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A directed graph (digraph) D gf order  satisfies directed cut condition (DCC) if there are at least [S| arcs from any set SCV (D),
[S| < (n/2) to its complement S = V (D)/S. We show that a digraph D of even order n has at least 2n — 3 arcs if D satisfies DCC.

1. Introduction

A network is made up of nodes and links between nodes.
Suppose that a cluster of k hosts in one part of the network
wishes to communicate with k hosts at another part of the
network. Assume that any two communication paths can use
common intermediate nodes, but no two communication
paths between distinct pairs can share common links. Then,
there must exist at least k links leaving the cluster. A simple
graph can quite naturally represent this communication
network. Path-pairability is a notion that emerged from this
practical networking problem introduced by Csaba et al. [1]
and further studied by Faudree et al. [2-4]. A graph G of
even order n is path-pairable, if for any set of disjoint pairs
{spt;}, 1<i<(n/2), G has pairwise edge disjoint
(s;t;)-paths. A series of problems on path-pairable graphs
have been proposed, such as seeking diameter, maximum
order, and maximum degree. In [4], Faudree et al. con-
sidered the problem of investigating the minimum size of
path-pairable graph G of order n. It is trivial that
|E(G)lzn—1 as K, is path-pairable. They showed that
|E(G)| = (3n/2) —logn — O(1) for path-pairable graph G
with A(G)<n—1.

A graph on n vertices satisfies cut condition (CC), if for
any SCV(G), |S| < (n/2), there are at least |S| edges between
Sand S = V(G)/S. Obviously, a path-pairable graph satisfies
CC, but the inverse is not. Jobson et al. [5] proved that a
graph G of even order n with A(G) <n — 1, if G satisfies CC,
then |E (G)| = (3n/2 - 3), and this bound is tight. A graph of

even order n satisfies even cut condition (ECC), if for any
ScV(G), S| = (n/2), there are at least (#/2) edges between S
and S. Jobson et al. [5] showed that if G is a graph of order
n=0 (mod 4) with A(G)<n-1 and satisfies ECC, then
|E(G)| = (5n/4 - 2).

On account of the results of Jobson et al., we consider the
minimum size of the digraphs satisfying directed cut con-
dition in this paper. Let D be a digraph with vertex set V (D)
and arc set E (D). For any two disjoint sets A, BCV (D), let
e (A, B) denote the number of arcs from A to Bin D. We say
a digraph D on n vertices satisfies directed cut condition
(DCC), if (S,S) 28| for any SCV (D) with |S| < (n/2).

Let D, be a digraph with n vertices and V (D,) = {u} US,
where § is an independent set with # — 1 vertices in D,. In D,
u directs to each vertex of S and each vertex in S directs to u. Let
D, be a digraph with n (even) vertices and V (D,) =
{ul U{v} USUT, where S and T are two independent sets with
(n/2) — 1 vertices in D,. In D,, u directs to each vertex of S and
each vertex in S directs to v; v directs to each vertex of T and
each vertex in T directs to u; u directs to v and v directs to u. It
is easy to verify that D, and D, with size 2n — 2 arcs satisfy
DCC, which implies that the minimum size of digraphs sat-
isfying DCC is at most 2n — 2, whether the maximum degree is
2n — 2 or not. The following theorem gives that each digraph
with n (even) vertices satisfying DCC has at least 2n1 — 3 arcs.

Theorem 1.1. Let D be a digraph of even order n. If D
satisfies DCC, then D has at least 2n — 3 arcs.
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Remark 1.2. We do not know whether there is a digraph
which has 2n — 3 arcs and satisfy DCC. But by the digraphs
D, and D,, we know 2n —3 or 2n — 2 is the tight value.

Corresponding to the ECC of undirected graphs, we say
a digraph D of even order n satisfies evendirected
cut condition (EDCC), if e(S,S) > (n/2) for any SCV (D)
with [S] = (n/2).

Theorem 1.3. Let D be a digraph of even order n. If D
satisfies EDCC, then D has at least 2n — ~/n arcs.

We say a digraph D satisfies weakly even directed
cut condition (WEDCC), if max{e(S, S),e (S, S)} > (n/2) for
any SCV (D) with [S| = (n/2). Let D; be an orientation of
K., such that the apex directs to other vertices. Clearly, D,
has n—1 arcs and satisfies WEDCC. Hence, we limit the
maximum degree of digraphs. Using the probabilistic
method, we give the following result.

Theorem 1.4. Let D be a digraph of even order n. For any
0<e<l, if A(D)<€*(n/128) and D satisfies WEDCC, then
D has at least (2n—2+/n/1 +¢€) arcs.

The rest of this paper is organized as follows. In the next
section, we state some notations and lemmas used. In
Section 3, we give a proof of Theorem 1.1. In Section 4, we
prove Theorems 1.3 and 1.4. The final section contains some
concluding remarks.

2. Notations and Lemmas

We consider digraphs without loops and parallel arcs, but the
reverse parallel arcs are allowed. We first introduce some no-
tations and definitions. Let D be a digraph with vertex set V (D)
and arc set E(D), and let e (D) = |E (D)|. Given x, y € V(D),
we write x y for the arc directed from x to y. We call vertex y as
an outneighbour of x and x as an inneighbour of y. For any
vertex v € V (D), let N7, (v) be the outneighbours set of v in D,
and let d}, (v) = [N}, (v)| be the outdegree of v. Similarly, we
write N7, (v) as the in-neighbours set of v in D and d, (v) =
INT (v)| as the indegree of v. Let N (v) = Nj, (v) UNp, (v) be
the set of neighbours of v and dj, (v) =d}, (v) +dp (v) be
degree of v. Let A" (D), A™ (D), A(D), and &(D) be the
maximum outdegree, maximum indegree, maximum
degree, and minimum degree of D, respectively. When un-
derstood, the subscript may be dropped. For any digraph D, we
can associate a simple graph G on the same vertex set by
replacing each arc by an edge and deleting parallel edges if there
are. Such a simple graph G is called underlying graph of D.
We also call as digraph D k-connected if its underlying graph G
is k-connected. For a digraph D, we call (V,V,) a partition of
DifV,uV,=V(D)and V,nV, = @. Lete(V,,V,) denote
the number of arcs from V to V, and e(V;) be the number of
arcs such that two ends lie in V;, i = 1, 2. Let D[V;] denote the
induced subdigraph of V;.

Now, we state several theorems which will be used in the
following proofs. The first one is a well-known result on
partitioning due to Lévasz [6]: if G is a 2-connected graph of
order a, + a,, where a,, a, are positive integers, then G has a
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partition V(G) = A; UA, such that A; induces a connected
subgraph of order g;, i = 1,2. The following result intro-
duced in [7] is stronger than Lovasz’s, which plays a key role
in our proofs.

Lemma 2.1 (see [7]). If G is a 2-connected graph of order n,
then V (G) has a labeling v,,v,,...,v, such that for every
1<i<n, v; has a neighbour in both {v,...,v,;} and

Virts - Vb

A bisection of a graph G is a partition of V (G) =V, UV,
such that |V,| - |V, <1. We use G° to denote the com-
plement of a graph G. The next lemma on minimum bisection
due to Fan et al. [8] has strong correlation with our problems.

Lemma 2.2 (see [8]). Let M be a maximum matching in G
of a graph G which has n vertices and m edges. Then, G admits
a bisection V|, V, such thate(V,,V,) < (m + |n/2] — |M|)/2.

We introduce the well-known Azuma-Hoeffding in-
equality [9, 10] and use the version given in the book (see
Corollary 2.27) of Janson et al. [11].

Lemma 2.3 (see [11]). Let Z,,Z,,...,Z, be independent
random variables taking values in {1,2,...,k}, let
Z: =(Z,,2Z,,...,2,), and let f:{1,2,...,k} — N such
that |f(Y) - f(Y)|<c; forany Y,Y' € {1,2,...,k}" which
differ only in the ith coordinate. Then, for any z>0,

_ 2
Pr(f(Z2)2E(f(2) +2)< exp(zz%z))
i=1%i

(1)
2
Pr(f(Z)<E(f(2))-2)< eXP(zznzz)-

i=1"i

3. Proof of Theorem 1.1

Proof. Let D be a digraph of n (even) vertices satisfying
DCC. Suppose on the contrary that e (D) <2n — 3. We may
suppose that D is not 2-connected. For otherwise, by
Lévasz’s theorem, D has a bisection V', V, such that D[V ]
and D[V, ] induce two connected subdigraphs, respectively.
By DCC, e(V,,V,) > (n/2) and e(V,,V,) = (n/2). So,

e(D)>e(V))+e(Vy)+e(V,V,) +e(V,, V)

» " (2)
22><<——1>+2><—22n—2,
2 2

a contradiction.

Since D is not 2-connected, D has cut vertices. Let u be a
cut vertex of D and C,,C,,...,C, (k=2) be connected
components of D — u. Then, by DCC, we have a simple fact: for
any C; with |C;| < (n/2), and for any v € V(C;), vu € E(D).

We first claim that d~ (u)#n—1. Suppose for the
contradiction that d~ (u) = n— 1, if there exists a compo-
nent, say C;, with order larger than #/2, then
e(V(D)\V(C)),V(C)) =e(u,V(C,))=n-|C,| by DCC.
Thus,
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M=

e(D)=e(C))+ ) e(C)+e(V(D),V(C)),V(C))+d (w)

[N

>(lc)|-1)+(n-|C)|) +n-1=2n-2,
(3)

a contradiction. So, we suppose that |C;|<n/2 (1<i<k).
Without loss of generality, let |Cy|=max{|C,|,|C,l,
.. |Cl}. We split {C,,C,,...,C_;} = A UA, such that
|A,| and |A,| are as close as possible. Then, we partition
V(C,) —v into two sets B;, B, such that |A;|+|B;| =
(n/2) — 1, where v is an arbitrary vertex of Cy. Let E; = A,
UBy, E, = A,UB,. Let a; =e(u,E,), a, =e(u,E,), b, =e
(By,B,), b, =e(B,,By), ¢; =e(By,v), and c, =e(B,,v).
Define

0, E(D),
_1 uv € E(D) @)

1, otherwise.

By DCC, for bisections V(D) = (E;Uu,E,Uv) and
V(D) = (E,Uu, E; Uv), we have

e(E,Uu, E,Uv)
=e(u,E,)+e(B,B,) +e(B,v)+d (5)
=a,+b +¢ +d2§.

Similarly,

e(E,Uu, E;Uv)
=e(u,E,) +e(B,,B;) +e(B,,v)+d (6)
=a, +b2+c2+dzg.

Adding up (5) and (6), we obtain that

a+a,+b +b,+c,+c,2n-2. (7)

Thus,e(D)>d™ (u) +a; +a,+ by + by +¢; + ¢, 22n -3,
a contradiction.

Now, we suppose that d~ (1) <n — 1. Then, there is exact
one component of D — u which has order larger than (n/2).
We call such a subdigraph the large component at u and
denote it by L(u). We claim that all cut vertices of D are
contained in one block; we call it central block of D. Assume
it is not true. Then, there must exist cut vertices x,, x,, and
x; and blocks By, B,, B;, and B, such that x; € B;N B;,, for
i=1,2,3. B, and B, belong to different components of
D — x,, and then there must exist a block which does not
belong to the large component at x,, say B,. That is to say,
each vertex of the component containing B, directs to x, by
the fact we mentioned above. Then, removing the cut vertex
x, cannot separate B, and B,, a contradiction.

Let B be the central block of D (if D has only one cut
vertex u, then let B: = L(u) + u.). We define a weight for
each vertex x of B as follows:

{ [V (D) - V(L(x))l,
w(x) =

, otherwise.

if x is a cut vertex,

(8)

By the definition of w (x), it is easy to see w (x) < (n/2) for
each x € B.

Since B is a block of D, by Lemma 2.1, B has a labeling
Vi, Vy, ..., Vg such that for each 1<i<|B|, v; has a neigh-
bour in both sets {v,,...,v,;} and {vi b ,V|B|}. Choose
the smallest number k such that w, = Zi;fw (v;) < (n/2) and
Zf;lw(vi) =w; + w(vy) > (n/2). Let

W, = U{V(B')|B' # Bisablockand B' n{v,,..., v} + T}.

(9)

According to the definition of weight value of vertices of
B, we can easily find that [W,| = w,.

We claim that w, = |[W,| < (n/2). For otherwise, parti-
tion V (D) into two sets, W, and V (D)~W,, which induce
two connected subdigraphs by Lemma 2.1. Thus, by DCC,
we have

e(D)=e(W,)+e(V(D\W,) +e(W,V(D),W,)+e(V(D),W,;,W,),

n n
22><<——1>+2><—22n—2,
2 2

a contradiction.

We have w(v,) =2 as w; < (n/2) and w; + w(v;) >n/2.
That is to say, v, is a cut vertex of D. Let
W,=uU {V(B')lB' # Bisablockand B' N {ka, ceo v|B|}} +D.

(11)

Then, W,#@ as w; +w(v,)<n. Let W,=V(D)/
(W, UW,), then blocks containing v, are contained in W,.
Let v, = u and v be an arbitrary vertex of W~{u}. Partition

(10)

Wo/{u,v} into two sets W), W32 such that
W1+ [W,] = n/2 - 1, then [W2| + [W,| = n/2 - 1.

Let e(u,W,UW})=qa;, e, WoUW?) =0, let
eW,UWhu)=p,, eW,uWiu)=p8,; let e(W,u
WLW,UW2) = e(WLW2) =y, e(W,UW2, W, UW))
=e(W3,W() =y, let e(v, W) = §,, e(v, W) = §,; and let
e(W),v) =0, e(W3,v) =0,

For bisections V(D) = (W, UW}Uu, W, UW3Uv) and
V(D) = (W, UW}Uv,W,UWZUu), by DCC, we have
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e(W, UW,Uu, W,UW,Uv)
= e(W, UW, W, UW;) +e(W, UWg,v) +e(u, W,UW}) +d
=y, +6, +a2+dzg,
e(W,UWsuv, W, UW Uu)
= e(W,UW5, W, UW) +e(W,UW,u) +e(v, W, UW;) + 1 (12)
=y2+/32+81+lzg,
e(W, UW,Uv,W,UWsUu)
=e(W, UW, W,UW;) +e(W, UWg,u) +e(v, W,UW}) + 1

n
:y1+[31+82+125,

and

e(W,UWgUu, W, UWgUv)
= e(W,UWg, W, UW,) +e(W, UWE,v) +e(u, W, UW,) +d (13)
=y, +0,+a +dzg.

S —lwl 2
Adding up (12) and (13), we obtain that e (W V(D). Wo) > |W0l lWO' +|W0| t (13)

Note that the subdigraphs induced by W, fori = 1,2 are
(14)  connected and each vertex of W~{u} directs to u. Thus, by
>2n—2-2d—(y; +9,). (14), we have

ata,+ B+ Y+ 6, +0,+0,+0,

Recall that w (v) < (1/2), then [W | < (n/2). Considering
the partition V(D) = (W, V (D)~W,), by DCC, we have

2 .
e(D) > (JW,[ = 1) +([W,| = 1) +([Wo| - 1) + z(ai +(/3,. _|w;)|) Fy40+ 5,.) +d
i=1
>(n-3)+2n-2-2d—(y, +y,) —(|Wo|-2) +d (16)

>2n-3+(n—d—|W| -y, -,)

If Wyl+vy, +y,<n-1, then e(D)>2n-3, we are
done. So, we suppose that |W| + y; + y, > n. Thus,
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e(D) > (|W1| - 1) +(|W2| - 1) +e(Wo, {ubu) +e(u, W, UW,) + 9, +y,
2(|W1|_1)+(|Wzl_1)+(|W0|_1)+|W0|+Y1+Y2 (17)
2n-3+n=2n-3,
a contradiction too. P,(ecE(V,,V,)) =P, (ueV,veV,)
(21)

4. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let D be a digraph with n vertices
which satisfies EDCC, and let G be the underlying graph of
D and M be the maximum matching of G°. We need to show
that e(D)>2n- +/n. We may suppose that |M|=> (n-
2+/n + 1)/2. For otherwise, we have w (G) = n — 2|M| >2+/n.
Hence, e(D) >e(G) = (2+/n) (2+/n — 1)/2 = 2n — \/n, we are
done.

Suppose on the contrary that e(D) < 2n — +/n. Then, by
Lemma 2.2,D admits a bisection V(D) = V, UV, such that

(e(D) + (n/2) —|M])
4

2=+ (n12) -

4
(”)
<| =z )
2
a contradiction with EDCC.

Now, we prove Theorem 1.4 using the probabilistic
method.

e(V,V,)<

(n=2vA+ D) (g

Lemma 4.1. Let D be a digraph with n (even) vertices and m
arcs, G be the underlying graph of D, and M be a maximum

matching of G¢, then D admits a bisection V(D) =V, UV,
such that
(m/4 +n/4)
max{e(V,,V,),e(V,,V,)}<——— +R, (19)
{ ( 1 2) ( 2 1)} (—|M|/2)

where R = 24[Y ey (pyd? ().

Proof. Let M = {ulvl,uzvz, . .,u(|M|/2)v(|M|/2)}. We know
G-V (M) is a clique, as M is a maximum matching of G°.
Let w1 Vimzen)ps - - - > Y(w2)V (m2) D€ @ perfect matching
of G-V (M). Partition V(D) into (n/2) disjoint pairs
fup, vib {ug, v, {u(n/Z)’V(n/Z)}' Let =(Z,Zys ...,
Z (n2)) be a random, independent, and uniform 2-coloring
(with color 1 and 2) of {ul, Upsooos u(m)}, and color each v;
with 3 - Z; for 1<i< (n/2). For i = 1,2, let

V,; ={v € V(D)|v was colored i}. (20)

Thus, V(D) = V, UV, is a bisection of D.

Now, we bound E(e(V,,V,)). For each arc
e =uv € E(D), let I, be the indicator random variable of the
evente € E(V,,V,). If the endpoints u, v of e were paired in
the beginning, ie, {u,v}={u;,v;} for some (|M]/2)
<i< (n/2), then P,(e € E(V,,V,)) = (1/2). Otherwise,

1
=P, (e V)P (vevy) =(})
Obviously, there are at most 2 x ((n/2) — |M|) arcs which
were paired in the beginning. By linearity of expectation, we
have

(n 2|M|) (m=-n+2/M|)
E(e(V,Vy)= Y E( > .
ecE(D)
~m n M|
T4 04 27
(22)

By symmetry, we also have E(e(V,,V,))< (m/4)
+(n/4) — (IM]/2). Note that changing the color of any vertex
u; for 1<i< (n/2) cannot affect {e(V,V,),e(V,,V,)} by
more than d (u;) + d(v;). Define

(n/2)

L= Z(d

Then, we have

) +d(v)% (23)

(n/2)

L2 ) (d(w)+d*(v))=2 ) d@. (24)

veV (D)

By Lemma 2.3, we obtain

2
P,(e(V,,V,)2E(e(V},V,)) +R) < exp(—%) <e’', (25)

and

2
P.(e(V,V,)2E(e(V,, V) +R) Sexp(—fL) <e ' (26)

Hence, there is a bisection V(D) =V, UV, of D such
that
ax{e(V,V,),e(V, V)t < 2t 7 " +R (27)
According to Lemma 4.1, we can easily obtain a fact: if
m<n+2|M|—-4R, then D admits a bisection V(D) =
VUV, such that max{e(V,,V,),e(V,,V,)} < (n/2).

Lemma 4.2. Let D be a digraph with n (even) vertices and
m>n arcs. Let G be the underlying graph of D and M be a
maximum matching of G°. For 0<e< 1, if A<€* (n/128) and
m< (n+2[M|/1+¢€), then max{e(V,,V,),e(V,, V)<
(n/2).



Proof. Note that R =24/Y . (pyd? (v) gz\/AzVGV(D)d(v)
= (2V2Am <em/4), sincem <n + 2|M|/1 + €, which implies
m<n+2|M|-em<n+2|M|-4R. By the fact mentioned
above, we have max{e(V,V,),e(V,,V})} < (n/2).

Proof of Theorem 1.4. We may suppose that
M| > (n/2) — \/n. For otherwise, |V (G) — V (M)| = 2+/n and
V(G) - V(M) is a clique. Hence,

2yA(2yA - 1) _
RO

e(D)ze(G)=2e(G-V(M)) = 2n - +/n.

(28)

We are done. Since |[M| > (n/2) — +/n, by Lemma 4.2 and
WEDCC, we have e(D)> (n+2|M|/1+¢€)> (2n-2+/n/
1+e).

5. Concluding Remarks and Open Problems

We in this paper consider extremum problems in directed
graphs and give some lower bounds of arcs when a digraph
satisfies DCC, EDCC, and W EDCC, respectively. Below, we
give some comments on these results and propose some
open problems.

For Theorem 1.1, 2n—3 or 2n—2 could be the exact
value although we do not know which one to be. Consid-
ering the symmetry of this condition, we prefer to believe
that it is an even number. Hence, we propose the following
conjecture.

Conjecture 5.1. Let D be a digraph of order n. If D satisfies
DCC, then e(D)>2n - 2.

For Theorem 1.3, it is a corollary of Lemma 2.2. In fact,
EDCC is closely related to the minimum cut. Obviously, if a
digraph with maximum indegree or outdegree n — 1, then it
must satisfy WEDCC. It is not clear to us what the exact
value is when the maximum indegree and outdegree are
smaller than n— 1.

Problem 5.2. What is the minimum size of a digraph which
satisfies EDCC?

Problem 5.3. Let D be a digraph D with A" (D) <n -1 and
A (D) <n—1. What is the minimum size of D when D
satisfies WEDCC?
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