The Minimum Size of Digraphs Satisfying Directed Cut Conditions

Huawen Ma
College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, Shaanxi, China
Correspondence should be addressed to Huawen Ma; mhwaue@sina.com

Received 3 December 2021; Revised 15 January 2022; Accepted 19 January 2022; Published 14 February 2022
Academic Editor: Guozeng Cui
Copyright © 2022 Huawen Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A directed graph (digraph) D of order n satisfies directed cut condition ($D C C$) if there are at least $|S|$ arcs from any set $S \subseteq V(D)$, $|S| \leq(n / 2)$ to its complement $\bar{S}=V(D) / S$. We show that a digraph D of even order n has at least $2 n-3 \operatorname{arcs}$ if D satisfies $D C C$.

1. Introduction

A network is made up of nodes and links between nodes. Suppose that a cluster of k hosts in one part of the network wishes to communicate with k hosts at another part of the network. Assume that any two communication paths can use common intermediate nodes, but no two communication paths between distinct pairs can share common links. Then, there must exist at least k links leaving the cluster. A simple graph can quite naturally represent this communication network. Path-pairability is a notion that emerged from this practical networking problem introduced by Csaba et al. [1] and further studied by Faudree et al. [2-4]. A graph G of even order n is path-pairable, if for any set of disjoint pairs $\left\{s_{i}, t_{i}\right\}, \quad 1 \leq i \leq(n / 2), \quad G$ has pairwise edge disjoint $\left(s_{i}, t_{i}\right)$-paths. A series of problems on path-pairable graphs have been proposed, such as seeking diameter, maximum order, and maximum degree. In [4], Faudree et al. considered the problem of investigating the minimum size of path-pairable graph G of order n. It is trivial that $|E(G)| \geq n-1$ as $K_{1, n-1}$ is path-pairable. They showed that $|E(G)| \geq(3 n / 2)-\log n-O(1)$ for path-pairable graph G with $\Delta(G)<n-1$.

A graph on n vertices satisfies cut condition (CC), if for any $S \subseteq V(G),|S| \leq(n / 2)$, there are at least $|S|$ edges between S and $\bar{S}=V(G) / S$. Obviously, a path-pairable graph satisfies $C C$, but the inverse is not. Jobson et al. [5] proved that a graph G of even order n with $\Delta(G)<n-1$, if G satisfies $C C$, then $|E(G)| \geq(3 n / 2-3)$, and this bound is tight. A graph of
even order n satisfies even cut condition (ECC), if for any $S \subseteq V(G),|S|=(n / 2)$, there are at least $(n / 2)$ edges between S and \bar{S}. Jobson et al. [5] showed that if G is a graph of order $n \equiv 0(\bmod 4)$ with $\Delta(G)<n-1$ and satisfies ECC, then $|E(G)| \geq(5 n / 4-2)$.

On account of the results of Jobson et al., we consider the minimum size of the digraphs satisfying directed cut condition in this paper. Let D be a digraph with vertex set $V(D)$ and arc set $E(D)$. For any two disjoint sets $A, B \subseteq V(D)$, let $e(A, B)$ denote the number of arcs from A to B in D. We say a digraph D on n vertices satisfies directed cut condition (DCC), if $e(S, \bar{S}) \geq|S|$ for any $S \subseteq V(D)$ with $|S| \leq(n / 2)$.

Let D_{1} be a digraph with n vertices and $V\left(D_{1}\right)=\{u\} \cup S$, where S is an independent set with $n-1$ vertices in D_{1}. In D_{1}, u directs to each vertex of S and each vertex in S directs to u. Let D_{2} be a digraph with n (even) vertices and $V\left(D_{2}\right)=$ $\{u\} \cup\{v\} \cup S \cup T$, where S and T are two independent sets with $(n / 2)-1$ vertices in D_{2}. In D_{2}, u directs to each vertex of S and each vertex in S directs to $v ; v$ directs to each vertex of T and each vertex in T directs to $u ; u$ directs to v and v directs to u. It is easy to verify that D_{1} and D_{2} with size $2 n-2$ arcs satisfy $D C C$, which implies that the minimum size of digraphs satisfying $D C C$ is at most $2 n-2$, whether the maximum degree is $2 n-2$ or not. The following theorem gives that each digraph with n (even) vertices satisfying $D C C$ has at least $2 n-3$ arcs.

Theorem 1.1. Let D be a digraph of even order n. If D satisfies DCC, then D has at least $2 n-3$ arcs.

Remark 1.2. We do not know whether there is a digraph which has $2 n-3 \operatorname{arcs}$ and satisfy $D C C$. But by the digraphs D_{1} and D_{2}, we know $2 n-3$ or $2 n-2$ is the tight value.

Corresponding to the ECC of undirected graphs, we say a digraph D of even order n satisfies even directed cut condition (EDCC), if $e(S, \bar{S}) \geq(n / 2)$ for any $S \subseteq V(D)$ with $|S|=(n / 2)$.

Theorem 1.3. Let D be a digraph of even order n. If D satisfies EDCC, then D has at least $2 n-\sqrt{n}$ arcs.

We say a digraph D satisfies weakly even directed cut condition (WEDCC), if $\max \{e(S, \bar{S}), e(\bar{S}, S)\} \geq(n / 2)$ for any $S \subseteq V(D)$ with $|S|=(n / 2)$. Let D_{3} be an orientation of $K_{1, n-1}$ such that the apex directs to other vertices. Clearly, D_{3} has $n-1$ arcs and satisfies WEDCC. Hence, we limit the maximum degree of digraphs. Using the probabilistic method, we give the following result.

Theorem 1.4. Let D be a digraph of even order n. For any $0<\epsilon \leq 1$, if $\Delta(D) \leq \epsilon^{2}(n / 128)$ and D satisfies WEDCC, then D has at least $(2 n-2 \sqrt{n} / 1+\epsilon)$ arcs.

The rest of this paper is organized as follows. In the next section, we state some notations and lemmas used. In Section 3, we give a proof of Theorem 1.1. In Section 4, we prove Theorems 1.3 and 1.4. The final section contains some concluding remarks.

2. Notations and Lemmas

We consider digraphs without loops and parallel arcs, but the reverse parallel arcs are allowed. We first introduce some notations and definitions. Let D be a digraph with vertex set $V(D)$ and arc set $E(D)$, and let $e(D)=|E(D)|$. Given $x, y \in V(D)$, we write $x y$ for the arc directed from x to y. We call vertex y as an outneighbour of x and x as an inneighbour of y. For any vertex $v \in V(D)$, let $N_{D}^{+}(v)$ be the outneighbours set of v in D, and let $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ be the outdegree of v. Similarly, we write $N_{D}^{-}(v)$ as the in-neighbours set of v in D and $d_{D}^{-}(v)=$ $\left|N_{D}^{-}(v)\right|$ as the indegree of v. Let $N_{D}(v)=N_{D}^{+}(v) \cup N_{D}^{-}(v)$ be the set of neighbours of v and $d_{D}(v)=d_{D}^{+}(v)+d_{D}^{-}(v)$ be degree of v. Let $\Delta^{+}(D), \Delta^{-}(D), \Delta(D)$, and $\delta(D)$ be the maximum outdegree, maximum indegree, maximum degree, and minimum degree of D, respectively. When understood, the subscript may be dropped. For any digraph D, we can associate a simple graph G on the same vertex set by replacing each arc by an edge and deleting parallel edges if there are. Such a simple graph G is called underlying graph of D. We also call as digraph $D k$-connected if its underlying graph G is k-connected. For a digraph D, we call $\left(V_{1}, V_{2}\right)$ a partition of D if $V_{1} \cup V_{2}=V(D)$ and $V_{1} \cap V_{2}=\varnothing$. Let $e\left(V_{1}, V_{2}\right)$ denote the number of arcs from V_{1} to V_{2} and $e\left(V_{i}\right)$ be the number of arcs such that two ends lie in $V_{i}, i=1,2$. Let $D\left[V_{i}\right]$ denote the induced subdigraph of V_{i}.

Now, we state several theorems which will be used in the following proofs. The first one is a well-known result on partitioning due to Lóvasz [6]: if G is a 2 -connected graph of order $a_{1}+a_{2}$, where a_{1}, a_{2} are positive integers, then G has a
partition $V(G)=A_{1} \cup A_{2}$ such that A_{i} induces a connected subgraph of order $a_{i}, i=1,2$. The following result introduced in [7] is stronger than Lóvasz's, which plays a key role in our proofs.

Lemma 2.1 (see [7]). If G is a 2-connected graph of order n, then $V(G)$ has a labeling $v_{1}, v_{2}, \ldots, v_{n}$ such that for every $1<i<n, v_{i}$ has a neighbour in both $\left\{v_{1}, \ldots, v_{i-1}\right\}$ and $\left\{v_{i+1}, \ldots, v_{n}\right\}$.

A bisection of a graph G is a partition of $V(G)=V_{1} \cup V_{2}$ such that $\left\|V_{1}|-| V_{2}\right\| \leq 1$. We use G^{c} to denote the complement of a graph G. The next lemma on minimum bisection due to Fan et al. [8] has strong correlation with our problems.

Lemma 2.2 (see [8]). Let M be a maximum matching in G^{c} of a graph G which has n vertices and m edges. Then, G admits a bisection V_{1}, V_{2} such that $e\left(V_{1}, V_{2}\right) \leq(m+\lfloor n / 2\rfloor-|M|) / 2$.

We introduce the well-known Azuma-Hoeffding inequality $[9,10]$ and use the version given in the book (see Corollary 2.27) of Janson et al. [11].

Lemma 2.3 (see [11]). Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent random variables taking values in $\{1,2, \ldots, k\}$, let $Z:=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$, and let $f:\{1,2, \ldots, k\} \longrightarrow N$ such that $\left|f(Y)-f\left(Y^{\prime}\right)\right| \leq c_{i}$ for any $Y, Y^{\prime} \in\{1,2, \ldots, k\}^{n}$ which differ only in the ith coordinate. Then, for any $z>0$,

$$
\begin{align*}
& \operatorname{Pr}(f(Z) \geq E(f(Z))+z) \leq \exp \left(\frac{-z^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right), \tag{1}\\
& \operatorname{Pr}(f(Z) \leq E(f(Z))-z) \leq \exp \left(\frac{-z^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
\end{align*}
$$

3. Proof of Theorem 1.1

Proof. Let D be a digraph of n (even) vertices satisfying $D C C$. Suppose on the contrary that $e(D)<2 n-3$. We may suppose that D is not 2 -connected. For otherwise, by Lóvasz's theorem, D has a bisection V_{1}, V_{2} such that $D\left[V_{1}\right]$ and $D\left[V_{2}\right]$ induce two connected subdigraphs, respectively. By DCC, $e\left(V_{1}, V_{2}\right) \geq(n / 2)$ and $e\left(V_{2}, V_{1}\right) \geq(n / 2)$. So,

$$
\begin{align*}
e(D) & \geq e\left(V_{1}\right)+e\left(V_{2}\right)+e\left(V_{1}, V_{2}\right)+e\left(V_{2}, V_{1}\right) \\
& \geq 2 \times\left(\frac{n}{2}-1\right)+2 \times \frac{n}{2} \geq 2 n-2, \tag{2}
\end{align*}
$$

a contradiction.
Since D is not 2 -connected, D has cut vertices. Let u be a cut vertex of D and $C_{1}, C_{2}, \ldots, C_{k}(k \geq 2)$ be connected components of $D-u$. Then, by $D C C$, we have a simple fact: for any C_{i} with $\left|C_{i}\right| \leq(n / 2)$, and for any $v \in V\left(C_{i}\right), v u \in E(D)$.

We first claim that $d^{-}(u) \neq n-1$. Suppose for the contradiction that $d^{-}(u)=n-1$, if there exists a component, say C_{1}, with order larger than $n / 2$, then $e\left(V(D) \backslash V\left(C_{1}\right), V\left(C_{1}\right)\right)=e\left(u, V\left(C_{1}\right)\right) \geq n-\left|C_{1}\right|$ by $D C C$. Thus,

$$
\begin{align*}
e(D) & \geq e\left(C_{1}\right)+\sum_{i=2}^{k} e\left(C_{i}\right)+e\left(V(D), V\left(C_{1}\right), V\left(C_{1}\right)\right)+d^{-}(u) \\
& \geq\left(\left|C_{1}\right|-1\right)+\left(n-\left|C_{1}\right|\right)+n-1=2 n-2, \tag{3}
\end{align*}
$$

a contradiction. So, we suppose that $\left|C_{i}\right| \leq n / 2(1 \leq i \leq k)$. Without loss of generality, let $\left|C_{k}\right|=\max \left\{\left|C_{1}\right|,\left|C_{2}\right|\right.$, $\left.\ldots,\left|C_{k}\right|\right\}$. We split $\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}=A_{1} \cup A_{2}$ such that $\left|A_{1}\right|$ and $\left|A_{2}\right|$ are as close as possible. Then, we partition $V\left(C_{k}\right)-v$ into two sets B_{1}, B_{2} such that $\left|A_{1}\right|+\left|B_{1}\right|=$ $(n / 2)-1$, where v is an arbitrary vertex of C_{k}. Let $E_{1}=A_{1}$ $\cup B_{1}, E_{2}=A_{2} \cup B_{2}$. Let $a_{1}=e\left(u, E_{1}\right), a_{2}=e\left(u, E_{2}\right), b_{1}=e$ $\left(B_{1}, B_{2}\right), \quad b_{2}=e\left(B_{2}, B_{1}\right), \quad c_{1}=e\left(B_{1}, v\right)$, and $c_{2}=e\left(B_{2}, v\right)$. Define

$$
d= \begin{cases}0, & u v \in E(D) \tag{4}\\ 1, & \text { otherwise }\end{cases}
$$

By DCC, for bisections $V(D)=\left(E_{1} \cup u, E_{2} \cup v\right)$ and $V(D)=\left(E_{2} \cup u, E_{1} \cup v\right)$, we have

$$
\begin{align*}
& e\left(E_{1} \cup u, E_{2} \cup v\right) \\
& \quad=e\left(u, E_{2}\right)+e\left(B_{1}, B_{2}\right)+e\left(B_{1}, v\right)+d \tag{5}\\
& \quad=a_{2}+b_{1}+c_{1}+d \geq \frac{n}{2} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
& e\left(E_{2} \cup u, E_{1} \cup v\right) \\
& \quad=e\left(u, E_{1}\right)+e\left(B_{2}, B_{1}\right)+e\left(B_{2}, v\right)+d \tag{6}\\
& \quad=a_{1}+b_{2}+c_{2}+d \geq \frac{n}{2} .
\end{align*}
$$

Adding up (5) and (6), we obtain that

$$
\begin{equation*}
a_{1}+a_{2}+b_{1}+b_{2}+c_{1}+c_{2} \geq n-2 \tag{7}
\end{equation*}
$$

Thus, $e(D) \geq d^{-}(u)+a_{1}+a_{2}+b_{1}+b_{2}+c_{1}+c_{2} \geq 2 n-3$, a contradiction.

Now, we suppose that $d^{-}(u)<n-1$. Then, there is exact one component of $D-u$ which has order larger than ($n / 2$). We call such a subdigraph the large component at u and denote it by $L(u)$. We claim that all cut vertices of D are contained in one block; we call it central block of D. Assume it is not true. Then, there must exist cut vertices x_{1}, x_{2}, and x_{3} and blocks B_{1}, B_{2}, B_{3}, and B_{4} such that $x_{i} \in B_{i} \cap B_{i+1}$ for $i=1,2,3 . B_{1}$ and B_{4} belong to different components of $D-x_{2}$, and then there must exist a block which does not belong to the large component at x_{2}, say B_{1}. That is to say, each vertex of the component containing B_{1} directs to x_{2} by the fact we mentioned above. Then, removing the cut vertex x_{1} cannot separate B_{1} and B_{2}, a contradiction.

Let B be the central block of D (if D has only one cut vertex u, then let $B:=L(u)+u$.). We define a weight for each vertex x of B as follows:

$$
\omega(x)= \begin{cases}|V(D)-V(L(x))|, & \text { if } x \text { is a cut vertex } \tag{8}\\ 1, & \text { otherwise }\end{cases}
$$

By the definition of $\omega(x)$, it is easy to see $\omega(x)<(n / 2)$ for each $x \in B$.

Since B is a block of D, by Lemma 2.1, B has a labeling $v_{1}, v_{2}, \ldots, v_{|B|}$ such that for each $1<i<|B|, v_{i}$ has a neighbour in both sets $\left\{v_{1}, \ldots, v_{i-1}\right\}$ and $\left\{v_{i+1}, \ldots, v_{|B|}\right\}$. Choose the smallest number k such that $w_{1}=\sum_{i=1}^{k-1} \omega\left(v_{i}\right) \leq(n / 2)$ and $\sum_{i=1}^{k} \omega\left(v_{i}\right)=w_{1}+\omega\left(v_{k}\right)>(n / 2)$. Let $W_{1}=\cup\left\{V\left(B^{\prime}\right) \mid B^{\prime} \neq B\right.$ is a block and $\left.B^{\prime} \cap\left\{v_{1}, \ldots, v_{k-1}\right\} \neq \varnothing\right\}$.

According to the definition of weight value of vertices of B, we can easily find that $\left|W_{1}\right|=w_{1}$.

We claim that $w_{1}=\left|W_{1}\right|<(n / 2)$. For otherwise, partition $V(D)$ into two sets, W_{1} and $V(D) \backslash W_{1}$, which induce two connected subdigraphs by Lemma 2.1. Thus, by $D C C$, we have

$$
\begin{align*}
e(D) & =e\left(W_{1}\right)+e\left(V(D) \backslash W_{1}\right)+e\left(W_{1}, V(D), W_{1}\right)+e\left(V(D), W_{1}, W_{1}\right) \\
& \geq 2 \times\left(\frac{n}{2}-1\right)+2 \times \frac{n}{2} \geq 2 n-2 \tag{10}
\end{align*}
$$

a contradiction.
We have $\omega\left(v_{k}\right) \geq 2$ as $w_{1}<(n / 2)$ and $w_{1}+\omega\left(v_{k}\right)>n / 2$. That is to say, v_{k} is a cut vertex of D. Let
$W_{2}=\cup\left\{V\left(B^{\prime}\right) \mid B^{\prime} \neq B\right.$ is a block and $\left.B^{\prime} \cap\left\{v_{k+1}, \ldots, v_{|B|}\right\}\right\} \neq \varnothing$.

Then, $W_{2} \neq \varnothing$ as $w_{1}+\omega\left(v_{k}\right)<n$. Let $W_{0}=V(D) /$ ($W_{1} \cup W_{2}$), then blocks containing v_{k} are contained in W_{0}. Let $v_{k}=u$ and v be an arbitrary vertex of $W_{0} \backslash\{u\}$. Partition
$W_{0} /\{u, v\}$ into two sets W_{0}^{1}, W_{0}^{2} such that $\left|W_{0}^{1}\right|+\left|W_{1}\right|=n / 2-1$, then $\left|W_{0}^{2}\right|+\left|W_{2}\right|=n / 2-1$.

Let $\quad e\left(u, W_{1} \cup W_{0}^{1}\right)=\alpha_{1}, \quad e\left(u, W_{2} \cup W_{0}^{2}\right)=\alpha_{2}$; let $e\left(W_{1} \cup W_{0}^{1}, u\right)=\beta_{1}, \quad e\left(W_{2} \cup W_{0}^{2}, u\right)=\beta_{2}$; let $e\left(W_{1} \cup\right.$ $\left.W_{0}^{1}, W_{2} \cup W_{0}^{2}\right)=e\left(W_{0}^{1}, W_{0}^{2}\right)=\gamma_{1}, \quad e\left(W_{2} \cup W_{0}^{2}, W_{1} \cup W_{0}^{1}\right)$ $=e\left(W_{0}^{2}, W_{0}^{1}\right)=\gamma_{2}$; let $e\left(v, W_{0}^{1}\right)=\delta_{1}, e\left(v, W_{0}^{2}\right)=\delta_{2}$; and let $e\left(W_{0}^{1}, v\right)=\theta_{1}, e\left(W_{0}^{2}, v\right)=\theta_{2}$.

For bisections $V(D)=\left(W_{1} \cup W_{0}^{1} \cup u, W_{2} \cup W_{0}^{2} \cup v\right)$ and $V(D)=\left(W_{1} \cup W_{0}^{1} \cup v, W_{2} \cup W_{0}^{2} \cup u\right)$, by $D C C$, we have

$$
\begin{align*}
& e\left(W_{1} \cup W_{0}^{1} \cup u, W_{2} \cup W_{0}^{2} \cup v\right) \\
& \quad=e\left(W_{1} \cup W_{0}^{1}, W_{2} \cup W_{0}^{2}\right)+e\left(W_{1} \cup W_{0}^{1}, v\right)+e\left(u, W_{2} \cup W_{0}^{2}\right)+d \\
& \quad=\gamma_{1}+\theta_{1}+\alpha_{2}+d \geq \frac{n}{2} \\
& e\left(W_{2} \cup W_{0}^{2} \cup v, W_{1} \cup W_{0}^{1} \cup u\right) \\
& \quad=e\left(W_{2} \cup W_{0}^{2}, W_{1} \cup W_{0}^{1}\right)+e\left(W_{2} \cup W_{0}^{2}, u\right)+e\left(v, W_{1} \cup W_{0}^{1}\right)+1 \tag{12}\\
& \quad=\gamma_{2}+\beta_{2}+\delta_{1}+1 \geq \frac{n}{2}, \\
& e\left(W_{1} \cup W_{0}^{1} \cup v, W_{2} \cup W_{0}^{2} \cup u\right) \\
& \quad=e\left(W_{1} \cup W_{0}^{1}, W_{2} \cup W_{0}^{2}\right)+e\left(W_{1} \cup W_{0}^{1}, u\right)+e\left(v, W_{2} \cup W_{0}^{2}\right)+1 \\
& \quad=\gamma_{1}+\beta_{1}+\delta_{2}+1 \geq \frac{n}{2},
\end{align*}
$$

and

$$
\begin{align*}
& e\left(W_{2} \cup W_{0}^{2} \cup u, W_{1} \cup W_{0}^{1} \cup v\right) \\
& \quad=e\left(W_{2} \cup W_{0}^{2}, W_{1} \cup W_{0}^{1}\right)+e\left(W_{2} \cup W_{0}^{2}, v\right)+e\left(u, W_{1} \cup W_{0}^{1}\right)+d \tag{13}\\
& \quad=\gamma_{2}+\theta_{2}+\alpha_{1}+d \geq \frac{n}{2} .
\end{align*}
$$

Adding up (12) and (13), we obtain that

$$
\begin{align*}
& \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\theta_{1}+\theta_{2} \tag{14}\\
\geq & 2 n-2-2 d-\left(\gamma_{1}+\gamma_{2}\right) .
\end{align*}
$$

$$
\begin{equation*}
e\left(W_{0}, V(D), W_{0}\right) \geq\left|W_{0}\right|=\left|W_{0}^{1}\right|+\left|W_{0}^{2}\right|+2 . \tag{15}
\end{equation*}
$$

Note that the subdigraphs induced by W_{i} for $i=1,2$ are connected and each vertex of $W_{0} \backslash\{u\}$ directs to u. Thus, by (14), we have

Recall that $\omega\left(v_{k}\right)<(n / 2)$, then $\left|W_{0}\right| \leq(n / 2)$. Considering the partition $V(D)=\left(W_{0}, V(D) \backslash W_{0}\right)$, by $D C C$, we have

$$
\begin{align*}
e(D) & \geq\left(\left|W_{1}\right|-1\right)+\left(\left|W_{2}\right|-1\right)+\left(\left|W_{0}\right|-1\right)+\sum_{i=1}^{2}\left(\alpha_{i}+\left(\beta_{i}-\left|W_{0}^{i}\right|\right)+\gamma_{i}+\theta_{i}+\delta_{i}\right)+d \\
& \geq(n-3)+2 n-2-2 d-\left(\gamma_{1}+\gamma_{2}\right)-\left(\left|W_{0}\right|-2\right)+d \tag{16}\\
& \geq 2 n-3+\left(n-d-\left|W_{0}\right|-\gamma_{1}-\gamma_{2}\right) .
\end{align*}
$$

If $\left|W_{0}\right|+\gamma_{1}+\gamma_{2} \leq n-1$, then $e(D) \geq 2 n-3$, we are done. So, we suppose that $\left|W_{0}\right|+\gamma_{1}+\gamma_{2} \geq n$. Thus,

$$
\begin{align*}
e(D) & \geq\left(\left|W_{1}\right|-1\right)+\left(\left|W_{2}\right|-1\right)+e\left(W_{0},\{u\}, u\right)+e\left(u, W_{1} \cup W_{2}\right)+\gamma_{1}+\gamma_{2} \\
& \geq\left(\left|W_{1}\right|-1\right)+\left(\left|W_{2}\right|-1\right)+\left(\left|W_{0}\right|-1\right)+\left|W_{0}\right|+\gamma_{1}+\gamma_{2} \tag{17}\\
& \geq n-3+n=2 n-3,
\end{align*}
$$

a contradiction too.

4. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let D be a digraph with n vertices which satisfies $E D C C$, and let G be the underlying graph of D and M be the maximum matching of G^{c}. We need to show that $e(D) \geq 2 n-\sqrt{n}$. We may suppose that $|M| \geq(n-$ $2 \sqrt{n}+1) / 2$. For otherwise, we have $\omega(G)=n-2|M| \geq 2 \sqrt{n}$. Hence, $e(D) \geq e(G) \geq(2 \sqrt{n})(2 \sqrt{n}-1) / 2=2 n-\sqrt{n}$, we are done.

Suppose on the contrary that $e(D)<2 n-\sqrt{n}$. Then, by Lemma 2.2,D admits a bisection $V(D)=V_{1} \cup V_{2}$ such that

$$
\begin{align*}
e\left(V_{1}, V_{2}\right) & \leq \frac{(e(D)+(n / 2)-|M|)}{4} \\
& <\frac{(2 n-\sqrt{n}+(n / 2)-(n-2 \sqrt{n}+1) / 2)}{4} \tag{18}\\
& <\left(\frac{n}{2}\right),
\end{align*}
$$

a contradiction with EDCC.
Now, we prove Theorem 1.4 using the probabilistic method.

Lemma 4.1. Let D be a digraph with n (even) vertices and m arcs, G be the underlying graph of D, and M be a maximum matching of G^{c}, then D admits a bisection $V(D)=V_{1} \cup V_{2}$ such that

$$
\begin{equation*}
\max \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \leq \frac{(m / 4+n / 4)}{(-|M| / 2)}+R \tag{19}
\end{equation*}
$$

where $R=2 \sqrt{\sum_{v \in V(D)} d^{2}(v)}$.
Proof. Let $M=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{(|M| / 2)} v_{(|M| / 2)}\right\}$. We know $G-V(M)$ is a clique, as M is a maximum matching of G^{c}. Let $u_{|(M / 2+1)|} v_{|(M / 2+1)|}, \ldots, u_{(n / 2)} v_{(n / 2)}$ be a perfect matching of $G-V(M)$. Partition $V(D)$ into ($n / 2$) disjoint pairs $\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}, \ldots,\left\{u_{(n / 2)}, v_{(n / 2)}\right\}$. Let $Z=\left(Z_{1}, Z_{2}, \ldots\right.$, $\left.Z_{(n / 2)}\right)$ be a random, independent, and uniform 2-coloring (with color 1 and 2) of $\left\{u_{1}, u_{2}, \ldots, u_{(n / 2)}\right\}$, and color each v_{i} with $3-Z_{i}$ for $1 \leq i \leq(n / 2)$. For $i=1$, 2 , let

$$
\begin{equation*}
V_{i}=\{v \in V(D) \mid v \text { was colored } i\} . \tag{20}
\end{equation*}
$$

Thus, $V(D)=V_{1} \cup V_{2}$ is a bisection of D.
Now, we bound $E\left(e\left(V_{1}, V_{2}\right)\right)$. For each arc $e=u v \in E(D)$, let I_{e} be the indicator random variable of the event $e \in E\left(V_{1}, V_{2}\right)$. If the endpoints u, v of e were paired in the beginning, i.e., $\{u, v\}=\left\{u_{i}, v_{i}\right\}$ for some $(|M| / 2)$ $<i \leq(n / 2)$, then $P_{r}\left(e \in E\left(V_{1}, V_{2}\right)\right)=(1 / 2)$. Otherwise,

$$
\begin{align*}
P_{r}\left(e \in E\left(V_{1}, V_{2}\right)\right) & =P_{r}\left(u \in V_{1}, v \in V_{2}\right) \\
& =P_{r}\left(u \in V_{1}\right) P_{r}\left(v \in V_{2}\right)=\left(\frac{1}{4}\right) . \tag{21}
\end{align*}
$$

Obviously, there are at most $2 \times((n / 2)-|M|)$ arcs which were paired in the beginning. By linearity of expectation, we have

$$
\begin{align*}
E\left(e\left(V_{1}, V_{2}\right)\right) & =\sum_{e \in E(D)} E\left(I_{e}\right) \leq \frac{(n-2|M|)}{2}+\frac{(m-n+2|M|)}{4} \\
& =\frac{m}{4}+\frac{n}{4}-\frac{|M|}{2} . \tag{22}
\end{align*}
$$

By symmetry, we also have $E\left(e\left(V_{2}, V_{1}\right)\right) \leq(m / 4)$ $+(n / 4)-(|M| / 2)$. Note that changing the color of any vertex u_{i} for $1 \leq i \leq(n / 2)$ cannot affect $\left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\}$ by more than $d\left(u_{i}\right)+d\left(v_{i}\right)$. Define

$$
\begin{equation*}
L=\sum_{i=1}^{(n / 2)}\left(d\left(u_{i}\right)+d\left(v_{i}\right)\right)^{2} \tag{23}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
L \leq 2 \sum_{i=1}^{(n / 2)}\left(d^{2}\left(u_{i}\right)+d^{2}\left(v_{i}\right)\right)=2 \sum_{v \in V(D)} d^{2}(v) \tag{24}
\end{equation*}
$$

By Lemma 2.3, we obtain
$P_{r}\left(e\left(V_{1}, V_{2}\right) \geq E\left(e\left(V_{1}, V_{2}\right)\right)+R\right) \leq \exp \left(-\frac{R^{2}}{2 L}\right) \leq e^{-1}$,
and

$$
\begin{equation*}
P_{r}\left(e\left(V_{2}, V_{1}\right) \geq E\left(e\left(V_{2}, V_{1}\right)\right)+R\right) \leq \exp \left(-\frac{R^{2}}{2 L}\right) \leq e^{-1} \tag{26}
\end{equation*}
$$

Hence, there is a bisection $V(D)=V_{1} \cup V_{2}$ of D such that

$$
\begin{equation*}
\max \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \leq \frac{m}{4}+\frac{n}{4}-\frac{|M|}{2}+R \tag{27}
\end{equation*}
$$

According to Lemma 4.1, we can easily obtain a fact: if $m<n+2|M|-4 R$, then D admits a bisection $V(D)=$ $V_{1} \cup V_{2}$ such that $\max \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\}<(n / 2)$.

Lemma 4.2. Let D be a digraph with n (even) vertices and $m \geq n$ arcs. Let G be the underlying graph of D and M be a maximum matching of G^{c}. For $0<\epsilon \leq 1$, if $\Delta \leq \epsilon^{2}(n / 128)$ and $m<(n+2|M| / 1+\epsilon)$, then $\max \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\}<$ $(n / 2)$.

Proof. Note that $R=2 \sqrt{\sum_{v \in V(D)} d^{2}(v)} \leq 2 \sqrt{\Delta \sum_{v \in V(D)} d(v)}$ $=(2 \sqrt{2 \Delta m} \leq \epsilon m / 4)$, since $m<n+2|M| / 1+\epsilon$, which implies $m<n+2|M|-\epsilon m<n+2|M|-4 R$. By the fact mentioned above, we have $\max \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\}<(n / 2)$.

Proof of Theorem 1.4. We may suppose that $|M|>(n / 2)-\sqrt{n}$. For otherwise, $|V(G)-V(M)| \geq 2 \sqrt{n}$ and $V(G)-V(M)$ is a clique. Hence,

$$
\begin{equation*}
e(D) \geq e(G) \geq e(G-V(M))=\frac{2 \sqrt{n}(2 \sqrt{n}-1)}{2}=2 n-\sqrt{n} . \tag{28}
\end{equation*}
$$

We are done. Since $|M|>(n / 2)-\sqrt{n}$, by Lemma 4.2 and $W E D C C$, we have $e(D) \geq(n+2|M| / 1+\epsilon) \geq(2 n-2 \sqrt{n} /$ $1+\epsilon)$.

5. Concluding Remarks and Open Problems

We in this paper consider extremum problems in directed graphs and give some lower bounds of arcs when a digraph satisfies DCC, EDCC, and WEDCC, respectively. Below, we give some comments on these results and propose some open problems.

For Theorem 1.1, $2 n-3$ or $2 n-2$ could be the exact value although we do not know which one to be. Considering the symmetry of this condition, we prefer to believe that it is an even number. Hence, we propose the following conjecture.

Conjecture 5.1. Let D be a digraph of order n. If D satisfies $D C C$, then $e(D) \geq 2 n-2$.

For Theorem 1.3, it is a corollary of Lemma 2.2. In fact, $E D C C$ is closely related to the minimum cut. Obviously, if a digraph with maximum indegree or outdegree $n-1$, then it must satisfy $W E D C C$. It is not clear to us what the exact value is when the maximum indegree and outdegree are smaller than $n-1$.

Problem 5.2. What is the minimum size of a digraph which satisfies EDCC?

Problem 5.3. Let D be a digraph D with $\Delta^{+}(D)<n-1$ and $\Delta^{-}(D)<n-1$. What is the minimum size of D when D satisfies WEDCC?

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] L. Csaba, R. J. Faudree, A. Gyárfás, J. Lehel, and R. H. Schelp, "Networks communicating for each pairing of terminals," Networks, vol. 22, no. 7, pp. 615-626, 1992.
[2] R. J. Faudree, "Properties in path-pairable graphs, New Zealand," Jurnal Matematika, vol. 21, pp. 91-106, 1992.
[3] R. J. Faudree, A. Gyárfás, and J. Lehel, "Minimal path pairable graphs," Congressus Numerantium, vol. 88, pp. 111-128, 1992.
[4] R. J. Faudree, A. Gyárfás, and J. Lehel, "Path-pairable graphs," J. Combin. Math. Comput., pp. 145-157, 1999.
[5] A. S. Jobson, A. E. Kézdy, and J. Lehel, "The minimum size of graphs satisfying cut conditions," Discrete Applied Mathematics, vol. 237, pp. 89-96, 2018.
[6] L. Lovász, Combinatorial Problems and Exercises, AMS Chelsea Publishing, Providence, RI, 2007.
[7] A. Lemple, S. Even, and I. Cederbaum, "An algorithm for planarity testing of graphs," in Proceedings of the Theory of Graphs: International Symposium, P. Rosenstiehl, Ed., Gordon \& Breach, New York, NY, USA, pp. 215-232, July 1966.
[8] G. Fan, B. Xu, X. Yu, and C. Zhou, "Upper bounds on minimum balanced bipartitions," Discrete Mathematics, vol. 312, no. 6, pp. 1077-1083, 2012.
[9] K. Azuma, "Weighted sums of certain dependent random variables," Tokuku Math. J.vol. 19, pp. 357-367, 1967.
[10] W. Hoeffding, "Probability inequalities for sums of bounded random variables," Journal of the American Statistical Association, vol. 58, no. 301, pp. 13-30, 1963.
[11] S. Janson, T. Łuczak, and A. Ruciński, Random Graphs, Wiley, New York, NY, USA, 2000.

