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A directed graph (digraph) D of order n satisfies directed cut condition (DCC) if there are at least |S| arcs from any set S⊆V(D),
|S|≤ (n/2) to its complement S � V(D)/S. We show that a digraph D of even order n has at least 2n − 3 arcs if D satisfies DCC.

1. Introduction

A network is made up of nodes and links between nodes.
Suppose that a cluster of k hosts in one part of the network
wishes to communicate with k hosts at another part of the
network. Assume that any two communication paths can use
common intermediate nodes, but no two communication
paths between distinct pairs can share common links. *en,
there must exist at least k links leaving the cluster. A simple
graph can quite naturally represent this communication
network. Path-pairability is a notion that emerged from this
practical networking problem introduced by Csaba et al. [1]
and further studied by Faudree et al. [2–4]. A graph G of
even order n is path-pairable, if for any set of disjoint pairs
si, ti􏼈 􏼉, 1≤ i≤ (n/2), G has pairwise edge disjoint

(si, ti)-paths. A series of problems on path-pairable graphs
have been proposed, such as seeking diameter, maximum
order, and maximum degree. In [4], Faudree et al. con-
sidered the problem of investigating the minimum size of
path-pairable graph G of order n. It is trivial that
|E(G)|≥ n − 1 as K1,n− 1 is path-pairable. *ey showed that
|E(G)|≥ (3n/2) − logn − O(1) for path-pairable graph G

with Δ(G)< n − 1.
A graph on n vertices satisfies cut condition (CC), if for

any S⊆V(G), |S|≤ (n/2), there are at least |S| edges between
S and S � V(G)/S. Obviously, a path-pairable graph satisfies
CC, but the inverse is not. Jobson et al. [5] proved that a
graph G of even order n with Δ(G)< n − 1, if G satisfies CC,
then |E(G)|≥ (3n/2 − 3), and this bound is tight. A graph of

even order n satisfies even cut condition (ECC), if for any
S⊆V(G), |S| � (n/2), there are at least (n/2) edges between S

and S. Jobson et al. [5] showed that if G is a graph of order
n ≡ 0 (mod 4) with Δ(G)< n − 1 and satisfies ECC, then
|E(G)|≥ (5n/4 − 2).

On account of the results of Jobson et al., we consider the
minimum size of the digraphs satisfying directed cut con-
dition in this paper. Let D be a digraph with vertex set V(D)

and arc set E(D). For any two disjoint sets A, B⊆V(D), let
e(A, B) denote the number of arcs from A to B in D. We say
a digraph D on n vertices satisfies directed cut condition

(DCC), if e(S, S)≥ |S| for any S⊆V(D) with |S|≤ (n/2).
Let D1 be a digraph with n vertices and V(D1) � u{ }∪ S,

where S is an independent set with n − 1 vertices in D1. In D1,
u directs to each vertex of S and each vertex in S directs to u. Let
D2 be a digraph with n (even) vertices and V(D2) �

u{ }∪ v{ }∪ S∪T, where S and T are two independent sets with
(n/2) − 1 vertices inD2. InD2, u directs to each vertex of S and
each vertex in S directs to v; v directs to each vertex of T and
each vertex in T directs to u; u directs to v and v directs to u. It
is easy to verify that D1 and D2 with size 2n − 2 arcs satisfy
DCC, which implies that the minimum size of digraphs sat-
isfyingDCC is at most 2n − 2, whether themaximumdegree is
2n − 2 or not. *e following theorem gives that each digraph
with n (even) vertices satisfying DCC has at least 2n − 3 arcs.

Theorem 1.1. Let D be a digraph of even order n. If D

satisfies DCC, then D has at least 2n − 3 arcs.
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Remark 1.2. We do not know whether there is a digraph
which has 2n − 3 arcs and satisfy DCC. But by the digraphs
D1 and D2, we know 2n − 3 or 2n − 2 is the tight value.

Corresponding to the ECC of undirected graphs, we say
a digraph D of even order n satisfies even directed

cut condition (EDCC), if e(S, S)≥ (n/2) for any S⊆V(D)

with |S| � (n/2).

Theorem 1.3. Let D be a digraph of even order n. If D

satisfies EDCC, then D has at least 2n −
�
n

√
arcs.

We say a digraph D satisfies weakly even directed
cut condition (WEDCC), if max e(S,{ S), e(S, S)}≥ (n/2) for
any S⊆V(D) with |S| � (n/2). Let D3 be an orientation of
K1,n− 1 such that the apex directs to other vertices. Clearly, D3
has n − 1 arcs and satisfies WEDCC. Hence, we limit the
maximum degree of digraphs. Using the probabilistic
method, we give the following result.

Theorem 1.4. Let D be a digraph of even order n. For any
0< ϵ≤ 1, if Δ(D)≤ ϵ2(n/128) and D satisfies WEDCC, then
D has at least (2n − 2

�
n

√
/1 + ϵ) arcs.

*e rest of this paper is organized as follows. In the next
section, we state some notations and lemmas used. In
Section 3, we give a proof of *eorem 1.1. In Section 4, we
prove *eorems 1.3 and 1.4. *e final section contains some
concluding remarks.

2. Notations and Lemmas

We consider digraphs without loops and parallel arcs, but the
reverse parallel arcs are allowed. We first introduce some no-
tations and definitions. Let D be a digraph with vertex set V(D)

and arc set E(D), and let e(D) � |E(D)|. Given x, y ∈ V(D),
we write xy for the arc directed from x to y. We call vertex y as
an outneighbour of x and x as an inneighbour of y. For any
vertex v ∈ V(D), let N+

D(v) be the outneighbours set of v in D,
and let d+

D(v) � |N+
D(v)| be the outdegree of v. Similarly, we

write N−
D(v) as the in-neighbours set of v in D and d−

D(v) �

|N−
D(v)| as the indegree of v. LetND(v) � N+

D(v)∪N−
D(v) be

the set of neighbours of v and dD(v) � d+
D(v) + d−

D(v) be
degree of v. Let Δ+(D), Δ− (D), Δ(D), and δ(D) be the
maximum outdegree, maximum indegree, maximum

degree, and minimum degree of D, respectively. When un-
derstood, the subscript may be dropped. For any digraph D, we
can associate a simple graph G on the same vertex set by
replacing each arc by an edge and deleting parallel edges if there
are. Such a simple graph G is called underlying graph of D.
We also call as digraph D k-connected if its underlying graph G

is k-connected. For a digraphD, we call (V1, V2) a partition of
D if V1 ∪V2 � V(D) and V1 ∩V2 � ∅. Let e(V1, V2) denote
the number of arcs from V1 to V2 and e(Vi) be the number of
arcs such that two ends lie in Vi, i � 1, 2. Let D[Vi] denote the
induced subdigraph of Vi.

Now, we state several theorems which will be used in the
following proofs. *e first one is a well-known result on
partitioning due to Lóvasz [6]: if G is a 2-connected graph of
order a1 + a2, where a1, a2 are positive integers, then G has a

partition V(G) � A1 ∪A2 such that Ai induces a connected
subgraph of order ai, i � 1, 2. *e following result intro-
duced in [7] is stronger than Lóvasz’s, which plays a key role
in our proofs.

Lemma 2.1 (see [7]). If G is a 2-connected graph of order n,
then V(G) has a labeling v1, v2, . . . , vn such that for every
1< i< n, vi has a neighbour in both v1, . . . , vi− 1􏼈 􏼉 and
vi+1, . . . , vn􏼈 􏼉.

A bisection of a graph G is a partition of V(G) � V1 ∪V2
such that ‖V1| − |V2‖≤ 1. We use Gc to denote the com-
plement of a graph G.*e next lemma onminimum bisection
due to Fan et al. [8] has strong correlation with our problems.

Lemma 2.2 (see [8]). Let M be a maximum matching in Gc

of a graph G which has n vertices and m edges. 1en, G admits
a bisection V1, V2 such that e(V1, V2)≤ (m + ⌊n/2⌋ − |M|)/2.

We introduce the well-known Azuma–Hoeffding in-
equality [9, 10] and use the version given in the book (see
Corollary 2.27) of Janson et al. [11].

Lemma 2.3 (see [11]). Let Z1, Z2, . . . , Zn be independent
random variables taking values in 1, 2, . . . , k{ }, let
Z: � (Z1, Z2, . . . , Zn), and let f: 1, 2, . . . , k{ }⟶ N such
that |f(Y) − f(Y′)|≤ ci for any Y, Y′ ∈ 1, 2, . . . , k{ }

n which
differ only in the ith coordinate. 1en, for any z> 0,

Pr(f(Z)≥E(f(Z)) + z)≤ exp
− z

2

2􏽐
n
i�1c

2
i

􏼠 􏼡,

Pr(f(Z)≤E(f(Z)) − z)≤ exp
− z

2

2􏽐
n
i�1c

2
i

􏼠 􏼡.

(1)

3. Proof of Theorem 1.1

Proof. Let D be a digraph of n (even) vertices satisfying
DCC. Suppose on the contrary that e(D)< 2n − 3. We may
suppose that D is not 2-connected. For otherwise, by
Lóvasz’s theorem, D has a bisection V1, V2 such that D[V1]

and D[V2] induce two connected subdigraphs, respectively.
By DCC, e(V1, V2)≥ (n/2) and e(V2, V1)≥ (n/2). So,

e(D)≥ e V1( 􏼁 + e V2( 􏼁 + e V1, V2( 􏼁 + e V2, V1( 􏼁

≥ 2 ×
n

2
− 1􏼒 􏼓 + 2 ×

n

2
≥ 2n − 2,

(2)

a contradiction.
Since D is not 2-connected, D has cut vertices. Let u be a

cut vertex of D and C1, C2, . . . , Ck (k≥ 2) be connected
components ofD − u.*en, byDCC, we have a simple fact: for
any Ci with |Ci|≤ (n/2), and for any v ∈ V(Ci), vu ∈ E(D).

We first claim that d− (u)≠ n − 1. Suppose for the
contradiction that d− (u) � n − 1, if there exists a compo-
nent, say C1, with order larger than n/2, then
e(V(D)∖V(C1), V(C1)) � e(u, V(C1))≥ n − |C1| by DCC.
*us,
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e(D)≥ e C1( 􏼁 + 􏽘
k

i�2
e Ci( 􏼁 + e V(D), V C1( 􏼁, V C1( 􏼁( 􏼁 + d

−
(u)

≥ C1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + n − C1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + n − 1 � 2n − 2,

(3)

a contradiction. So, we suppose that |Ci|≤ n/2 (1≤ i≤ k).
Without loss of generality, let |Ck| � max |C1|, |C2|,􏼈

. . . , |Ck|}. We split C1, C2, . . . , Ck− 1􏼈 􏼉 � A1 ∪A2 such that
|A1| and |A2| are as close as possible. *en, we partition
V(Ck) − v into two sets B1, B2 such that |A1| + |B1| �

(n/2) − 1, where v is an arbitrary vertex of Ck. Let E1 � A1
∪B1, E2 � A2 ∪B2. Let a1 � e(u, E1), a2 � e(u, E2), b1 � e

(B1, B2), b2 � e(B2, B1), c1 � e(B1, v), and c2 � e(B2, v).
Define

d �
0, uv ∈ E(D),

1, otherwise.
􏼨 (4)

By DCC, for bisections V(D) � (E1 ∪ u, E2 ∪ v) and
V(D) � (E2 ∪ u, E1 ∪ v), we have

e E1 ∪ u, E2 ∪ v( 􏼁

� e u, E2( 􏼁 + e B1, B2( 􏼁 + e B1, v( 􏼁 + d

� a2 + b1 + c1 + d≥
n

2
.

(5)

Similarly,

e E2 ∪ u, E1 ∪ v( 􏼁

� e u, E1( 􏼁 + e B2, B1( 􏼁 + e B2, v( 􏼁 + d

� a1 + b2 + c2 + d≥
n

2
.

(6)

Adding up (5) and (6), we obtain that

a1 + a2 + b1 + b2 + c1 + c2 ≥ n − 2. (7)

*us, e(D)≥ d− (u) + a1 + a2+ b1 + b2 + c1 + c2 ≥ 2n − 3,
a contradiction.

Now, we suppose that d− (u)< n − 1. *en, there is exact
one component of D − u which has order larger than (n/2).
We call such a subdigraph the large component at u and
denote it by L(u). We claim that all cut vertices of D are
contained in one block; we call it central block of D. Assume
it is not true. *en, there must exist cut vertices x1, x2, and
x3 and blocks B1, B2, B3, and B4 such that xi ∈ Bi ∩Bi+1 for
i � 1, 2, 3. B1 and B4 belong to different components of
D − x2, and then there must exist a block which does not
belong to the large component at x2, say B1. *at is to say,
each vertex of the component containing B1 directs to x2 by
the fact we mentioned above. *en, removing the cut vertex
x1 cannot separate B1 and B2, a contradiction.

Let B be the central block of D (if D has only one cut
vertex u, then let B: � L(u) + u.). We define a weight for
each vertex x of B as follows:

ω(x) �
|V(D) − V(L(x))|, if x is a cut vertex,

1, otherwise.
􏼨 (8)

By the definition ofω(x), it is easy to seeω(x)< (n/2) for
each x ∈ B.

Since B is a block of D, by Lemma 2.1, B has a labeling
v1, v2, . . . , v|B| such that for each 1< i< |B|, vi has a neigh-
bour in both sets v1, . . . , vi− 1􏼈 􏼉 and vi+1, . . . , v|B|􏽮 􏽯. Choose
the smallest number k such that w1 � 􏽐

k− 1
i�1 ω(vi)≤ (n/2) and

􏽐
k
i�1ω(vi) � w1 + ω(vk)> (n/2). Let

W1 � ∪ V B′( 􏼁|B′ ≠B is a block andB′ ∩ v1, . . . , vk− 1􏼈 􏼉≠∅􏼈 􏼉.

(9)

According to the definition of weight value of vertices of
B, we can easily find that |W1| � w1.

We claim that w1 � |W1|< (n/2). For otherwise, parti-
tion V(D) into two sets, W1 and V(D)∖W1, which induce
two connected subdigraphs by Lemma 2.1. *us, by DCC,
we have

e(D) � e W1( 􏼁 + e V(D)\W1( 􏼁 + e W1, V(D), W1( 􏼁 + e V(D), W1, W1( 􏼁,

≥ 2 ×
n

2
− 1􏼒 􏼓 + 2 ×

n

2
≥ 2n − 2,

(10)

a contradiction.
We have ω(vk)≥ 2 as w1 < (n/2) and w1 + ω(vk)> n/2.

*at is to say, vk is a cut vertex of D. Let

W2 � ∪ V B′( 􏼁|B′ ≠B is a block andB′ ∩ vk+1, . . . , v|B|􏽮 􏽯􏽮 􏽯≠∅.

(11)

*en, W2 ≠∅ as w1 + ω(vk)< n. Let W0 � V(D)/
(W1 ∪W2), then blocks containing vk are contained in W0.
Let vk � u and v be an arbitrary vertex of W0∖ u{ }. Partition

W0/ u, v{ } into two sets W1
0, W2

0 such that
|W1

0| + |W1| � n/2 − 1, then |W2
0| + |W2| � n/2 − 1.

Let e(u, W1 ∪W1
0) � α1, e(u, W2 ∪W2

0) � α2; let
e(W1 ∪W1

0, u) � β1, e(W2 ∪W2
0, u) � β2; let e(W1 ∪

W1
0, W2 ∪W2

0) � e(W1
0, W2

0) � c1, e(W2 ∪W2
0, W1 ∪W1

0)

� e(W2
0, W1

0) � c2; let e(v, W1
0) � δ1, e(v, W2

0) � δ2; and let
e(W1

0, v) � θ1, e(W2
0, v) � θ2.

For bisections V(D) � (W1 ∪W1
0 ∪ u, W2 ∪W2

0 ∪ v) and
V(D) � (W1 ∪W1

0 ∪ v, W2 ∪W2
0 ∪ u), by DCC, we have
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e W1 ∪W
1
0 ∪ u, W2 ∪W

2
0 ∪ v􏼐 􏼑

� e W1 ∪W
1
0, W2 ∪W

2
0􏼐 􏼑 + e W1 ∪W

1
0, v􏼐 􏼑 + e u, W2 ∪W

2
0􏼐 􏼑 + d

� c1 + θ1 + α2 + d≥
n

2
,

e W2 ∪W
2
0 ∪ v, W1 ∪W

1
0 ∪ u􏼐 􏼑

� e W2 ∪W
2
0, W1 ∪W

1
0􏼐 􏼑 + e W2 ∪W

2
0, u􏼐 􏼑 + e v, W1 ∪W

1
0􏼐 􏼑 + 1

� c2 + β2 + δ1 + 1≥
n

2
,

e W1 ∪W
1
0 ∪ v, W2 ∪W

2
0 ∪ u􏼐 􏼑

� e W1 ∪W
1
0, W2 ∪W

2
0􏼐 􏼑 + e W1 ∪W

1
0, u􏼐 􏼑 + e v, W2 ∪W

2
0􏼐 􏼑 + 1

� c1 + β1 + δ2 + 1≥
n

2
,

(12)

and

e W2 ∪W
2
0 ∪ u, W1 ∪W

1
0 ∪ v􏼐 􏼑

� e W2 ∪W
2
0, W1 ∪W

1
0􏼐 􏼑 + e W2 ∪W

2
0, v􏼐 􏼑 + e u, W1 ∪W

1
0􏼐 􏼑 + d

� c2 + θ2 + α1 + d≥
n

2
.

(13)

Adding up (12) and (13), we obtain that

α1 + α2 + β1 + β2 + c1 + c2 + δ1 + δ2 + θ1 + θ2
≥ 2n − 2 − 2d − c1 + c2( 􏼁.

(14)

Recall that ω(vk)< (n/2), then |W0|≤ (n/2). Considering
the partition V(D) � (W0, V(D)∖W0), by DCC, we have

e W0, V(D), W0( 􏼁≥ W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � W
1
0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + W

2
0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2. (15)

Note that the subdigraphs induced by Wi for i � 1, 2 are
connected and each vertex of W0∖ u{ } directs to u. *us, by
(14), we have

e(D)≥ W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + 􏽘
2

i�1
αi + βi − W

i
0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ci + θi + δi􏼒 􏼓 + d

≥ (n − 3) + 2n − 2 − 2d − c1 + c2( 􏼁 − W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 2􏼐 􏼑 + d

≥ 2n − 3 + n − d − W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − c1 − c2􏼐 􏼑.

(16)

If |W0| + c1 + c2 ≤ n − 1, then e(D)≥ 2n − 3, we are
done. So, we suppose that |W0| + c1 + c2 ≥ n. *us,
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e(D)≥ W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + e W0, u{ }, u( 􏼁 + e u, W1 ∪W2( 􏼁 + c1 + c2

≥ W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + W0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c1 + c2

≥ n − 3 + n � 2n − 3,

(17)

a contradiction too.

4. Proofs of Theorems 1.3 and 1.4

Proof of 1eorem 1.3. Let D be a digraph with n vertices
which satisfies EDCC, and let G be the underlying graph of
D and M be the maximummatching of Gc. We need to show
that e(D)≥ 2n −

�
n

√
. We may suppose that |M|≥ (n −

2
�
n

√
+ 1)/2. For otherwise, we have ω(G) � n − 2|M|≥ 2

�
n

√
.

Hence, e(D)≥ e(G) ≥ (2
�
n

√
)(2

�
n

√
− 1)/2 � 2n −

�
n

√
, we are

done.
Suppose on the contrary that e(D)< 2n −

�
n

√
. *en, by

Lemma 2.2,D admits a bisection V(D) � V1 ∪V2 such that

e V1, V2( 􏼁≤
(e(D) +(n/2) − |M|)

4

<
(2n −

�
n

√
+(n/2) − (n − 2

�
n

√
+ 1)/2)

4

<
n

2
􏼒 􏼓,

(18)

a contradiction with EDCC.
Now, we prove *eorem 1.4 using the probabilistic

method.

Lemma 4.1. Let D be a digraph with n (even) vertices and m

arcs, G be the underlying graph of D, and M be a maximum
matching of Gc, then D admits a bisection V(D) � V1 ∪V2
such that

max e V1, V2( 􏼁, e V2, V1( 􏼁􏼈 􏼉≤
(m/4 + n/4)

(− |M|/2)
+ R, (19)

where R � 2
�����������
􏽐v∈V(D)d

2(v)
􏽱

.

Proof. Let M � u1v1, u2v2, . . . , u(|M|/2)v(|M|/2)􏽮 􏽯. We know
G − V(M) is a clique, as M is a maximum matching of Gc.
Let u|(M/2+1)|v|(M/2+1)|, . . . , u(n/2)v(n/2) be a perfect matching
of G − V(M). Partition V(D) into (n/2) disjoint pairs
u1, v1􏼈 􏼉, u2, v2􏼈 􏼉, . . . , u(n/2), v(n/2)􏽮 􏽯. Let Z � (Z1, Z2, . . . ,

Z(n/2)) be a random, independent, and uniform 2-coloring
(with color 1 and 2) of u1, u2, . . . , u(n/2)􏽮 􏽯, and color each vi

with 3 − Zi for 1≤ i≤ (n/2). For i � 1, 2, let

Vi � v ∈ V(D)|vwas colored i{ }. (20)

*us, V(D) � V1 ∪V2 is a bisection of D.
Now, we bound E(e(V1, V2)). For each arc

e � uv ∈ E(D), let Ie be the indicator random variable of the
event e ∈ E(V1, V2). If the endpoints u, v of e were paired in
the beginning, i.e., u, v{ } � ui, vi􏼈 􏼉 for some (|M|/2)

< i≤ (n/2), then Pr(e ∈ E(V1, V2)) � (1/2). Otherwise,

Pr e ∈ E V1, V2( 􏼁( 􏼁 � Pr u ∈ V1, v ∈ V2( 􏼁

� Pr u ∈ V1( 􏼁Pr v ∈ V2( 􏼁 �
1
4

􏼒 􏼓.

(21)

Obviously, there are at most 2 × ((n/2) − |M|) arcs which
were paired in the beginning. By linearity of expectation, we
have

E e V1, V2( 􏼁( 􏼁 � 􏽘
e∈E(D)

E Ie( 􏼁≤
(n − 2|M|)

2
+

(m − n + 2|M|)

4

�
m

4
+

n

4
−

|M|

2
.

(22)

By symmetry, we also have E(e(V2, V1))≤ (m/4)

+(n/4) − (|M|/2). Note that changing the color of any vertex
ui for 1≤ i≤ (n/2) cannot affect e(V1, V2), e(V2, V1)􏼈 􏼉 by
more than d(ui) + d(vi). Define

L � 􏽘

(n/2)

i�1
d ui( 􏼁 + d vi( 􏼁( 􏼁

2
. (23)

*en, we have

L≤ 2 􏽘

(n/2)

i�1
d
2

ui( 􏼁 + d
2

vi( 􏼁􏼐 􏼑 � 2 􏽘
v∈V(D)

d
2
(v). (24)

By Lemma 2.3, we obtain

Pr e V1, V2( 􏼁≥E e V1, V2( 􏼁( 􏼁 + R( 􏼁≤ exp −
R
2

2L
􏼠 􏼡≤ e

− 1
, (25)

and

Pr e V2, V1( 􏼁≥E e V2, V1( 􏼁( 􏼁 + R( 􏼁≤ exp −
R
2

2L
􏼠 􏼡≤ e

− 1
. (26)

Hence, there is a bisection V(D) � V1 ∪V2 of D such
that

max e V1, V2( 􏼁, e V2, V1( 􏼁􏼈 􏼉≤
m

4
+

n

4
−

|M|

2
+ R. (27)

According to Lemma 4.1, we can easily obtain a fact: if
m< n + 2|M| − 4R, then D admits a bisection V(D) �

V1 ∪V2 such that max e(V1, V2), e(V2, V1)􏼈 􏼉< (n/2).

Lemma 4.2. Let D be a digraph with n (even) vertices and
m≥ n arcs. Let G be the underlying graph of D and M be a
maximum matching of Gc. For 0< ϵ≤ 1, if Δ≤ ϵ2(n/128) and
m< (n + 2|M|/1 + ϵ), then max e(V1, V2), e(V2, V1)􏼈 􏼉<
(n/2).
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Proof. Note that R � 2
�����������
􏽐v∈V(D)d

2(v)
􏽱

≤ 2
������������
Δ􏽐v∈V(D)d(v)

􏽱

� (2
����
2Δm

√
≤ ϵm/4), since m< n + 2|M|/1 + ϵ, which implies

m< n + 2|M| − ϵm< n + 2|M| − 4R. By the fact mentioned
above, we have max e(V1, V2), e(V2, V1)􏼈 􏼉< (n/2).

Proof of 1eorem 1.4. We may suppose that
|M|> (n/2) −

�
n

√
. For otherwise, |V(G) − V(M)|≥ 2

�
n

√
and

V(G) − V(M) is a clique. Hence,

e(D)≥ e(G)≥ e(G − V(M)) �
2

�
n

√
(2

�
n

√
− 1)

2
� 2n −

�
n

√
.

(28)

We are done. Since |M|> (n/2) −
�
n

√
, by Lemma 4.2 and

WEDCC, we have e(D)≥ (n + 2|M|/1 + ϵ)≥ (2n − 2
�
n

√
/

1 + ϵ).

5. Concluding Remarks and Open Problems

We in this paper consider extremum problems in directed
graphs and give some lower bounds of arcs when a digraph
satisfies DCC, EDCC, and WEDCC, respectively. Below, we
give some comments on these results and propose some
open problems.

For *eorem 1.1, 2n − 3 or 2n − 2 could be the exact
value although we do not know which one to be. Consid-
ering the symmetry of this condition, we prefer to believe
that it is an even number. Hence, we propose the following
conjecture.

Conjecture 5.1. Let D be a digraph of order n. If D satisfies
DCC, then e(D)≥ 2n − 2.

For *eorem 1.3, it is a corollary of Lemma 2.2. In fact,
EDCC is closely related to the minimum cut. Obviously, if a
digraph with maximum indegree or outdegree n − 1, then it
must satisfy WEDCC. It is not clear to us what the exact
value is when the maximum indegree and outdegree are
smaller than n − 1.

Problem 5.2. What is the minimum size of a digraph which
satisfies EDCC?

Problem 5.3. Let D be a digraph D with Δ+(D)< n − 1 and
Δ− (D)< n − 1. What is the minimum size of D when D

satisfies WEDCC?
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