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 e use of extreme values of the auxiliary variable is sometimes more bene�cial to get the high e�ciency of the estimators, and the
study variable can have a correlation with the rank of the decently correlated auxiliary variable. As a result, it can be regarded as
additional data for the study variable that can be used to improve the estimators’ e�ciency. When the knowledge of the minimum
and maximum values, as well as the rankings of the auxiliary variable, is known, various better estimators for calculating the �nite
population mean of the research variable based on extreme values under simple random sampling are proposed in this paper.  e
suggested estimators’ bias and mean squared error expressions are derived using �rst-order approximation.  e recommended
estimators have been compared mathematically to the current estimators.  e suggested estimators are more exact in terms of
relative e�ciency than the other estimators addressed here, as shown by simulation and real datasets used to demonstrate the
estimation of a limited population mean based on extreme values.

1. Introduction

 e purpose of survey sampling is to utilize the maximum
amount of information about the characteristics of interest.
Many �elds of study require estimation of the �nite pop-
ulation mean for a variable of interest. For example, average
wheat production per acre, average income of households,
mean weight of meat producing animals, etc.  e mean per
unit estimator is a base line estimator to estimate the �nite
population mean.

Unusual observations can occur in sample survey data.
 e mean estimator is sensitive to very large and/or small
values if included in the sample. It can provide biased results
and, ultimately, tempted to delete the sample data. However,
generally, when there are extreme values in the data, the
e�ciency of classical estimators declines. (for more details,
see [1] and the reference cited therein).

 e use of supplementary information to enhance the
precision of an estimator is a typical strategy in survey
sampling. To improve their relative e�ciency, the ratio,
regression, and product-type estimators all require sup-
plemental information on one or more auxiliary variables
in addition to the information on the study variable. For
example, when estimating the total household income, the
household members and total expenditure may be used as
two auxiliary variables. A signi�cant amount of research
work has been done to develop new and improved esti-
mators of the population parameters, which include the
population mean, total, CDF, median, etc. (for more
details, see [2–9] and the references cited therein). To the
best of our knowledge, [9–13] have done some recent work
on the estimation of �nite population mean using aux-
iliary information. However, because classical estimators
are sensitive to extreme values, the outlier problem, which
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is the presence of extreme values in data, reduces effi-
ciency (see [1] and the reference cited therein).

When there are extreme values in the data, the effi-
ciency of a classical ratio/product-type estimator de-
clines in terms of relative efficiency (RE). Similarly, the
regression-type estimators do not perform well in the
presence of outliers as it is a well-known phenomenon
that ordinary least square (OLS) estimators are sensitive
in the presence of outliers. However, extreme values, if
known, can be retained in the data and used as auxiliary
information to increase the precision of the estimate (for
more details, see [6, 9, 14–17] and the references cited
therein, to name a few).

In this study, we used extreme values of the auxiliary
variable as auxiliary information and retained it in the data
and suggested improved ratio/product-type estimators. On
the lines of [17, 18] and 20 in simple random sampling (SRS),
we introduced an improved class of estimators for predicting
the finite population mean based on extreme values, using
the lowest and maximum values of the auxiliary variable as
auxiliary information.

)e rest of the study is as follows: in Section 2, the
methodology and notation of the study are described. In
Section 3, existing estimators are discussed. In Section 4, we
briefly discussed our proposed estimators. Section 5 and
Section 6 contain the mathematical and numerical com-
parison. Finally, in Section 7, we discussed the main findings
and concluded the study.

2. Methodology and Notation

Let us consider a finite population δ � (δ1, δ2, . . . , δN) of
size N. )e values of the study variable Y and the auxiliary
variable X, respectively, are yi and xi. Let ri be the values
of the auxiliary variable R’s corresponding rankings for
the i th (i � 1, 2, 3, . . . , N) units. We use SRS without
replacement to choose a sample of size n units from the
population δ. Let Y � 􏽐

N
i�1 yi/N, X � 􏽐

N
i�1 xi/N, and R �

􏽐
N
i�1 Ri/N be the population mean of study variable,

auxiliary variable and the ranks of the auxiliary variables,
respectively. It is further assumed that
S2y � 􏽐

N
i�1 (yi − Y)2/N − 1, S2x � 􏽐

N
i�1 (xi − X)2/N − 1, and

S2r � 􏽐
N
i�1 (ri − R)2/N − 1 be the corresponding population

variances of Y, X and the ranks of the auxiliary variable R,
respectively.

Let Cy � Sy/Y, Cx � Sx/X, and Cr � Sr/R be the pop-
ulation coefficients of variation of the study variable, aux-
iliary variable, and the ranks of the auxiliary variable,
respectively. ρyx, ρyr, and ρxr are the population correlation
coefficients between the subscripts.

Let y � 􏽐
n
i�1 yi/n, _x � 􏽐

n
i�1 xi/n, and r � 􏽐

n
i�1 ri/n be the

sample means and 􏽢S
2
y � 􏽐

n
i�1 (yi − y)2/n − 1,

􏽢S
2
x � 􏽐

n
i�1 (xi − x)2/n − 1, and 􏽢S

2
r � 􏽐

n
i�1 (ri − r)2/n − 1 be

the sample variance of the study variable, auxiliary variable,
and the ranks of the auxiliary variable, respectively.

We may use the following relative error terms to de-
termine the biases and MSEs of the existing and proposed
class of Y estimators. Let

ξ0 �
y − Y

Y
,

ξ1 �
x − X

X
,

ξ2 �
r − R

R
,

(1)

such that E(ξ0) � E(ξ1) � E(ξ2) � 0.

3. Existing Estimator

In this section, we define the existing estimators of finite
population means, which are to be compared with our
proposed estimator.

3.1. Usual Unbiased Estimator. )e unbiased estimator of a
finite population mean with variance that is most commonly
used is

y �
1
n

􏽘

n

i�1
yi, (2)

Var(y) � θY
2
C
2
y, (3)

respectively.

3.2. Cochran’s RatioEstimator. Cochran [2] recommended a
ratio type estimator by first estimating the finite population
mean in SRS, which is obtained by employing auxiliary
information.

yR � y
X

x
􏼠 􏼡. (4)

Mathematical expression upto the first-order of ap-
proximation for the bias and MSE of yR is given by

Bias yR( 􏼁 ≈ θY C
2
x − ρyxCyCx􏼐 􏼑, (5)

MSE yR( 􏼁 ≈ θY
2

C
2
y + C

2
x − 2ρyxCyCx􏼐 􏼑, (6)

respectively.

3.3. Classical Regression Estimator. )e classical regression
estimator for Y under SRS is given by

ylr � y − byx(x − X), (7)

where byx � Syx/S2x is the regression coefficient between yi

and xi for i � 1, 2, . . . , n. )e MSE of ylr upto the first order
of approximation is given as under

MSE ylr( 􏼁 ≈ θS
2
y 1 − ρ2yx􏼐 􏼑. (8)

3.4. Mohanty and Sahoo Estimator. On the similar lines of
[17, 18], as auxiliary information, we gave two finite
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population mean estimators based on the minimum and
maximum values of the auxiliary variable as follows:

yt1 � y
V

]
􏼠 􏼡,

yt2 � y
W

w
􏼠 􏼡,

(9)

respectively. Where ] � (xi + xM/xM + xm) and
w � (xi + xM/xM + xm). Here xm and xM are the minimum
and maximum values, respectively.

)e expression for bias and MSE of yt1 and yt2 are given
by

Bias yt1( 􏼁 ≈ θY t
2
1C

2
x − t1Cyx􏼐 􏼑, (10)

MSE yt1( 􏼁 ≈ θY
2

C
2
y − 2t1ρyxCyCx + t

2
1C

2
x􏼐 􏼑, (11)

Bias yt2( 􏼁 ≈ θY t
2
2C

2
x − t2Cyx􏼐 􏼑, (12)

MSE yt2( 􏼁 ≈ θY
2

C
2
y − 2t2ρyxCyCx + t

2
2C

2
x􏼐 􏼑, (13)

respectively. Where t1 � X/(X + XM) and t2 � X/(X + XM)

3.5. Walia et al. Estimator. Walia et al. [9] presented some
estimators based on known knowledge about the auxiliary
variable’s minimum and maximum values are provided. )e
following is the transformation:

Z � x +
XM

Xm

􏼠 􏼡. (14)

)e estimators of the finite population mean are listed as
follows Y:

yhm1 � y
Z

z
􏼠 􏼡,

yhm2 � y
Z + Cz

z + Cz

􏼠 􏼡,

(15)

respectively. Where Cz � Sz/Z � Sx/(X + (XM + Xm)) and
S2x � S2z.

)e bias andMSE of the above-modified estimators yhm1
and yhm2 are calculated as follows:

Bias yhm1( 􏼁 ≈ θY C
2
1C

2
x − C1ρyxCyCx􏼐 􏼑, (16)

MSE yhm1( 􏼁 ≈ θY
2

C
2
y − 2C1ρyxCyCx + C

2
1C

2
x􏼐 􏼑, (17)

Bias yhm2( 􏼁 ≈ θY C
2
2C

2
x − C2ρyxCyCx􏼐 􏼑, (18)

MSE yhm2( 􏼁 ≈ θY
2

C
2
y − 2C2ρyxCyCx + C

2
2C

2
x􏼐 􏼑, (19)

respectively. Where C1 � X/(X + (XM)/Xm) and C2 � X(X

+ (XM/Xm)/((X + (XM/Xm))2 + Sx)).

4. Proposed Estimator

In this section, we develop two auxiliary information-based
(AIB) classes of estimators, say ratio and exponential ratio,
under the SRS technique, for calculating the mean of a finite
population Y.

4.1. First Proposed Class of Estimator. We present a better
class of estimators for estimating Y under SRS utilizing
known information about the auxiliary variable X’s lowest
and maximum values, as motivated by [15]. )e following is
the improved class of estimator:

yDi � k1y
X

x
􏼠 􏼡

α1
+ k2y

X

x
􏼠 􏼡

α2
􏼢 􏼣exp

aU + b1( 􏼁 − au + b1( 􏼁

aU + b1( 􏼁 + au + b1( 􏼁
􏼢 􏼣,

(20)

where k1 and k2 are unknown constants whose values must
be determined in order to calculate the bias and MSE of the
yDi minimum and u � x + (XM − Xm/XM + Xm). Further,
a � 1, b1 � XM − Xm, b2 � RM − Rm, and α1, α2 be the scalar
quantities that may assume (0, −1, 1) values. In addition, the
sub-cases of the yDi are summarized in appendix (given in
Table 1).

In order to derive approximate mathematical expres-
sions for the bias andMSE of yDi, we can write y � Y(1 + ξ0)
and x � X(1 + ξ1). Let us express the right-hand side (RHS)
of (20) in terms of ξ’s to get

yDi � k1Y 1 + ξ0( 􏼁 1 + ξ1( 􏼁
−α1 + k2 1 + ξ1( 􏼁

−α2􏼂 􏼃

· exp
−g1ξ1
2

1 +
g1ξ1
2

􏼠 􏼡

− 1
⎡⎣ ⎤⎦,

(21)

where g1 � aX/(aX + (XM − Xm/XM + Xm) + b1). Let us
expand the RHS of equation (21) and retain terms up to 2nd
power of ξ’s, we have

yDi − Y ≈ − Y + k1Y 1 + ξ0 − ξ1 α1 +
g1

2
􏼒 􏼓 + ξ21

α1g1

2
+
3g

2
1

8
+
α1 α1 + 1( 􏼁

2
􏼠 􏼡 − ξ0ξ1 α1 +

g1

2
􏼒 􏼓􏼢 􏼣

+ k2 1 − ξ1 α2 +
g1

2
􏼒 􏼓 + ξ21

α2g1

2
+
3g

2
1

8
+
α2 α2 + 1( 􏼁

2
􏼠 􏼡􏼢 􏼣.

(22)
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Let us take expectation on both sides of equation (22),
which is provided by, to get the bias of yDi up to the first
order of approximation

Bias yDi( 􏼁 ≈ − Y + k1YD + k2G, (23)

where

D � 1 + θC
2
x

α1g1

2
+
3g

2
1

8
+
α1 α1 + 1( 􏼁

2
􏼠 􏼡 − θCyx α1 +

g1

2
􏼒 􏼓􏼢 􏼣,

G � 1 + θC
2
x

α2g1

2
+
3g

2
1

8
+
α2 α2 + 1( 􏼁

2
􏼠 􏼡􏼢 􏼣.

(24)

Taking square on both sides of equation (22) and then
taking its expectation to get the MSE of yDi under first order
of approximation, which is given by

MSE yDi( 􏼁 ≈ Y
2

+ Y
2
k
2
1A + k

2
2B − 2Y

2
k1D

− 2Y
2
k2G + 2Yk1k2F,

(25)

where

A � 1 + θ C
2
y + C

2
x α1 +

g1

2
􏼒 􏼓

2
+ α1g1 +

3g
2
1

8
+ α1 α1 + 1( 􏼁􏼠 􏼡􏼨 􏼩 − 4Cyx α1 +

g1

2
􏼒 􏼓􏼨 􏼩􏼢 􏼣,

B � 1 + θC
2
x α2 +

g1

2
􏼒 􏼓

2
+ α2g1 +

3g
2
1

8
+ α2 α2 + 1( 􏼁􏼠 􏼡􏼨 􏼩􏼢 􏼣,

F �

1 + θ C
2
x α1 +

g1

2
􏼒 􏼓 α2 +

g1

2
􏼒 􏼓 + α1g1 +

3g
2
1

8
+ α1 α1 + 1( 􏼁􏼠 􏼡 + α2g1 +

3g
2
1

8
+ α2 α2 + 1( 􏼁􏼠 􏼡􏼨 􏼩􏼨 􏼩1 + θ −Cyx α1 + α2 + g1( 􏼁􏽮 􏽯

+θ C
2
x α1 +

g1

2
􏼒 􏼓 α2 +

g1

2
􏼒 􏼓 + α1g1 +

3g
2
1

8
+ α1 α1 + 1( 􏼁􏼠 􏼡 + α2g1 +

3g
2
1

8
+ α2 α2 + 1( 􏼁􏼠 􏼡􏼨 􏼩􏼨 􏼩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

By reducing equation (25) with regard to k1 and k2, the
optimum values of k1 and k2 are determined

k1(opt) �
BD − FG
AB − F

2 ,

k2(opt) �
Y(AG − DF)

AB − F
2 .

(27)

Substituting the optimum values of k1 and k2 in equa-
tions (23) and (25), we get the minimum bias and MSE of
yDi, respectively

Bias yDi( 􏼁min ≈ − Y 1 −
AB2

+ BD2
− 2DFG􏼐 􏼑

AB − F
2

⎡⎣ ⎤⎦, (28)

MSE yDi( 􏼁min ≈ Y
2 1 −

AB2
+ BD2

− 2DFG􏼐 􏼑

AB − F
2

⎡⎣ ⎤⎦. (29)

4.2. Second Proposed Estimator. On the similar lines of 6, we
propose another improved class of exponential-type esti-
mator for estimating Y using supplementary information in

Table 1: Subcases of the proposed estimator I.

Estimator α1 α2
yD1 � [k1y + k2(x/X)]L 0 −1
yD2 � [k1y(x/X) + k2]L −1 0
yD3 � [k1y + k2(X/x)]L 0 1
yD4 � [k1y(X/x) + k2]L 1 0
yD5 � [k1y(X/x) + k2(x/X)]L 1 −1
yD6 � [k1y(x/X) + k2(X/x)]L −1 1
yD7 � [k1y(X/x) + k2(X/x)]L 1 1
yD8 � [k1y(X/x) + k2(x/X)]L −1 −1
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terms of minimum and the maximum values of X under SRS
scheme. )e improved estimators are given by

yDe � yexp k3
aU + b1( 􏼁 − au + b1( 􏼁

aU + b1( 􏼁 + au + b1( 􏼁
􏼨 􏼩􏼢 􏼣exp k4

aR + b2( 􏼁 − ar + b2( 􏼁

aR + b2( 􏼁 + ar + b2( 􏼁
􏼨 􏼩􏼢 􏼣, (30)

where k3 and k4 are unknown constants whose values must
be chosen so that the biases and MSE of yDi are as small as
possible and where k3 and k4 are unknown constants whose
values must be set so that the biases and MSE of yDi are as
little as feasible, and u � x + (XM − Xm/XM + Xm) and

U � X + (XM − Xm/XM + Xm). Further, a � 1, b1 � XM−

Xm, and b2 � RM − Rm be the known values.
Let us express the RHS of equation (30) in terms of ξ’s to

acquire the following approximate mathematical equations
for the bias and MSE of yDe as

yDe � Y 1 + ξ0( 􏼁exp k3
−g1ξ1
2

1 +
g1ξ1
2

􏼠 􏼡

−1⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦exp k4

−g2ξ2
2

1 +
g2ξ2
2

􏼠 􏼡

−1⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦, (31)

where g2 � aR/(aR + (RM − Rm/RM + Rm) + b2). Using the
Taylor series’ first-order approximation, we have

yDe − Y ≈ ξ0 −
k3g1ξ1

2
−

k4g2ξ2
2

+
k3g

2
1

4
+

k
2
3g

2
1

8
􏼠 􏼡ξ21 +

k4g
2
2

4
+

k
2
4g

2
2

8
􏼠 􏼡ξ22

k4g
2
2

4
+

k
2
4g

2
2

8
􏼠 􏼡ξ22 −

k3g1ξ0ξ1
2

−
k4g2ξ0ξ2

2
+

k3k4g1g2ξ1ξ2
4

􏼢 􏼣.

(32)

Simplifying and applying expectation on equation (32),
we have the final expression of bias of yDe, given by

Bias yDe( 􏼁 ≈ θY
k3g

2
1

4
+
α21g

2
1

8
􏼠 􏼡 C

2
x +

k4g
2
2

4
+
α22g

2
2

8
􏼠 􏼡 C

2
r −

k3g1

2
Cyx −

k4g2

2
Cyr +

k3k4g1g2

2
Cxr􏼢 􏼣. (33)

By squaring and applying expectation on both sides of
equation (32), we obtain the MSE up to first-order of ap-
proximation as

MSE yDe( 􏼁 ≈ θY
2

C
2
y +

k3g
2
1

4
C
2
x +

k4g
2
2

4
C
2
r − k3g1Cyx − k4g2Cyr +

k3k4g1g2

2
Cxr􏼢 􏼣. (34)

)e k3 and k4 optimum values are derived byminimizing
the equation (34), respectively, given by

k3(opt) �
2Cy

g1Cx

ρyx − ρyrρxr

1 − ρ2xr

􏼢 􏼣,

k4(opt) �
2Cy

g2Cr

ρyr − ρyxρxr

1 − ρ2xr

􏼢 􏼣.

(35)

We get the minimal bias andMSE of yDe substituting the
best values for k3 and k3 in equations (33) and (34),
respectively.

Bias yDe( 􏼁min ≈ θYCy

g1Cx ρyx − ρyrρxr􏼐 􏼑 + g2Cr ρyr − ρyxρxr􏼐 􏼑

1 − ρ2xr

− R
2
y,xr

⎡⎣ ⎤⎦,

(36)
where R2

y,xr � (ρ2yx + ρ2xr − 2ρyxρxrρyr)/(1 − ρ2yx) is the co-
efficient of multiple determination of Y on X and R.

Mathematical Problems in Engineering 5



MSE yDe( 􏼁min ≈ θY
2
C
2
y 1 − R

2
y,xr􏼐 􏼑. (37)

5. Mathematical Comparison

We compared the proposed estimators mathematically to
the existing estimator in Section 3 in this section.

5.1. First Proposed Estimator

Condition 1. From equations (2) and (28)

Var(y)>MSE yDi( 􏼁min if

only θC
2
y +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(38)

Condition 2. From equations (5) and (28)

MSE yR( 􏼁>MSE yDi( 􏼁min if ,

only θ C
2
y + C

2
x − 2Cxy􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(39)

Condition 3. From equations (7) and (28)

MSE ylr( 􏼁min>MSE yDi( 􏼁min if ,

only θC
2
y 1 − ρ2yx􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(40)

Condition 4. From equations (11) and (28)

MSE yt1( 􏼁>MSE yDi( 􏼁min if

only θ C
2
y + t

2
1C

2
x − 2t1Cyx􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(41)

Condition 5. From equations (13) and (28)

MSE yt2( 􏼁>MSE yDi( 􏼁min if

only θ C
2
y + t

2
2C

2
x − 2t2Cyx􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(42)

Condition 6. From equations (18) and (28)

MSE yhm1( 􏼁>MSE yDi( 􏼁min if ,

only θ C
2
y + C

2
1C

2
x − 2C1Cyx􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(43)

Condition 7. From equations (20) and (28)

MSE yhm2( 􏼁>MSE yDi( 􏼁min if ,

only θ C
2
y + C

2
2C

2
x − 2C2Cyx􏼐 􏼑 +

BD2
+ AG2

− 2DFG
AB − F

2􏼠 􏼡> 1.

(44)

5.2. Second Proposed Estimator

Condition 8. From equations (2) and (36)

Var(y)>MSE yDi( 􏼁min if ,

onlyR
2
y,xr > 0.

(45)

Condition 9. From equations (5) and (36)

MSE yR( 􏼁>MSE yDe( 􏼁min if ,

onlyR
2
y,xr + C

2
x − 2Cyx > 1.

(46)

Condition 10. From equations (7) and (36)

MSE ylr( 􏼁min>MSE yDe( 􏼁min if ,

onlyR
2
y,xr − ρ2yx > 0.

(47)

Condition 11. From equations (11) and (36)

MSE yt1( 􏼁>MSE yDe( 􏼁min if ,

only C
2
yR

2
y,xr + t

2
1C

2
x − 2t1Cyx > 0.

(48)

Condition 12. From equations (13) and (36)

MSE yt2( 􏼁>MSE yDe( 􏼁min if ,

only C
2
yR

2
y,xr + t

2
2C

2
x − 2t2Cyx > 0.

(49)

Condition 13. From equations (18) and (36)

MSE yhm1( 􏼁>MSE yDe( 􏼁min if ,

onlyC
2
yR

2
y,xr + C

2
1C

2
x − 2ρyxC1CyCx > 0.

(50)

Condition 14. From equations (20) and (36)

MSE yhm2( 􏼁>MSE yDe( 􏼁min if ,

onlyC
2
yR

2
y,xr + C

2
2C

2
x − 2C2Cyx > 0.

(51)

6. Numerical Comparison

In this section, simulated and real datasets are considered,
and the percentage relative efficiencies (PREs) of the pro-
posed estimator are computed.
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6.1. Study of Simulation. We undertake simulation research
using the notion from [19] to compare the performance of
our recommended estimators to the comparable current
estimators. We used the following distributions to construct
six datasets of size N(� 10, 000) for the auxiliary variable X:

Population 1: X ∼ Exponential(λ � 2),

Population 2: X ∼ Exponential(λ � 5),

Population 3: X ∼ Uniform b2 � 0, b3 � 1( 􏼁,

Population 4: X ∼ Uniform b2 � 0, b3 � 2( 􏼁,

Population 5: X ∼ Gamma α3 � 1, α4 � 2( 􏼁,

Population 6: X ∼ Gamma α3 � 2, α4 � 4( 􏼁,

(52)

and the study variable Y by

Y � r
2
yx × X + ε, (53)

where r2yx is the sample correlation coefficient between study
and auxiliary variables, and ε is the random error term,
which has μ � 0 and σ2 � 1 and follows a conventional
normal distribution.

We considered the following steps in RStudio to get the
results of mentioned estimators in this study:

Step 1: the first step was to create different populations
(as an auxiliary variable) of 1000 units using the dif-
ferent distributions, and then Y is computed using the
model given in equation (53).
Step 2: the unknown constants’ optimal values for the
suggested estimators are obtained using the datasets
computed in Step 1.
Step 3: we use SRS without replacement to draw a
sample of size n(� 250) and calculate Var/MSE for all
the estimators covered in this research.
Step 4: under the same environment, the variances and
MSE of the mean estimators are computed by drawing
50 thousand samples from each population under SRS
given in Step 3.)e variances/MSE of the proposed and
existing estimators based on SRS are approximated by
using the following formulae:

Var(y) ≈
1

(ψ − 1)
􏽘

ψ

t�1
yt − Y( 􏼁

2
,

MSE yDi( 􏼁 ≈
1

(ψ − 1)
􏽘

ψ

t�1
yDi,t − Y􏼐 􏼑

2
,

MSE yDe( 􏼁 ≈
1

(ψ − 1)
􏽘

ψ

t�1
yDe,t − Y􏼐 􏼑

2
,

(54)

where ψ � 50, 000 and i � 1, 2, . . . , 8. On similar lines, the
MSE of other estimators yR, ylr, yt1, etc., given in Section 3,
are obtained.)e PRE ofMSE(yDi) with respect to Var(y) is
given by

PRE MSE yDi( 􏼁,Var(y)( 􏼁 �
Var(y)

MSE yDi( 􏼁
× 100. (55)

On similar lines, the PREs of the other estimator based
on SRS may be computed. )e REs of these proposed and
existing estimators are reported in Table 2. It can be seen that
the proposed estimators are more efficient than usual un-
biased estimators and existing estimators as well in terms of
PRE, i.e., all values of the PREs are greater than a hundred.
)e effect of increasing the number of sample size n is
precluded. However, generally, with an increase in the
sample size, the PREs tend to increase and vice versa.

6.2. Real-Life Data. We used three real datasets to compare
the PREs of all these estimators to see how well they per-
formed compared to the comparable existing estimators.
)ese datasets’ descriptions and summary statistics are listed
as follows.

6.2.1. Population Ι. )is dataset is taken from [20] page 226
and was conducted in Pakistan during the year 2012, which
comprised 33 divisions. )is dataset may be downloaded from
the Pakistan Bureau of Statistics web page via the link: https://
www.pbs.gov.pk/content/microdata. )e study variable Y cor-
responds to the employment level by divisions in 2012 and the
number of registered factories in 2012, respectively, while R

corresponds to the rank number of registered factories in 2012.
Here, our objective is to estimate the finite population mean
under extreme values in SRS.)e population constants are N �

33; n � 10; Y � 27.4909; X � 72.5455; R � 17; Sy � 10.1308;

Sx � 10.5770; Sr � 9.638; XM � 95; Xm � 58; RM � 33; Rm �

1.5; Cy � 0.3685; Cx � 0.1459; Cr � 0.5669; g1 � 0.6608; g2
� 0.1151; ρyx � 0.2522; ρyr � 0.1950; ρxr � 0.9810; and θ �

0.0697

6.2.2. Population ΙΙ. Another dataset is taken from [20] page
135, conducted in Pakistan during the year 2012, which
comprised 33 divisions.)is datasetmay be downloaded from
the Pakistan Bureau of Statistics web page via the link: https://
www.pbs.gov.pk/content/microdata. )e number of pupils
enrolled in each division and the total number of government
primary and secondary schools for boys and girls in each
division are the research variables Y and X in 2012, re-
spectively, and R correspond to the rank of auxiliary variable
X. Here, our objective is to estimate the finite population
mean under extreme values in SRS. )e population constants
are N � 36; n � 10; Y � 148718.7; X � 1054.39; R � 18.5;

Sy � 182315.1; Sx � 402.6098; Sr � 10.535; XM � 2370; Xm

� 388; RM � 36; Rm � 1; Cy � 1.2259; Cx � 0.3818; Cr �

0.5695; g1 � 0.3472; g2 � 0.3498; ρyx � 0.1799; ρyr � 0.188;

ρxr � 0.9378; and θ � 0.0722

6.2.3. Population ΙΙΙ. )is dataset is taken from [2], which
comprises 36 units of food cost and weekly income of families.
)e study variableY and auxiliary variableX are the food cost of
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families’ employment and weekly income of families, respec-
tively, and R correspond to the rank of weekly income of
families. Formore detail, we can refer to [2] page 24. To estimate
the finite population mean under extreme values, population
constants are N � 36; n � 10; Y � 148718.7; X � 1054.39; R �

18.5; Sy � 182315.1; Sx � 402.6098;

Sr � 10.535; XM � 2370; Xm

� 388; RM � 36; Rm � 1; Cy � 1.2259; Cx � 0.3818; Cr �

0.5695; g1 � 0.3472; g2 � 0.3498; ρyx � 0.1799; ρyr � 0.188;

ρxr � 0.9378; and θ � 0.0722.

On the abovementioned datasets, the PREs of these
proposed and current estimators are provided in Table 3. In
terms of PRE, it can be seen that the proposed estimators are
more efficient than the standard unbiased estimator and
existing estimators, i.e., all values are more than one
hundred.

7. Conclusion

In this paper, we present some effective estimators for es-
timating the finite population mean using known infor-
mation about the minimum and maximum values of
auxiliary data. We have identified certain theoretical situ-
ations in which the recommended estimators outperform
existing estimators. Tables 2 and 3 offer the PREs for all
estimators over the mean per unit estimator. According to
our findings, the recommended estimators yDi outperform
the estimators evaluated in this research. )ey are recom-
mended among the suggested classes of estimators because
of their high PREs for all populations.

Appendix

where

L � exp
aU + b1( 􏼁 − au + b1( 􏼁

aU + b1( 􏼁 + au + b1
􏼢 􏼣. (A.1)

Data Availability

All the data used in this study are available within the
manuscript.
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