj+1δ− 1 + tj+2δ− 2 + tj+3δ− 3 + . . . . . . + tnδj− n � 0; j⩽n.

(17)

Furthermore, we can deduct the following results:

M1 �
t1

s
,

M2 �
2t2

s
−

t
2
1

s
2,

M3 �
3t3

s
−
3t1t2

s
2 +

t
3
1

s
3,

M4 �
4t4

s
−
4t1t3

s
2 −

2t
2
2

s
2 +

4t
2
1t2

s
3 −

t
4
1

s
4.

(18)

In general notation,

Mn �
ntn

s
− 

n− 1

r�1

tn− r

s
Mr, (19)

here we used Mi � − δ− k, ∀i � 0, 1, 2, . . . and t0 � s.
When we consider the case t0 � 1 − s, the above iden-

tities will become

N1 �
− t1

s − 1
,

N2 �
− 2t2

s − 1
−

t
2
1

(s − 1)
2,

N3 �
− 3t3

s − 1
−

3t1t2

(s − 1)
2 −

t
3
1

(s − 1)
3,

N4 �
− 4t4

s − 1
−

4t1t3

(s − 1)
2 −

2t
2
2

(s − 1)
2 −

4t
2
1t2

(s − 1)
3 −

t
4
1

(s − 1)
4.

(20)

,e general form will be

Nn �
ntn

1 − s
− 

n− 1

r�1

tn− r

1 − s
Nr. (21)

In [10], we have extended the idea of trilogarithmic
tangent group up to the second order by proposing a group
TB2

3(F) and its complex. It is quite natural to think for the
generalization of the degree of this group and other con-
structions (complexes, morphisms, cross ratio, etc.) related
to this group. Let us define the following.

2.5. First-Order Tangent Group of Weight 3. A first-order
tangent group, denoted by TB2(F), is aZmodule generated
by the elements of the form 〈 s; s′] ∈ Z[F[ε]2], a quotient by
the expression,

s; s′  − t; t′  +
t

s
;

t

s
 
′

  −
1 − t

1 − s
;

1 − t

1 − s
 

′
  +

s(1 − t)

t(1 − s)
;

s(1 − t)

t(1 − s)
 

′
 , (22)
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where s, t≠ 0, 1, s≠ t, 〈 s; s′] � [s + s′ε] − [s]; (s, s′ ∈ F),

t

s
 
′

�
st′ − s′t

s
2 ,

1 − t

1 − s
 

′
�

(1 − t)s′ − (1 − s)t′

(1 − s)
2 ,

(23)

and

s(1 − t)

t(1 − s)
 

′
�

t(1 − t)s′ − s(1 − s)t′

(t(1 − s))
2 . (24)

As the second order is discussed in [10], we define the
third order directly.

2.6. ?ird-Order Tangent Group of Weight 3. We denote
TB3

3(F) to be the trilogarithmic tangent group of order
three which is a Z module over the truncated polynomial
ring F[ε]4 whose generators are the elements of the form
〈 s; t1, t2, t3] ∈ Z[F[ε]4], where
〈 s; t1, t2, t3] � [s + t1ε + t2ε2 + t3ε3] − [s], (s, t1, t2, t3 ∈ F)

and quotient by the kernel of map

z: Z F[ε]4 ⟶ TB
3
2(F)⊗ F×

 ⊕ F ⊗B2(F)( , (25)

such that

z a; b1, b2, b3 2(  � s; t1, t2, t3 
3
2 ⊗ s +

3t3

s
−
3t1t2

s
2 +

t
3
1

s
3 ⊗ [s]2,

(26)

where ⊕ and ⊗ , respectively, represent the direct sum and
tensor product of free Abelian groups or modules’ tensor
product of the free Abelian groups.

2.7. Generalized Tangent Group of Weight 3. Let the char-
acteristic of the field F be zero and F[ε]n+1 represent the ring
of truncated polynomials. We call TBn

3(F) the tangent
group of weight 3 and order n which can be defined as a Z
module over F[ε]n+1 with generators of the form
〈 s; t1, t2, . . . , tn] ∈ Z[F[ε]n+], where 〈 s; t1, t2, . . . , tn] � [s +

t1ε + t2ε2 + · · · + tnεn] − [s], (s, t1, t2, . . . , tn ∈ F) and quo-
tient by Kerz:

z: Z F[ε]n+1 ⟶ TB
n
2(F)⊗ F×

( ⊕ F ⊗B2(F)( , (27)

where z can be written as

z s; t1, t2, . . . , tn 2(  � s; t1, t2, . . . , tn 
n
2 ⊗ s + Mn ⊗ [s]2.

(28)

,e factor Mn is given in (8). For n � 1, 2, we obtain the
groups TB3(F) and TB2

3(F). ,e former is defined in [9]
and later is in [10]. By using the group TBn

3(F), the fol-
lowing tangential complex can be obtained:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( ⊕ F ⊗B2(F)( ⟶
zεn

F ⊗∧
2
F

×
 ⊕ ∧

3
F . (29)

2.8.TripleRatio. ,e triple ratio r(u0, . . . , u5) of six points is
given in [12] as

r3 u0, . . . , u5(  �
u0u1u3(  u1u2u4(  u2u0u5( 

u0u1u4(  u1u2u5(  u2u0u3( 
, (30)

whose tangential version for ] � 2 can be traced in [8, 10] as

r3,ε l
∗
0 , . . . , l

∗
5(  �

l
∗
0 l
∗
1 l
∗
3(  l
∗
1 l
∗
2 l
∗
4(  l
∗
2 l
∗
0 l
∗
5(  ε

l0l1l4(  l1l2l5(  l2l0l3( 
−

l0l1l3(  l1l2l4(  l2l0l5( 

l0l1l4(  l1l2l5(  l2l0l3( 

l
∗
0 l
∗
1 l
∗
4(  l
∗
1 l
∗
2 l
∗
5(  l
∗
2 l
∗
0 l
∗
3(  ε

l0l1l4(  l1l2l5(  l2l0l3( 
. (31)

We extend this notion for ] � n + 1 as

r3,εn u
∗
0 , . . . , u

∗
5(  � Alt6

u
∗
0u
∗
1u
∗
3(  u
∗
1u
∗
2u
∗
4(  u
∗
2u
∗
0u
∗
5(  εn

u0u1u4(  u1u2u5(  u2u0u3( 
− r3,εn− 1 u

∗
0 , . . . , u

∗
5( 

u
∗
0u
∗
1u
∗
4(  u
∗
1u
∗
2u
∗
5(  u
∗
2u
∗
0u
∗
3(  ε

u0u1u4(  u1u2u5(  u2u0u3( 


− r3,εn− 2 u
∗
0 , . . . , u

∗
5( 

u
∗
0u
∗
1u
∗
4(  u
∗
1u
∗
2u
∗
5(  u
∗
2u
∗
0u
∗
3(  ε2

u0u1u4(  u1u2u5(  u2u0u3( 
− . . . − r3 u0, . . . , u5( 

u
∗
0u
∗
1u
∗
4(  u
∗
1u
∗
2u
∗
5(  u
∗
2u
∗
0u
∗
3(  εn

u0u1u4(  u1u2u5(  u2u0u3( 
.

(32)
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3. Main Results and Discussion

3.1. Dilogarithmic Bicomplexes. In this section, we will
connect the Grassmannian bicomplex to the tangent to the
Bloch–Suslin complex. ,is connection can be displayed
through the figure.

,e maps π30,εn , π31,εn , π32,εn , and zεn are defined for n � 1, 2
in [9, 10], respectively. Here, we redefine these maps using
Newton identities which will enable us to propose these
maps for order “ n.” For this, we suppose the following
notations. Δ(u∗0 , . . . , u∗i , . . . , u∗3 )εj � λij, Δ(u∗0 , . . . ,

u∗i+1, . . . , u∗3 )εj � λ(i+1)j, Δ(u∗0 , . . . , u∗i+2, . . . , u∗3 )εj � λ(i+2)j,
andΔ(u∗0 , . . . , u∗i+3, . . . , u∗3 )εj � λ(i+3)j for all i � 0, 1, 2, 3, j �

0, 1, 2, 3, . . . .n with λi0 � Δ(u0, . . . , ui, . . . , u3) and λ(i+1)0 �

Δ(u0, . . . , ui+1, . . . , u3) λ(i+2)0 � Δ(u0, . . . , ui+2, . . . , u3)

λ(i+3)0 � Δ(u0, . . . , ui+3, . . . , u3). Note that we write
Δ(u∗)ε0 � Δ(u).

Newton’s theorem associates a power sum Pij function
for every polynomial with coefficients λij and gives the
following relations (see Section 2.4):

Pi1 �
λi1

λi0
,

Pi2 �
2λi2

λi0
−
λ2i1
λ2i0

,

Pi3 �
3λi3

λi0
−
3λi1λi2

λ2i0
+
λ3i1
λ3i0

,

Pi4 �
4λi4

λi0
−
4λi1λi3

λ2i0
−
2λ2i2
λ2i0

+
4λ2i1λi2

λ3i0
−
λ4i1
λ4i0

,

(33)

with the general term,

Pin �
nλin

λi0
− 

n− 1

r�1

λi(n− r)

λi0
Pir. (34)

Above constructions enable us to rewrite the maps π3
0,ε

and π30,ε2 in a precise form as

π3
0,ε u
∗
0 , . . . , u

∗
3(  � 

3

i�0
(− 1)

i
Pi1 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk1
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4,

π30,ε2 u
∗
0 , . . . , u

∗
3(  � 

3

i�0
(− 1)

i
Pi2 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4.

(35)

For n � 3, we propose

π30,ε3 u
∗
0 , . . . , u

∗
3(  � 

3

i�0
(− 1)

i
Pi3 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk3
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4. (36)

Using an inductive approach, one can write

Mathematical Problems in Engineering 5



π3
0,εn u
∗
0 , . . . , u

∗
3(  � 

3

i�0
(− 1)

i
Pin ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pkn
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4. (37)

Next, we move to describe π31,εn (u∗0 , . . . , u∗3 ). We follow an
inductive approach to generalize this map because already we
have the definitions of π3

1,εn (u∗0 , . . . , u∗3 ), for n � 1, 2, 3 (see
[8, 10]). ,ere, we observe that the complexity of this map
increases when its order become higher and higher. So, to
overcome this situation, we introduce some notations as fol-
lows. Let Δ(u∗0 , . . . , u∗i , . . . , u∗j , . . . , u∗4 )εr � δijr with
Δ(u0, . . . , ui, . . . , uj, . . . , u4) � δij0 and r � 0, . . . ., n; then, for
a polynomial whose coefficients are δijr, there should be an rth
power sum say Sijr satisfying the identities below:

Sij1 �
δij1

δij0
,

Sij2 �
2δij2

δij0
−
δ2ij1
δ2ij0

,

Sij3 �
3δij3

δij0
−
3δij1δij2

δ2ij0
+
δ3ij1
δ3ij0

,

Sij4 �
4δij4

δij0
−
4δij1δij3

δ2ij0
−
2δ2ij2
δ2ij0

+
4δ2ij1δij2

δ3ij0
−
δ4ij1
δ4ij0

.

(38)

And in general,

Sijn �
nδijn

δij0
− 

n− 1

m�1

δij(n− m)

δij0
Sijm. (39)

Again, we rewrite the maps π31,ε and π31,ε2 , which are
defined in [9, 10], respectively, in current settings as

π3
1,ε u
∗
0 , . . . , u

∗
4( 

� −
1
3



4

i,j�0
j≠ i

(− 1)
i

r ui|u0, . . . , ui, . . . , u4( ; rε u
∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4(  2(

⊗
i≠ j

Δ ui, uj  + Sij1 ⊗ r ui|u0, . . . , ui, . . . , u4(  2
⎞⎠,

π3
1,ε2 u
∗
0 , . . . , u

∗
4( 

� −
1
3



4

i,j�0
j≠ i

(− 1)
i

r ui|u0, . . . , ui, . . . , u4( ; rε u
∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4( , rε2 u

∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4(  

2
2

⊗
i≠ j

Δ ui, uj  + Sij2 ⊗ r ui|l0, . . . , ui, . . . , l4(  2
⎞⎠.

(40)
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For n � 3, we also propose

π3
1,ε3 u
∗
0 , . . . , u

∗
4( 

� −
1
3



4

i,j�0
j≠ i

(− 1)
i
〈r ui|u0, . . . , ui, . . . , u4( ; rε u

∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4( , . . . , rε3 u

∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4( 

3
2

⊗
i≠j
Δ ui, uj  + Sij3 ⊗ r ui|u0, . . . , ui, . . . , u4(  2

⎞⎠.

(41)

It is now easy to express π31,εn as

π31,εn u
∗
0 , . . . , u

∗
4( 

� −
1
3



4

i,j�0
j≠ i

(− 1)
i
〈 r ui|u0, . . . , ui, . . . , u4( ; rε u

∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4( , . . . , rεn u

∗
i |u
∗
0 , . . . , u∗i, . . . , u

∗
4( 

n

2

⊗
i≠ j

Δ ui, uj  + Sijn ⊗ r ui|u0, . . . , ui, . . . , u4(  2
⎞⎠.

(42)

,e map π3
2,εn can simply be defined as the triple ratio

which is given in (17). For ] � 2, 3, it is given in [8, 10] as

π3
2,ε u
∗
0 , . . . , u

∗
5(  �

2
45
Alt6 r3 u0, . . . , u5( ; r3,ε u

∗
0 , . . . , u

∗
5(  3,

π3
2,ε2 u
∗
0 , . . . , u

∗
5(  �

2
45
Alt6 r3 u0, . . . , u5( ; r3,ε u

∗
0 , . . . , u

∗
5( , r3,ε2 u

∗
0 , . . . , u

∗
5(  3.

(43)

And, for n � 3, we propose

π32,ε3 u
∗
0 , . . . , u

∗
5(  �

2
45
Alt6 r3 u0, . . . , u5( ; r3,ε u

∗
0 , . . . , u

∗
5( , r3,ε2 u

∗
0 , . . . , u

∗
5( , r3,ε3 u

∗
0 , . . . , u

∗
5(  3.

(44)

,erefore, in general, it may be
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π3
2,εn u
∗
0 , . . . , u

∗
5( 

�
2
45
Alt6〈 r3 u0, . . . , u5( ; r3,ε u

∗
0 , . . . , u

∗
5( , r3,ε2 u

∗
0 , . . . , u

∗
5( , . . . , r3,εn u

∗
0 , . . . , u

∗
5( 

3
.

(45)

,e horizontal map zεn of the diagram (D) works in two
ways. First is when it sends the members of TBn

3(F) to
(TBn

2(F)⊗F×)⊕(F⊗B2(F)) and second way is when it

sends elements of (TBn
2(F)⊗F×)⊕(F⊗B2(F)) into

(F⊗∧
2

F×)⊕(∧
3

F). ,is map is defined in [9, 10], for n � 1, 2,
as

zε 〈 s; t]2 ⊗ c + x⊗ [y]2( 

�
t

s
⊗ (1 − s)∧c −

t

(1 − s)
⊗ s∧c + x⊗ (1 − y)∧y +

t

s
∧

t

(1 − s)
∧x,

zε2 〈 s; t1, t22⊗ c + x⊗ [y]2( 

�
2t2

s
−

t
2
1

s
2 ⊗ (1 − s)∧c −

2t2

(1 − s)
+

t
2
1

(1 − s)
2 ⊗ s∧c

+x⊗ (1 − y)∧y +
2t2

s
−

t
2
1

s
2 ∧

2t2

(1 − s)
+

t
2
1

(1 − s)
2 ∧x.

(46)

And, for n � 3, we propose this map as

zε3 〈 s; t1, t2, t3
3
2 ⊗ c + x⊗ [y]2 ,

�
3t3

a
−

3t1t2

s
2 −

t
3
1

s
3  ⊗ (1 − s)∧c −

3t3

1 − s
−

3t1t2

(1 − s)
2 −

t
3
1

(1 − s)
3  ⊗ s∧c,

+ x⊗ (1 − y)∧y +
3t3
s

−
3t1t2

s
2 −

t
3
1

s
3  ∧

3t3
1 − s

−
3t1t2

(1 − s)
2 −

t
3
1

(1 − s)
3  ∧x.

(47)

We can make these definitions more precise using
identities of Newton, i.e.,

zε2 s; t1, t2 2⊗ c + a⊗ [b]2( 

� M1 ⊗ (1 − s)∧c − N1 ⊗ s∧c + a⊗ (1 − b)∧b + M1∧N1∧a,

zε3 s; t1, t2, t3 2⊗ c + a⊗ [b]2( 

� M3 ⊗ (1 − s)∧c − N3 ⊗ s∧c + a⊗ (1 − b)∧b + M3∧N3∧a.

(48)

,erefore, we can write

zεn s; t1, t2, . . . , tn 2⊗ c + a⊗ [b]2( ,

� Mn ⊗ (1 − s)∧c − Nn ⊗ s∧c + a⊗ (1 − b)∧b + Mn∧Nn∧a.

(49)

,e map zεn of right square of the diagram (D) has
already been defined in [9, 10] for order 1 and 2 as

zε 〈 s; t]3(  � 〈 s; t]2 ⊗ s +
t

s
⊗ [s]2,

zε2 s; t1, t2 
2
3  � 〈 s; t1, t2

2
2 ⊗ s +

2t2

s
−

t
2
1

s
2 ⊗ [s]2.

(50)

And, for order 3, we propose
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zε3 s; t1, t2, t3 
3
3  � s; t1, t2, t3 

3
2 ⊗ s

+
3t3

s
−

3t1t2

s
2 −

t
3
1

s
3  ⊗ [s]2.

(51)

If we consider a polynomial having coefficients ti to-
gether with a kth power sum function Tk, then we can
express the above maps in a precise form like

zε t0; t1 
2
3  � t0; t1 2⊗ t0 + T1 ⊗ t0 2,

zε2 t0; t1, t2 
2
3  � t0; t1, t2 

2
2 ⊗ t0 + T2 ⊗ t0 2,

zε3 t0; t1, t2, t3 
3
3  � t0; t1, t2, t3 

3
2 ⊗ t0 + T3 ⊗ t0 2.

(52)

,erefore,

zεn t0; t1, t2, t3, . . . , tn 
n
3(  � t0; t1, t2, t3, . . . , tn 

n
2 ⊗ t0 + Tn ⊗ t0 2,

(53)

where ti � r3,εi (u∗0 , . . . , u∗5 ), i � 0, . . . , n, and

Tn �
ntn

t
− 

n− 1

r�1

tn− r

t
Tr. (54)

Theorem 1. ?e right square of (D) commutes, that is,

zεn ∘ π3
1,εn � π3

0,εn ∘ d. (55)

Proof. We split the map,

π30,εn : C4 A
3
F[ε]n+1

 ⟶ F ⊗∧2F×
 ⊕ ∧3F , (56)

into the sum of two maps:

ϕn
1: C4 A

3
F[ε]n+1

 ⟶ F ⊗∧2F×
  (57)

and

ϕn
2: C4 A

3
F[ε]n+1

 ⟶ ∧3F . (58)

,en, we write

π30,εn � ϕn
1 + ϕn

2. (59)

,e definitions of d and π3
0,εn allow us to write

ϕn
1 ∘ d u

∗
0 , . . . , u

∗
4(  � ϕn

1 

4

i�0
(− 1)

i
u
∗
0 , . . . , u

∗
i , . . . , u

∗
4( ⎛⎝ ⎞⎠

� Alt(01234) 

3

i�0
(− 1)

i nλin

λi0
− 

n− 1

r�1

λi(n− r)

λi0
Pir

⎛⎝ ⎞⎠⊗
λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0

⎛⎝ ⎞⎠,

ϕn
2 ∘ d u

∗
0 , . . . , u

∗
4(  � ϕn

2 

4

i�0
(− 1)

i
u
∗
0 , . . . , u

∗
i , . . . , u

∗
4( ( )⎛⎝ ⎞⎠

� Alt(01234) 

3

i�0
(− 1)

i ∧
3

k�0
k≠ i

nλkn

λk0
− 

n− 1

r�1

λk(n− r)

λk0
Pkr

⎛⎝ ⎞⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(60)

,e inner expression of (37) will gives us terms such as
(a1)εn/a1 ⊗ b∧c, (a1)εi(a2)εj/a2

1 ⊗ b∧c, i + j � n, and
(a1)εi(a2)εj(a3)εk/a3

1 ⊗ b∧c, i + j + k � n. Moreover, the
simplification process vanishes the terms with
xα ≠ xβ ≠xc . . . and remains only those terms whose xi

′s are
the same. Next, we expand the outer sum and use some
arithmetic to simplify the result. We can use the same al-
gorithm on the other part ϕn

2 ∘ d(u∗0 , . . . , u∗4 ) and get the
result in precise form and hence will get the value of π3

0,εn ∘d.
Next, we move to evaluate zεn ∘ π3

1,εn . For this, we take
(u∗0 , . . . , u∗4 ) ∈ C5(A

3
F[ε]n+1

) so that

zεn ∘ π31,εn u
∗
0 , . . . , u

∗
4( ,

� zεn −
1
3



4

i,j�0
j≠ i

(− 1)
i

a; b1, b2, . . . , bn 
n
2 ⊗

i≠ j

Δ ui, uj  + Sijn ⊗ r ui|u0, . . . , ui, . . . , u4( 2 ⎛⎝ ⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(61)
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where s � r(ui|u0, . . . , ui, . . . , u4), t1 � rε(u∗i |u∗0 , . . . ,
u∗i, . . . , u∗4 ), t2 � rε2(u∗i |su∗0 , . . . , u∗i, . . . , u∗4 ), and

tn � rεn (u∗i |u∗0 , . . . , u∗i, . . . , u∗4 ) and Sijn is defined in (22).
Using definition of zεn and settings of (8) and (10), we can
write as

� −
1
3



4

i,j�0
j≠ i

(− 1)
i ntn

s
− 

n− 1

r�1

tn− r

s
Mr

⎛⎝ ⎞⎠⊗ (1 − s)∧
i≠ j

Δ ui, uj 

⎧⎪⎨

⎪⎩

−
ntn

1 − s
− 

n− 1

r�1

tn− r

1 − s
Nr

⎛⎝ ⎞⎠⊗ s∧
i≠ j

Δ ui, uj  + Sijn ⊗ (1 − y)∧y

+
nbn

s
− 

n− 1

r�1

tn− r

s
Mr

⎛⎝ ⎞⎠∧
ntn

1 − s
− 

n− 1

r�1

tn− r

1 − s
Nr

⎛⎝ ⎞⎠∧Sijn

⎫⎬

⎭,

(62)

where y � [r(ui|u0, . . . , ui, . . . , u4)]2. ,is expression can
further be transformed into a simpler form by using first the
axioms of tensor and wedge product and then expanding
through summation. ,is will give us a precise value of
zεn ∘ π3

1,εn (u∗0 , . . . , u∗4 ) which will be exactly equal to the value
π3
1,εn ∘ d(u∗0 , . . . , u∗4 ). □

Theorem 2. ?e left part of the diagram (D) commutes, that
is,

zεn ∘ π3
2,εn � π31,εn ∘d. (63)

Proof. ,e maps π31,εn , zεn , and π3
2,εn are explained in (25),

(35), and (28), respectively. Taking
(u∗0 , . . . , u∗5 ) ∈ C6(A

3
F[ε]n+1

) and applying (28), we have

zεn ∘ π3
2,εn u
∗
0 , . . . , u

∗
5( 

� zεn

2
45
Alt6 r3 u0, . . . , u5( ; r3,ε u

∗
0 , . . . , u

∗
5( , r3,ε2 u

∗
0 , . . . , u

∗
5( , . . . , r3,εn u

∗
0 , . . . , u

∗
5(  

n

3 .

(64)

Applying definition (35) and using (36), we obtain

�
2
45
Alt6 c; c1, c2, . . . , cn 

n
2 ⊗ c +

ncn

c
− 

n− 1

r�1

cn− r

c
Tr

⎛⎝ ⎞⎠⊗ [c]2
⎧⎨

⎩

⎫⎬

⎭, (65)

where ci � r3,εi (u∗0 , . . . , u∗5 ), i � 0, 1, 2, . . . , n, and T1 � c1/c
Here, we can use the combinatorial techniques which are

used in the proof of ,eorem 5.6 of [9] and can write
equation (42) as

�
1
3
Alt6 c; c1, c2, . . . , cn 

n
2 ⊗ u0u1u3(  +

n u
∗
0u
∗
1u
∗
3( εn

l0l1l3( 
− 

n− 1

r�1

u
∗
0u
∗
1u
∗
3( εn− r

u0u1u3( 
Vr

⎛⎝ ⎞⎠⊗ [c]2
⎧⎨

⎩

⎫⎬

⎭, (66)

where Vr represents the rth sum of powers of the polynomial
having coefficients (u∗0u∗1u∗3 )εi and V1 � (u∗0u∗1u∗3 )ε/

(u0u1u3). To attain RHS, we express the map π31,εn as an
alternation sum:

π31,εn u
∗
0 , . . . , u

∗
5(  �

1
3
Alt6 r u0|u1u2u3u4( ; rε u

∗
0 |u
∗
1u
∗
2u
∗
3u
∗
4( , . . . , rεn u

∗
0 |u
∗
1u
∗
2u
∗
3u
∗
4(  

2
2 ⊗ u0u1u2( 

+
n u
∗
0u
∗
1u
∗
3( εn

u0u1u3( 
− 

n− 1

r�1

u
∗
0u
∗
1u
∗
3( εn− r

u0u1u3( 
Vr

⎛⎝ ⎞⎠⊗ [c]2
⎫⎬

⎭.

(67)
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Now, it becomes easy to attain the value of
π31,εn ∘ d(u∗0 , . . . , u∗5 ) with the help of (44). For this, we
proceed by enforcing d and then applying π31,εn . Now, we are
going to follow the procedure of ,eorem 5.6 of [8] which
will provide us a result exactly the same as (43). □

4. Conclusion

Polylogarithmic groups have been studied by several re-
nowned mathematicians such as Goncharove, Zagier, Bloch,
Suslin, and Cathelineaue. A tangential version of these
groups of weight two and three is studied by Siddiqui for the
first order. Recently, the study of tangential groups of weight
two and their associated maps are extended to a general
order n. In this work, we have shown that the notions as-
sociated to trilogarithmic tangential groups TBn

3(F) such as
cross ratio, triple ratio, Siegel’s identity and other relations
are valid for higher orders. All these notions are being
constructed for the trilogarithmic tangential groups of
higher order. Using the groups TBn

3(F) and a map zεn , we
formed the following complexes:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( ⊕ F ⊗B2(F)( ⟶
zεn

F ⊗∧
2
F

×
 ⊕ ∧

3
F .

(68)

Moreover, we have proposed morphisms, π30,εn , π3
1,εn , and

π32,εn in order to connect Grassmannian complexes to the
trilogarithmic tangential complexes for higher orders. ,is
generalization process has been carried out with the help of
Newton’s identities. Lastly, we proved that the resulting
diagrams of connectivity are commutative.

,e above results motivate us to compute higher order
tangent groups for weight n≥ 4 and use it to construct the
higher order tangent to Goncharov’s complex for weight 4 or
even higher [16].
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