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�e best con�guration of passive �lters in extra-high voltage systems is investigated in this study using a two-stage multiobjective
decision-making (MODM) framework. A collection of Pareto solutions is found using an adaptive multipopulation-modi�ed
nondominated ranking genetic algorithm (AMP NSGA-II) in the �rst stage. �e goals taken into account include the least
fundamental reactive power compensation losses, overall cost and maintenance cost, and simultaneous minimum harmonic
current distortion rate. �e objective weights are determined and the optimum solution is chosen in the second stage using the
criteria importance interrelationship (CRITIC) and similarity ranking preference technique (TOPSIS). A number of examples
show how the suggested method performs more e�ectively than the conventional and well-known algorithm and can identify the
relationship between the objective functions, indicating that the suggested scheme has better superiority in �lters and has a
promising future in the solution of multiobjective problems.

1. Introduction

1.1. Background. In order to meet the urgent demand for
clean energy and energy transmission, load center power
supply, and energy conservation, the national grid vigor-
ously develops UHVDC (ultrahigh voltage direct current)
technology suitable for long-distance and large-capacity
transmission. �is is due to the unfavorable distribution of
energy and user loads in China. �e grid’s capacity to ef-
�ciently allocate resources on a wide scale has greatly in-
creased with the completion of the UHVDC interconnection
grid. �e grid’s integration is also growing in importance,
with a closer connection between the transmitter and re-
ceiver, AC and DC. �e grid operation, in short, o�ers a lot
of novel features [1].

Due to the fact that the current in nonlinear devices is
not inversely proportional to the applied voltage, both the
current and voltage waveforms are distorted [2].�e ensuing
harmonics could cause a variety of power quality issues that
need to be addressed. �e models of the network compo-
nents in the power system must be carefully created in order

to handle this harmonic problem. Researchers in several
studies make the supposition that all loads are linear. Since
the majority of the electrical loads in the power system have
inhomogeneous rates of electricity consumption, this as-
sumption is typically erroneous [3].

As a result, nonlinear loads are frequently employed to
e�ectively resolve load modeling issues. Both linear and
nonlinear loads ought to be accounted for in the load model
[4]. Nonlinear loads may also introduce harmonic currents
into the power system, causing distortion.

Consumers frequently employ nonlinear loads [5–7] in
power systems, which have nonsinusoidal currents and
frequently a�ect communication even when they are cou-
pled to a sinusoidal power source. �e waveform may be
distorted because of the load’s nonlinear behavior. �e
distortions in the current and voltage waveforms [8–10],
which are expressed as harmonics, are caused by the increase
in nonlinear loads. �ese harmonics can have a negative
impact on the power system in a variety of ways, including
power loss, a drop in power factor, equipment failure, wear
and tear, and damage [11–17]. Several methods have been
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devised to address these issues, employing elements such as
reactors, chokes, active power filters (APF), passive power
filters (PPF), alternative transformer connections, and
converters with greater pulse counts. Due to their simplicity
and low cost, PPFs are the most efficient and widely used
method [18].

It is crucial to set up the UHVDC system’s PPF-sized
planning architecture based on the known load demand and
constrained resources. Underconfiguration may have an
impact on the system, impacting the regular power supply
and electricity usage [19, 20]. Overconfiguration of PPF may
result in cost increase and overcompensation, creating
avoidable losses. &erefore, in this research, the study
configures the PPF sizing plan layout using a two-stage
multicriteria decision making (MCDM) framework. &e
three goals, namely, harmonic current distortion rate,
overall cost and maintenance cost, and least fundamental
reactive power compensation loss—as well as some of the
aforementioned constraints—are used in the first step. &e
adaptive multipopulation NSGA-II is solved to produce the
Pareto front. &e weights of the objectives are then deter-
mined using the CRITIC and TOPSIS procedures, respec-
tively, and the best choice is thenmade out of a large number
of options.

1.2. Literature Review. &e focus has always been on the
study and application of passive filters, but distinct papers
frequently have varied entrance points, purposes, and ap-
proaches. Bagheri Ali and Alizadeh Mohsen construct
passive filters in the study [21] for a microgrid that combines
nonlinear loads, solar panels, and wind turbines. &ey chose
a sample of harmonic microgrids using the ETAP program
to learn more about the layout of passive filters and after-
wards alter the parameter values. Gurrola-Corral, in his
study [22], introduced a design method based on extended
harmonic domain modeling and showed how to use the
resulting power quality and steady-state waveforms to
identify the passive filter. He also demonstrated how to
demonstrate the method’s efficacy. In the article [23],
Shakeri Sina concentrated on the sensitivity of nonlinear
loads (LCI) at PCC voltage sag, combining cost effectiveness,
detuning effects, and taking into account harmonic loads of
resonant capacitors. She also verified the generality and
applicability of the considered approach based on the annual
operations derived from simulations. &e study [24] pro-
poses a filter inductance ratio that minimizes the total in-
ductance to determine the three filtering elements of the LCL
filter (inverter-side inductance, grid-side inductance, and
filter capacitor) and reduces engineering iterative trial and
error. Passive filters, as an important component of LCL
filters, also play a crucial role in grid-connected inverters in
energy storage systems (ESS) or renewable energy systems
(RES), and passive filters play an important role. &e article
[25] suggests a passive filter (PPF)-based cost consideration
technique using just one set of PPFs, which not only reduces
the amount of space needed to prevent PPFs but also re-
solves the quality compensation problem of two parallel
compensated generators (EGs) and validates their

performance using MATLAB. &e ideal dual-tuned filter
formulation was established in the literature [26] based on
the maximum impedance filter characteristic location and
the alternative impedance harmonic reduction analysis
maximization of the main power supply. Klempka Ryszard
took into account the equivalent impedance of the main
filter and the detuning of the filter when designing the PPF.
Literature [27] presents a modulation-based method for the
optimization and unification of grid-connected inverters
that finds the maximum ripple current, calculates the precise
optimal passive damping resistance, takes into account the
design parameters that influence the factors, and uses this
algorithm to determine the optimal size of the inductor and
capacitor, as well as demonstrates the method’s superiority
based on damping loss.

More researchers are using algorithms to examine the
best PPF design because parts of the processes are not open
to the public. In the article [28], Yang Nien-Che proposed
the multiobjective bee colony optimization (MOBSO),
which employs the Pareto optimality to carry out the best
PPF design. &e least Manhattan distance strategy is used to
choose the most equilibrium solution in the Pareto set
among the obtained nondominated solutions. Additionally,
Yang Nien-Che invents once more in the publication [29] by
revalidating the Pareto solution set based on the artificial bee
colony (ABC) method that has been enhanced by applying
the artificial intelligence algorithm, which is more effective
than the previous one. Khajouei Javad designed the most
cost-effective and efficient way to deal with harmonics with
passive filters for IEEE networks with nonlinear loads and
Steinmetz circuits in the literature [30]. He discussed total
harmonic distortion, voltage deviation values, total filter
cost, the corresponding frequency, and critical bus power
factor in the network and proposed the NSGA-II algorithm
to deal with harmonics. &e multiobjective optimization
problem is proposed to be solved using the NSGA-II al-
gorithm, and finally, the best solution is obtained from the
Pareto front using the normalizing approach. Bajaj Mohit
contributed to the literature [31] by taking into account
constraints such as line current, individual total harmonic
distortion (THD) on the common coupling point (PCC)
voltage, capacity of the distribution line under overload, and
steady-state voltage profile load power factor (PF). He also
proposed the Pareto-based multiobjective firefly (pb-
MOFA) and entangled three system, namely, performance
parameters, (PI)-convergence degree (CM), and generation
distance. &e MRFO algorithm, which embodies excellent
solution-seeking capability but relatively high computa-
tional effort, was used in literature [32] to solve the PPF
parameter design problem. &e resulting PPF can effectively
attenuate higher-order harmonics and improve the har-
monic performance of the system under various operating
conditions. A new fuzzy algorithm based on the nonho-
mogeneous cuckoo search algorithm (NoCuSa) was pro-
posed in the literature [33] to deal with critical harmonics
and power factor improvement problems, specifically by
including a resonance index in the problem description,
choosing the location of the analyzed passive filter based on
sensitivity analysis, and optimizing the filter according to its
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value and tuning order under different loads. Literature [34]
uses teaching-based optimization (TLBO) with the Pareto
optimality that blends fuzzy decision making with external
profiles. To increase the variety of nondominated solutions, a
teacher selection technique and a group search strategy are
employed (NDS). According to literature [35], a Crow’s
spiral-based exploration approach (CSSA) is suggested for
the mathematical design of a new fourth-order harmonic
passive filter when minimizing the total demand distortion
of the supply current is the only objective. &is approach
relies on a spiral search mechanism to balance the imbalance
of the original algorithm. A Pareto-based multiobjective bat
algorithm (pb-MOBA) is suggested in the literature [36] to
deal with the minimum total filter cost (FC) and the dis-
tortional grid harmonic constrained carrying capacity (HC)
of the optimal distributed generation (DG) system for re-
newable energy sources, to obtain the Pareto optimal front
and discuss the trade-offs between the study objectives.

&e NSGA-II algorithm is developing and attracting a
growing amount of scholarly interest. &e effectiveness of
NSGA-II has been tested using a variety of multiobjective
test problems and it has been found that by slightly altering
the algorithm’s objective values, the antidominance solu-
tion’s negative effects can be offset. Arshad M.H. employed
NSGA-II and TOPSIS decision making for the conventional
model in the literature [37]. &e nonlinearity of the in-
duction motor (IM) intrinsic model was shown to be sig-
nificantly better managed using predictive control (MPC)
optimization. &e initialization and evolution of the back-
ward learning mechanism, as well as the dynamic adjust-
ment of the crossover probability and the variation
probability in accordance with the exponential distribution,
were all mentioned by Xiaoqing Li in literature [38]. &e
enhanced NSGA-II was used to implement variable pitch
and variable torque control at their best. &e findings col-
lected demonstrate how well this revised algorithm controls
front-end speed regulation (FESR) wind turbine power. &e
NSGA-II algorithm framework and local simulated
annealing (SA) are combined in literature [39], with the
former used to take into account the objective problem and
evaluate each bicriteria individual and the latter used to
account for the uncertainty of the scenario description. &e
resulting hybrid algorithm produces a significantly better set
of Pareto solutions for the bicriteria problem than the other
cases. &e distributed generating units (DG) in series with
the fault current limiter (FCL) optimization problem is
addressed by Hamidi Mir Emad in literature [40]. He
proposed to study this problem using the NSGA-II algo-
rithm with the goal of determining the best location and size
for the DG and the best size for the FCL. &e method was
then implemented in power networks and the effectiveness
of the approach was demonstrated. Literature [41] also
makes use of the Pareto-based MOO technique, which
produces more effective outcomes when dealing with unique
categorization challenges. A new adaptive multiobjective
adaptive intelligent search and optimization algorithm based
on the GrayWolf optimizer is proposed by Yildirim Gungor
in literature [42] when dealing with multiobjective opti-
mization problems. &is algorithm is better able to handle

situations where there are not enough data sets and increases
the effectiveness of getting results. In order to improve the
performance of the algorithm, Xu Fangqiu in the literature
[43] substituted the orthogonal array and the Taguchi
method for the NSGA-II crossover operation. By choosing
the neighbors with the greatest distance from one another
for the crossover operation, Yijie Sun also enhanced the
conventional NSGA-II crossover operation in the literature
[44], which enhanced the convergence of the population
distribution by utilizing hybridization.

Multiattribute decision making (MADM) is used to
determine the best answer when utilizing multiobjective
evolutionary algorithms, which frequently yield a number of
Pareto solutions and make it challenging for the decision
maker to choose the best one. According to literature [45],
the Pareto front on the optimization problem of geometric
parameters in an inducer installed upstream of a centrifugal
pump’s inlet was derived using a modified NSGA-II. &e
Pareto front was then combined with a preference ranking
technique of ideal solution similarity (TOPSIS) to determine
the ideal point of equilibrium. In the literature, Yang Wei
[46] stated that he suggested a linear programming model to
calculate attribute weights based on similarity function and
the Lagrangian function for ranking using TOPSIS approach
and studied the application of the method in the face of
known partial attribute weights. In addition to the initial
integrated multicriteria decision making (MCDM)-TOPSIS
simulation technique, Samala &irupathi advocated
employing the entropy method to estimate the weights of
each parameter. &e method’s validity has been demon-
strated in literature [47] for both typical and atypical op-
erating circumstances. According to literature [48], NSGA-
II and the VIKORmethod are combined to create the Pareto
front, from which the best solution is then chosen. In lit-
erature [49], an economic and technological trade-off was
discovered using multiobjective particle swarm optimization
(MOPSO) and the optimal solution was discovered using the
weighted sum approach.

&e study [50] presents a two-step approach to opti-
mizing reactive power dispatch based on the IEEE30 bus and
the IEEE118 bus. &e article uses multiobjective optimiza-
tion (MOO) and Pareto-dominated multiobjective evolu-
tionary algorithm (CPMOEA) in the application of the fuzzy
C-mean algorithm (FCM), cleverly combined with the grey
correlation projection method (GRP). &e decision-making
process takes full account of the decision maker’s prefer-
ences and provides a good solution for the decision maker,
besides presenting specific problems and application pros-
pects for future work. In the study [51], in the first step, the
dominant evolutionary algorithm (DEA) is used to find the
Pareto optimal solution. In the second step, FCM and GRP
are used to find the compromise solution, which also shows
the focus’s limitations and future possibilities.

In this study, the ideal passive filter configuration for the
UHVDC system is taken into account using a two-stage
decision-making framework. First, Pareto solutions are
obtained using adaptive multipopulation NSGA-II while
taking into account the goals of the minimum harmonic
distortion rate, total cost and maintenance cost, and the
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minimum basic reactive power compensation losses. &e
weights of these three goals are then calculated using
CRITIC and TOPSIS, and the one optimal option is then
chosen from the numerous Pareto solutions. &e Yunguang
UHVDC system’s passive filter setup is handled using the
proposed framework. Decision makers may find this study
useful in developing better optimization algorithms and
decision frameworks.

1.3. Research Specific Contributions. &e specific contribu-
tions of this study are as follows: (i) &e first introduction of
the adaptive multipopulation NSGA-II to the optimal
configuration of passive filters. (ii) &e simultaneous con-
sideration of the objectives of minimumharmonic distortion
rate, overall cost and maintenance, and minimum funda-
mental reactive power compensation loss. (iii) &e first use
of two-stage decision making to consider the optimal
configuration of passive filters for UHVDC systems. (iv)
Applied to real engineering data to solve real engineering
problems. (v) Used data results to demonstrate the effec-
tiveness of the decision framework.

1.4. Paper Organization. &e remaining portions of this
study are structured as follows: &e PPF design is discussed
in Section 2 after this section, and the two-stage framework
is presented in Section 3 together with the objective con-
straints and optimization technique. An explanation of the
required framework and to-be-used algorithms are provided
in Section 4. &e case study and validation of the suggested
framework are presented in Section 5. &e conclusions are
presented in the last section.

2. Classification and Characteristics of Passive
Power Filters

2.1. Passive Power Filter Types. Passive, active, and hybrid
filters are all used in power filters. All of these can be
efficient at removing harmonics, but in the industrial
setting, passive filters frequently have straightforward
configurations due to their low price. Passive filters are
usually divided into four categories, depending on how
the capacitors, resistors, and inductors are paired. &ese
types are listed in Figure 1. Figure 1(a) shows monotonic
filters (ST), Figure 1(b) shows second-order damped fil-
ters (SD), Figure 1(c) shows C-type damped filters (CD),
and Figure 1(d) shows third-order damped filters (TD).
&e harmonic impedance of each type of passive filter is
presented in Table 1.

2.2. System Harmonic Model Characteristics. PPF is a pop-
ular option for UHVDC systems to improve power quality
because it is both cost-effective and effective at reducing
harmonics. &e described system, which includes a power
supply, transformer, passive filter, and nonlinear load, can be
seen in Figure 2(a). To filter and account for harmonic
currents and reactive power, the system typically employs a
set of monotonic C-type filters, reactive power

compensation capacitor elements, and a set of second-order
high-pass filters. &e relationship between system current
and voltage is depicted in Figure 2(b).

3. Two-Stage MCDM Framework

In this study, it is pointed out that the passive filter op-
timization problem in UHVDC systems can be divided
into two stages of MCDM, which is a multicriteria de-
cision making (MODM), considering the objectives of
simultaneous minimum harmonic current distortion rate,
overall cost and maintenance cost, and minimum fun-
damental reactive power loss. A set of Pareto solutions are
obtained by adaptive multipopulation modified non-
dominated ranking (NSGA-II), while the second stage is
the multiattribute decision making (MADM), which uses
criteria importance interrelationship (CRITIC) and
similarity ranking preference technique (TOPSIS) to
determine the objective weights and select the single best
solution. Figure 3 shows a depiction of the MCDM
framework.

3.1. Objective Functions. In order to meet the demands of
harmonic filtering and power factor improvement, the de-
sign of the PPF depends on choosing the proper filter type
and optimizing the parameters of the components (R, L, and
C). To create the filter at the lowest possible investment cost,
it is also necessary to take the investment cost of the PPF
design into account. Naturally, to achieve this, a few ob-
jective functions and a few constraint optimization model
functions must be satisfied. &e aim and constraint func-
tions’ makeup is given below.

3.1.1. Minimum Current Harmonic Distortion Rate. &e
minimum harmonic distortion rate can be used to gauge
how well the harmonizer is working. &e filter’s perfor-
mance is acknowledged if it is able to successfully filter the
system’s harmonics so that the harmonic content complies
with national criteria. &e IEEE519 necessary harmonic
content is employed as a reference value with the following
objective function, and the minimal harmonic distortion
rate of the system is used as a satisfaction criterion in this
research:

minTHDI �

���������


N

h�2

Ish

I1
 

2



. (1)

Here, h stands for harmonics and N stands for the
highest harmonic number, where I1 is the root mean square
of the fundamental current.

3.1.2. Overall Cost and Maintenance Costs. &e overall cost
and maintenance cost as an economic indicator include
the total cost of filtering various devices and the main-
tenance cost. &e main costs of the filter include the cost
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and maintenance of inductors, reactors, and capacitors.
&erefore, the economical objective function is as follows:

minF � 
i�5,7,11,13

k1Ci + k2Li + k3Ri( . (2)

&e functional expression in this case is an innovative
way of assigning the cost of capacitors, inductors, and
reactors based on the specific number of filtered har-
monics, rather than the type of PPFs, with i representing
the number of filtered harmonics responsible in a given
high-voltage system, where noncharacteristic harmonics

account for almost all and special diagnostic harmonics
are negligible.

3.1.3. Minimum Basic Reactive Power Compensation Loss.
After the system is installed with PPF, the power factor of the
system should be maintained at a level close to unity, and
there should not be too much compensation or too much
undercompensation, which are losses of reactive power
compensation for the system. Undercompensation cannot
be allowed in the actual working conditions. &e capacitor

Table 1: &e harmonic impedance of each type of a passive filter.

Type RF(h) XF(h)

ST R hXL − XC/h
SD R(hXL)2/R2 + (hXL)2 R2hXL/R2 + (hXL)2 − XC/h
CD1 R(hXL − XL/h)2/R2 + (hXL − XL/h)2 R2(hXL − XL/h)/R2 + (hXL − XL/h)2 − XC/h
TD2 R(hXL)2/R2 + (hXL − XC/h)2 R2hXL − hX2

LXC + XLX2
C/h/R

2 + (hXL − XC/h)2 − XC/h
1In CD PPFs, XC � 1/(ωC2), C1 � 1/(ω2

1L),2In TD PPFs.XC � 1/(ωC2), C1 � C2

500 KV

170 KV

Harmonic 
Source

iLH

iSH

PPF

iFH

(a)

Harmonic 
current 
source

Filter 
Impedance

Component 
impedance

iLH iSH

iFH

ZF ZS

(b)

Figure 2: Simple harmonic circuit with nonlinear load and PPF. (a) Single line diagram. (b) Equivalent harmonic model.
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C1
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Figure 1: Classification of passive filters, namely, (a) monotonic filters, (b) second-order damping filters, (c) C-type damping filters, and (d)
third-order damping filters.
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provides the main reactive power, i.e., the minimum basic
reactive power compensation loss function is as follows:

min 
i�5,7,11,13

Qci−loss. (3)

3.2. Constraints. In order to guarantee that the resultant
solution set is finite, the NSGA-II multiobjective evolu-
tionary optimization algorithm additionally needs para-
metric constraints that set a range of values after the

parametric optimization function. &e permitted harmonic
levels are dependent on the national specification because
the IEEE standard enables higher allowable harmonic levels
than the national standard.

3.2.1. Total Harmonic Distortion. &e overall harmonic filter
needs to meet the criteria that after compensation the THD
must meet the following:

THDI≤THDIMAX. (4)

Phase 
1.MODM

Pareto front

AMP
NSGA-II

Phase 
2.MADM

Calculating the weight of 
objectives

Calculating the standard 
deviation of the objectives

CRITICEq.(10)

Calculating the correlation 
coefficient between 

objectives

CRITICEq.(11)

Determining the ideal 
solution and negative ideal 

solution

Calculating the distance of 
each solution from ideal 

solution and negative ideal 
solution

Calculating the closeness of 
each solution and select the 

best solution

Weight determination

Eq.(9) CRITIC

TOPSISEqs.(13-14)

Solution ranking

TOPSISEqs.(15-16)

TOPSISEq.17

MBRP

The power factor of the 
system should be 
maintained at a level 
close to unity after the 
PPF is installed

Current 
THD %

A review of the degree 
of satisfaction of the 
harmonizer

COST
The overall cost and 
maintenance cost as an 
economic indicator 

Constraint

- Total Harmonic Distortion
- Single group harmonic current
- Basic reactive power Compensation
- Parallel-series resonance consideration

Multi-objective optimization

Figure 3: A depiction of the MCDM framework.
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3.2.2. Single Set of Harmonic Currents. For the harmonic
filtering requirements of a single group PPF, each harmonic
should satisfy the criterion, where h represents the 12k±1st
harmonic and Ihmax is the maximum permissible level of
h-th order harmonic current. Constraints include the
following:

Ish ≤ Ihmax. (5)

3.2.3. Basic Reactive Power Compensation. &e compensa-
tion for basic reactive power must be constrained, where Q
represents the lowest and upper bounds of the total basic
reactive power, respectively. &e constraint functions are as
follows:

Qmin ≤ 
i�5,7,11,13

Qi ≤Qmax. (6)

3.2.4. Parallel-Series Resonance Limit Consideration.
Parallel and series resonance limits are as follows: when
analyzing the PPF, the system source resonance limit must
be considered, although according to literature [49], it is
known that the harmonic impact of this generated by this
UHVDC system can be negligible law; therefore, it is not set
as a constraint function.

4. Optimization Algorithm

4.1.ConventionalNSGA-II. NSGA-II is an enhanced version
of the original NSGA with the addition of a nondominated
sorting method for both the rank level and crowding dis-
tance components of Pareto sorting. Individuals with a lower
rank are preferred, whereas those with a larger crowding
distance (i.e., a lower estimated density) are chosen for the
same rank level. In comparison to NSGA, literature [52]
demonstrates that NSGA-II eliminates the complex fitness
sharing strategy that requires specifying the sharing radius.
&e introduction of the elite retention strategy ensures the
retention of the best individuals and the distribution of
solution sets. It is successfully used in a wide variety of
industries, indicating that it is more valuable for use in a
wide variety of multiobjective optimization algorithms.

&e steps of the conventional NSGA-II algorithm are as
follows, where the flowchart can be seen in Figure 4:

(1) First, begin by populating the population. &en, we
generate an initial population of size Np at random.

(2) Fast nondominated sorting is done. For each indi-
vidual in the population, the Pareto rank is com-
pared to obtain its dominated number np � 0. All
individuals on F1 are removed, and the preceding
procedure is repeated for the remainder of the
population in order to complete the population’s
hierarchy.

(3) Crowding degree calculation is done.&e individuals
in the same nondominated layer are sorted according
to the size of the objective fm. &e crowding degree

nd of the two boundary solutions after sorting is
infinity, and the crowding degree of the remaining
individuals is as follows:

nd � nd +
fm(i + 1) − fm(i − 1) 

f
max
m − f

min
m 

. (7)

(4) Bid-race selection is done. Binary bidding tourna-
ment selection was used to randomly select 2 indi-
viduals, and the individual with Pareto rank engaged
was selected to enter the next generation population,
and the individual with the same rank was selected to
crowd the larger one.

(5) Variational crossover variants, using simulated bi-
nary crossover and polynomial variants are
considered.

(6) A new population is generated. Using the elite re-
tention strategy, the parent population Pi and the
offspring population Ci are mixed to form a new
population Ri. &e new population Ri is sorted
nondominantly, and the dominant pole
F1, F2, · · · , Fm is placed into the new parent pop-
ulation Pt+1 in descending order of Pareto rank until
the size of Pt+1 exceeds that of Np. &e individuals in
Pt+1 are removed from Fm in descending order of
crowding until the size of Pt+1 equals that of Np.

4.2. Adaptive Multipopulation NSGA-II. In the traditional
NSGA-II, when solving a multiobjective optimization
problem, the initial population is subjected to non-
dominated sorting and crowding degree calculation and
then to selection, crossover, and variable pressure, merging
the child population with the parent population and non-
dominated sorting to obtain a set of Pareto solution sets
which are theoretically optimal. However, there is poor
diversity and the populations converge centrally at local
optima.

In the adaptive multipopulation nondominated sorting
genetic algorithm (adaptive multi-population NSGA-II,
AMP NSGA-II) studied in this study, we use the indirect
equilibrium idea to establish the genetic operation of
multiple populations and multiple crossover operators and
we use the logistic model to make reasonable adaptation to
the crossover operator assignment in the population.

&e flowchart is shown in Figure 5. &e following is a
specific description of the AMP NSGA-II process.

(7) A population is divided into several subpopulations
and given distinct crossover operators first.
According to literature [49], it is known that parent-
centered crossover (PCX) and mixed crossover
(BLX-α), when combined, are suitable for solving
individual class multiobjective problems. When
used individually, simulated binary crossover
(SBX), simple crossover (SPX), andmixed crossover
(BLX), when used individually, are also suitable.
According to various operators, different optimi-
zation techniques are allocated to the four
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subpopulations. Additionally, because different
crossover operators will have different global search
capabilities and search strategies to create diverse
populations, the distribution of individuals will be
improved, the genetic algorithm will function more
efficiently, and the outcomes will be more con-
vergent. &e original NSGA-II mutation operator is
still present in AMP-NSGA-II, making it simple to
change the values of select genes on specific
chromosomes and avoid the “premature” issue.

(8) Next, the four subpopulations that are finished
dividing are selected by binary race and mutated to
produce new populations. &e parent population is
merged with the subpopulations for noninferiority
ranking and crowding ranking to obtain the su-
perior individuals, which are then incorporated into
the EXS solution set.

(9) &e integration of the best individuals into the EXS
set makes the constant approach to the Pareto
optimal solution set. &e best individuals are also in
constant competition, in three cases, as follows:

(i) If the individual solution is better than the
solution in the EXS solution set, the EXS so-
lution set removes the eliminated solution and
adds the better solution.

(ii) If an individual solution is not as good as the
worst solution in the EXS solution set, it is not
processed and invalidated.

(iii) If the EXS solution set exceeds the set value
NEXS, the solutions in the EXS solution set will
be sorted for noninferiority and congestion,
and the poor solutions will be removed.

(10) &e contribution of the populations of the four
allocated finished various variational operators will
be used to create the EXS solution set, while the
overall number of people and the size of each
population will remain constant. By adjusting the
size of each population to achieve the desired
subpopulation for various adaptive optimization
problems, the goal is to increase the density of
individuals on the Pareto front and decrease the
number of populations with a lower density on the
Pareto front. Additionally, the goal is to quickly find
the best set of solutions for various multiobjective
optimization problems in order to significantly
increase population adaptability. &is is the so-
called logistic model. &e specific steps of the lo-
gistic model are listed in Figure 6.

4.3. CRITIC-TOPSIS. &e objective weighting approach is
crucial in this study since it is challenging for the decision
maker to provide a meaningful subjective assessment of the
three objectives. As seen above, the adaptive multigroup
NSGA-II algorithm produces the Pareto front from the
collection of EXS solutions, and the CRITIC-TOPSIS de-
cision aids in both selecting the unique optimal solution and
extracting the objective weights from the Pareto front. &e
combination of a similarity function and a Lagrangian
function is mentioned in literature [46] as a strategy to find
the best answer. On the other hand, literature [47, 52] apply
the weighting approach and the entropy method, respec-
tively. It must be realized that there are minor inconsis-
tencies between the three PPF optimization objectives while
considering them in this study. &e minimum harmonic

Start

Initialize the population (C), Gen=1

Fast non-dominated sorting and congestion calculation

Select individual, algebra = 1

Compare two by two 
serial numbers

Select individuals with 
small order numbers

Crossover and mutation to generate 
offspring populations

Algebra = Algebra + 1 Algebra < set value

Obtain the Pareto optimal solution set

Introduction of elite strategies and competition 
to generate new populations

Fast non-dominated sorting and congestion 
calculation

Parent-offspring population 
merging generation (2C)

Select individuals with 
large crowding

YES

NO
Not 

Equivalent Equivalent

Figure 4: NSGA-II algorithm flowchart.
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1 The estimated contribution of Pi,t+1 (i=1,2,3,4) to the update of EXS solution is ci ;

2 Determine the population that contributes most to the EXS j : {j\ ci = maxi-1,2,3,4 {ci}};

3 Calculate the crossover operator for EXS-self-Update operation Crossoveroperator (j);

4 If j≤ 2;

5 For k : = 1 to {NEXS / 2);

6 Two crossover individuals p1 and p2 are randomly selected from the EXS solution set;

7
For individuals p1 and p2, crossover operations are performed with Crossoveroperator (j)

Crossover operators to generate offspring individuals q1 and q2;

8 Update the EXS solution set with individuals q1 and q2;

9 End for

10 End if

11 If j ≥3;

12 For k : = 1 to (NEXS / 3 );

13 Three crossover individuals , p1 , p2 and p3 are randomly selected from the EXS solution set

14
For individuals p1, p2 and p3, crossover operations are performed with 

Crossoveroperator (j) crossover operators to generate off spring individuals q1, q2 and q3;

15 Update the EXS solution set with individuals q1, q2 and q3;

16 End for

17 End if

Figure 6: Logistic model.

Start

Initialize the population (C), 
Gen=1

Divided into four sub-populations

Binary race selection, variants, 
elite retention strategies

Crossover and mutation to generate 
offspring populations

Obtain the Pareto optimal solution set

Integration into the EXS solution set

Non-inferiority sorting, congestion sorting

logistic model adjustment, 
population optimization

Figure 5: AMP NSGA-II algorithm flowchart.
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distortion rate and basic reactive power compensation will
both be impacted by pursuing lower cost spending, and vice
versa. Pursuing the minimum harmonic distortion rate will
increase overall cost and maintenance as well as lead to
overcompensation, which makes the increased reactive
power compensation into consideration. &e entropy ap-
proach and the weighting method cannot be used due to the
conflicts between these three goals.

For resolving conflicts between objectives and weighing
the weights of the objectives, we use Diakoulaki Mavrotas’
CRITIC approach from literature [53]. &e CRITIC tech-
nique represents the conflicts between objectives using
correlation coefficients. &e following is the normalized
decisionmatrix Aij with the number of Pareto schemes set to
m, the number of objectives set to n, and the standard
deviation used to weigh the dispersions in the schemes as
follows:

Aij �

a11 a12 · · · a1n

a21 a22 · · · a2n

⋮ ⋮ ⋮ ⋮

am1 am2 · · · amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

wj �
σj 

n
i�1 1 − rij 


m
j�1 σj 

n
i�1 1 − rij  

, (9)

σj �

�����������



m

i�1

aij − �aj 
2

m − 1




, (10)

rij �


m
x�1 aix − �ai  ajx − �aj 

�������������


m
x�1 aix − �ai 

2
 ��������������


m
x�1 ajx − aj 

2
 . (11)

Here, wj, σj, and rij represent the target weights,
standard deviations, and correlation coefficients, respec-
tively. Combining the normalizedmatrix with the objectives,
the matrix is as follows:

Vij �

v11 v12 · · · v1n

v21 v22 · · · v2n

⋮ ⋮ ⋮ ⋮

vm1 vm2 · · · vmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a11 · w1 a12 · w2 · · · a1n · wn

a21 · w1 a22 · w2 · · · a2n · wn

⋮ ⋮ ⋮ ⋮

am1 · w1 am2 · w2 · · · amn · wn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

TOPSIS is often used to solve multiobjective and mul-
tiattribute decision making problems (MADM). Literature
46 uses TOPSIS decision making to find the equilibrium
optimum, literature 47 uses TOPSIS ranking, and literature
48 uses the VIKOR technique to find the optimal solution.

&e TOPSIS method is a comparative understanding
method.&e TOPSIS is fully known as the similarity ranking
preference technique, and its core idea is similar to the above
NSGA-II congestion ranking. &e idea is actually to list the
solutions to be used for comparison between the optimal
solution and the worst solution and derive a good or bad pair
of solutions based on calculating the distance between the
solutions as follows:

(11) First, the ideal optimal solution z+
j and the ideal

worst solution z−
j of the objectives are determined.

F1 and F2 represent the set of benefit objectives and
the set of cost objectives, respectively, as follows:

z
+
j �

max1⩽i⩽m vij , if fj ∈ F1,

min1⩽i⩽m vij , if fj ∈ F2,

⎧⎪⎨

⎪⎩

z
−
j �

max1⩽i⩽m vij , if fj ∈ F1,

min1⩽i⩽m vij , if fj ∈ F2.

⎧⎪⎨

⎪⎩

(13)

(12) &e following formula is used to determine how far
the solution is from both the ideal optimal solution
and the ideal worst solution:

S
+
i � 

n

j�1
vij − z

+
j 

2
i � 1, 2, · · · , m,

S
−
i � 

n

j�1
vij − z

−
j 

2
i � 1, 2, · · · , m.

(14)

(13) According to the distance solution, the solution’s
proximity to the ideal optimal solution is assessed.
&ere are two ways to compare these two options;
one says that the answer is better if it is closest to the
ideal optimal solution, and the other says that the
solution is better if it is farthest from the ideal worst
solution. &e comparison with the worst-case
scenario is used in this instance as follows:

Ci �
Si

−

S
+
i + S

−
i

i � 1, 2, · · · , m. (15)

&ere are a number of well-known MCDM methods,
including AHP (analytical network process), ANP (analyt-
ical hierarchy process), TOPSIS, and VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR). All these
methods undoubtedly help decision makers to make their
choices, but how do we choose these methods and do they
lead to different results?. In literature [54], it is mentioned
that different methods are applied to different problem-
solving contexts and that the results obtained will vary, but
not toomuch. It is like buying something, some only support
cash or credit card payment, but some can do both, but it is
more cost-effective to pay by credit card. &ese methods are
like tools for us to use. AHP is a combination of qualitative
and quantitative and hierarchical and quantitative processes
of decision making that requires the establishment of a
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systematic hierarchical conclusion. &e whole process of
comparative judgement and calculation is cruder and re-
quires the establishment of a hierarchical model based on
human factors. ANP is the same reason that requires the
establishment of a network topology artificially. ANP can be
used in more complex situations. VIKOR is mainly used to
deal with energy consumption and the feasibility of re-
newable energy sources. VIKOR uses linear normalization
and is an eclectic ranking algorithm that allows the decision
maker to do something with the alternatives as they see fit. It
is more sophisticated than TOPSIS in many respects and can
eliminate a lot of the complexity of dealing with less complex
mathematical engineering problems and get the ranking
results very quickly. However, compared with TOPSIS,
VIKOR has certain shortcomings in the evaluation of the
performance of the problem. It is difficult to quantify a
simple and clear value, making it difficult for decision
makers to distinguish. &e advantages of TOPSIS are clear,
that is, it is simple to program, it does not take into account
the number of attributes, and the steps remain essentially the
same. &e uncertainty of the weights is ignored in the
TOPSIS method, making it necessary to use another method
to compensate for this shortcoming. &e amount of infor-
mation assigned to the object of evaluation is based on the
contrast intensity and conflict. &erefore, the CRITIC-
TOPSIS pairing fits well with the research topic of the study.

5. Case Study

In the system at 50Hz and 170 kV, the filter optimization
simulation experiments are conducted to prove the accuracy
and superiority of the proposed algorithm. &ere are many
cases of harmonic sources generated in the system as follows:
constant DC current contains ripple, phase change voltage is
nonstandard sinusoidal, and the converter parameters have
slight differences. As in Figure 7, the abovementioned cases
are collectively referred to as harmonic sources, and due to
the large impedance, ignoring the linear load, the PPF is
considered the equivalent impedance. &e system generally
uses a set of monotonic C-type filters, reactive power
compensation capacitor elements, and a set of second-order
high-pass filters to filter and compensate for harmonic
currents and reactive power. &e monotonic C-type filter is
used to filter the harmonics of the fifth, seventh, and thir-
teenth orders, while the second-order high-pass filter is
mainly used to filter the harmonics of the eleventh order.
Consider the planning of 3 types of harmonic filters. In the
case where the system is balanced, the measured percentage
of the three without filters, national standards, and IEEE
Standard 519–2014 are listed in Table 2. According to Ta-
ble 2, it can be seen that in Case 1, the 11th harmonic, 13th
harmonic ratio, and current THD% have exceeded the
national standard and IEEE standard; in Case 2, the 7th, 11th
harmonic, and current THD% also exceed the national
standard and IEEE standard. In addition, the 11th harmonic
ratio and current THD% in Case 3 also exceed the national
standard as well as the IEEE standard.

To summarize, the number of filters required is 2. &e
design cost and maintenance cost of the passive filter are

calculated with the original investment and maintenance
cost as the standard value. &e platform simulation is based
on a PC with 16GB of RAM. &e population size N and
number of iterations Gen are 500 and 200, respectively, the
inertia factor ω is set to 0.6124, the learning factor c1 � c2 �

c3 � 1.62, the subpopulation contribution threshold α, and
the subpopulation diversity contribution threshold β are set
to 0.4 and 0.32, respectively. &e population contribution λ
and diversity thresholds θ were set at 0.02 and 0.13. &e
specific parameter settings are listed in Table 3.

Figure 8 shows the minimum harmonic current dis-
tortion rate (current THD%) and the overall cost. Current
THD% ranges from 0.8 to 1.1, COST from 0.90 to 0.96, and
MBRP from 0.15 to 0.35. When looking at the relationship
between the two, one can see the conflicting contradictions
described above, Figure 9(a) shows MBRP versus Current
THD%. It is easy to see that MBRP increases as THD%
decreases, fulfilling the abovementioned statements that
when THD% reduction operation is performed, the reactive
power compensation losses will increase in response to this.
Figure 9(b) shows the two-dimensional Pareto solution of
MBRP versus COST. When COST increases, MRTP de-
creases as well. In the actual project, the overall cost of
construction and maintenance is increased and the desired
result is definitely better. Figure 9(c) shows that when
considering the Pareto front solution set of Current THD%
versus COST, the current distortion rate decreases with
higher overall cost and maintenance.

&ese three diagrams represent the three objective
functions, the correlation between two and two, and the
conflict and contradiction specifically for the existence, and
in line with the objective reality, the functionality of AMP
NSGA-II in the MCDM framework is verified.

To verify the superiority of AMPNSGA-II in theMCDM
framework, the Pareto scheme solution set is put together
with the traditional NSGA-II for comparison. Figure 10
shows that both schemes are almost on the same surface,
proving the reasonableness and correctness of the algorithm.
&e solution set of traditional NSGA-II can be seen to be too
dense, showing the drawback of poor diversity, while the
solutions in the solution set of AMP NSGA-II are almost
uniformly distributed.

&e superiority of the algorithm needs to be measured by
a metric. GD (general distance) is used to measure whether
the updated EXS solution set converges to the true Pareto
optimal solution set. GD indicates the distance between the
obtained EXS solution set and the true Pareto optimal so-
lution set, and the smaller its value, the more the optimal
solution set converges to the true Pareto optimal solution set.
It can be calculated by (16).

GD �

���������



|EXS|

i�1

d
2
i

|EXS|




. (16)

&e absolute value EXS is the number of individuals in
the EXS population; di is the Euclidean distance between
individuals i ∈EXS and the nearest individual in P∗ in the
target space.
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&e purpose of the maximum propagation metric is to
calculate the Euclidean distance between the extreme in-
dividuals of the nondominated solution set. &e larger the
value, the wider the range of Pareto solution sets. It can be
calculated by (17).

D �

������������������������



M

m�1
max|P|

i�1f
i
m − min|P|

i�1f
i
m 

2




, (17)

where M is the number of objective functions and fi
m is the

value of the i-th individual on the objective function m. &e
results on the two metrics of AMP NSGA-II and conven-
tional NSGA-II are shown in Table 4. It can be seen that the

PPF

500KV

170KV

Harmonic 
Source

iLH

iSH

Figure 7: System structure diagram.

Table 2: Case studies without a filter.

Case Number of harmonics Measured ratio National standard IEEE standard 519–2014

Case 1

5 0.147329 2.61 4
7 0.131478 1.96 4
11 4.1524 1.21 2
13 3.04327 1.03 2

THD% 5.19563 0.78 5

Case 2

5 0.18423 2.61 4
7 1.97821 1.96 4
11 4.1782 1.21 2
13 1.0237 1.03 2

THD% 5.68427 0.78 5

Case 3

5 0.56278 2.61 4
7 1.68743 1.96 4
11 3.8624 1.21 2
13 1.0127 1.03 2

THD% 5.5674 0.78 5

Table 3: Parameter setting.

Parameters Meaning Values
N Population size 500
Gen Number of iterations 200
ω Inertia factor 0.6124
c1, c2, c3 Learning factor 1.62
α Subpopulation contribution threshold 0.4

β Subpopulation diversity contribution
threshold 0.32

λ Population contribution threshold 0.02
θ Population diversity threshold 0.13

0.50
0.45
0.40
0.35
0.30
0.25
0.20

0.55

0.15

M
BR

P

0.95
0.94

0.93
0.92

0.91
0.90COST

1.2
1.1

1.0
0.9

0.8
Current THD (%)

Figure 8: AMP NSGA-II Pareto front solution set.
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Figure 9: Relationship between the two. (a) MBRP in relation to Current THD%. (b) MBRP in relation to COST. (c) Current THD% in
relation to COST.
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Figure 10: &e set of Pareto front solutions for both algorithms.
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solution set of AMP NSGA-II is more uniform and closer to
the optimal solution.

Figure 11 then indicates the number of iterations into the
EXS solution set when the same number of iterations occur
when the two algorithms are performed simultaneously. At
the beginning iterations, the AMP NSGA-II algorithm is
always more rapid than the traditional NSGA-II, and the
rapidity of the AMPNSGA-II algorithm can be illustrated by
the fact that when reaching the final stabilization, AMP
NSGA-II takes only 120 iterations, while NSGA-II requires
140 iterations. At the end of the iteration, there are also fewer
solution sets in traditional NSGA-II than in AMP NSGA-II.

In literature [28] and literature [29], the author was
working on a passive filter optimization algorithm, in which
he compares the results of the algorithm proposed in the
study with some classical algorithms (MOPSO, MOBA, SA)
after processing. &e GD results show the superiority of the
proposed method by showing higher accuracy. Literature
[34] also compares these classical algorithms by GD aspects
more than SA and MOBA. &is study uses AMP-NSGA-II,
which can reflect the relevance and conflict of the objective
function, i.e., the connection between specific objectives,

through the algorithm within the time limit, which is
confirmed by the experimental results, which is the biggest
innovation of this study, Not only by GD comparison but
also by maximum propagation, reflecting the diversity of the
multipropagation method. &e article is accompanied by a
plot of the number of entries into the EXS solution and the
number of iterations for the same parameter settings for the
proposed method and the most recent study. From Fig-
ure 12, it is clear that the proposed method is the smoothest
and gets to the steady state the quickest.

In order to demonstrate the efficiency of the proposed
method in calculating costs, the proposed method was
compared with the latest studies (TLBO, MOBSO, and
MOABC) to produce calculation times based on an average
of 30 independent operations with the same parameter
settings, and the results are included in the table to dem-
onstrate the efficiency of the proposed method. &e calcu-
lation times for each algorithm are shown in Table 5 for easy
comparison.

According to equation (10), the standard deviation of the
three objectives can be calculated, and the correlation co-
efficient matrix can be calculated by equation (11), and then,

Table 4: Comparison of algorithm metrics.

Metrics Median (GD) Maximum spread
AMP NSGA-II 1.082e− 05 1.59
NSGA-II 4.32e− 04 0.82
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Figure 11: Number of AMP NSGA-II and NSGA-II into EXS solution sets.
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according to the standard deviation and correlation coef-
ficient, the weight vectors of the objective function (MBRP,
Current THD%, COST) can be calculated as 0.156, 0.386,
and 0.458, respectively. &e calculation results do not
consider the artificial factors, and the results are in line with
expected, because companies pay more attention to eco-
nomic costs.

&e results obtained with the proposed optimization
algorithm are compared with the results determined by
NSGA-II. &e hysteresis factor of case III is 0.98, and the
units of capacitance (C), inductance (L), and resistance (R)
are uf, mH, and Ω. Table 6 shows that the current harmonic
distortion rate, overall cost and maintenance cost, and basic
reactive power loss ratio results of AMPNSGA-II are smaller
than those determined by NSGA-II, and the values are
within the IEEE standard range. It can be proved that the
parameter performance of AMP NSGA-II is stronger than
that of conventional NSGA-II.

&e top 10 solutions that will be configured for opti-
mization are shown in Table 7. From the data in the table, it
can be seen that the three objectives are not optimal at the

same time because there are conflicts and contradictions
between them, but in fact, it can be seen that the difference is
not very big because the framework is more stable and has
good smoothness. &e top ranking is the optimal configu-
ration with Current THD% of 0.823, COST of 0.902, and
MBRP of 0.232.
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Figure 12: Number of AMP NSGA-II, TLBO, MOBSO, and MOABC into the EXS solution sets.

Table 5: Computational times of the algorithms.

Algorithms Computational time (s)
AMP NSGA-II 552.65
TLBO [34] 599.18
MOBSO [28] 587.28
MOABC [29] 586.69

Table 6: Comparison of parameters under two algorithms.

Design projects and target value AMP NSGA-II NSGA-II
Compensation capacitor C4 � 3.4648 C4 � 3.4523

C-type filter

C1 � 68.31 C1 � 65.20
C2 � 5.2544 C2 � 5.0123
R1 � 434.26 R1 � 433.96
L1 � 148.32 L1 � 147.22

Second-order high-pass filter
C3 � 5.2544 C3 � 5.1232

R2 � 110.1405 R2 � 110.1254
L2 � 15.936 L2 � 15.565

Current THD% 0.823 0.884
COST 0.902 0.934
MBRP 0.232 0.375
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6. Conclusions

&e optimization of the PPF is a promising option. In this
study and in this section, we apply to a two-stage decision
framework to determine the design and optimization of PPF.
In the first stage, the minimum harmonic current distortion
rate (Current THD%), the overall cost and maintenance cost
(COST), and the minimum basic reactive power loss
(MBRP) are coded as objective functions and designed as
multiobjective optimization models. &en, the AMP NSGA-
II algorithm with multiple group multiple crossover oper-
ations is used, and the logistic model is adaptively adjusted to
derive the Pareto front in the EXS solution set. In the second
stage, the weights of the objective function are determined
using the criterion importance interrelationship (CRITIC),
and the unique optimal solution is selected using the sim-
ilarity ranking preference technique (TOPSIS). After a two-
stage decision framework, an optimal solution is obtained
with an optimal configuration of Current THD% of 0.823,
COST of 0.902, and MBRP of 0.232. (1) In the study, the
results are compared with the traditional classical NSGA-II,
and the high performance of AMPNSGA-II is demonstrated
using GD with maximum propagation. (2) Based on the
number of iterations with the EXS solution set, the supe-
riority and rapidity of the optimization algorithm are
demonstrated based on the number of iterations and the
number of solutions in the EXS solution set. (3) Based on the
CRITIC-TOPSIS method, it is concluded that the COST
weight is the largest andmeets the actual requirements of the
enterprise. (4) Based on the Pareto front scheme, it is
concluded that the traditional NSGA-II distribution solution
is inferior to AMP NSGA-II, proving the existence of
contradictory conflicts in the three objectives. (5) &e two-
stage framework in the study can help decision makers to
solve multiobjective optimization problems easily and
clearly, creating a PPF design solution in the context of
extra-high voltage. In summary, the two-stage framework in
the study covers the advanced AMP NSGA-II algorithm,
which is perfectly matched with the CRITIC-TOPSIS de-
cision, and will not only have a good performance in filters
but also have a better prospect in solving other multi-
objective optimization problems, and it is worth promoting
and studying in depth.

In future work for practical problems in UHVDC sys-
tem, it is important to take into account dynamic balancing
problems, i.e., when encountering parameter variations,
such as errors in the rectifier-side impedance or deviations in
the trigger angle, which are not taken into account in the
proposed algorithm. Furthermore, this topic can be ex-
tended to the optimization and control applications of
battery systems for electric vehicles [55].
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