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�e convergence performance of existing fractional particle swarm optimization algorithm directly depends on a single fractional-
order operator. When its value increases, the convergence speed of particles gets slower. When its value decreases, the probability
of the particle swarm trapping into the local optimum increases. In order to solve this problem, an improved fractional particle
swarm optimization (IFPSO) algorithm is proposed in this paper. New variables are introduced in this paper to rede�ne the
formula. �e fractional-order operator is added to the velocity update formula and the position update formula. �e IFPSO
algorithm has linearly decreasing inertia weights. �en the proposed IFPSO algorithm is used to optimize the parameters of
support vector machine (SVM) and the clustering center of the K-means classi�er is selected. Experimental results show that the
IFPSO algorithm can e�ectively avoid falling into the local optimal solution. It has a faster convergence rate and better stability
than the original algorithm, which proves the e�ectiveness of the algorithm. Examples verify that the IFPSO algorithm can
improve the classi�cation accuracy of SVM in practical application. �e IFPSO algorithm e�ectively solves the problem that
K-means algorithm is overly dependent on the initial center and may have empty classes.

1. Introduction

Particle swarm optimization (PSO) algorithm originated
from the simulation of the foraging behavior of birds. It is
widely used to solve multiobjective optimization problems
because of simple concept, easy implementation, and fast
convergence. However, the PSO algorithm still faces many
problems such as slow local convergence speed, trapping
into a local optimum in the multimodal function, and
uneven distribution of the obtained solutions. �erefore,
many scholars are committed to improving the performance
of the PSO algorithm. Krohling [1] introduced the Gaussian
function into the PSO algorithm and proposed the Gaussian
particle swarm optimization (GPSO) algorithm. GPSO does
not require inertial weight, and the acceleration factor is
generated by a random number that obeys the Gaussian
distribution. It can overcome the problem that the
searchability and convergence performance of the tradi-
tional PSO algorithm depends on a large extent on the

acceleration factor and inertial weight setting. Tillett et al. [2]
proposed an algorithm that uses the evolutionary ideas of
natural selection, called Darwinian particle swarm optimi-
zation (DPSO), which dynamically divides the population
into several subgroups, and each subgroup searches inde-
pendently to increase the diversity of particles. It can en-
hance the global optimization capability of the algorithm.
Solteiro Pires et al. [3] introduced fractional calculus into
PSO and proposed a fractional order particle swarm opti-
mization (FOPSO) algorithm, which controls the conver-
gence speed of the algorithm by introducing fractional
operators to the velocity formula of the particle swarm. On
this basis, Couceiro et al. [4] proposed a fractional order
Darwinian particle swarm optimization (FODPSO) algo-
rithm to control the convergence speed of the DPSO al-
gorithm. Experiments showed that the FODPSO algorithm
is superior to the basic PSO, DPSO, and FOPSO algorithms
in terms of calculation accuracy and convergence speed. But,
like the FOPSO algorithm, the convergence performance of
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the FODPSO algorithm also directly depends on the frac-
tional operators α.

In response to this shortcoming, based on the FOPSO
algorithm, an improved fractional particle swarm optimi-
zation (IFPSO) algorithm is proposed in this paper. First, a
new fractional operator is introduced into the velocity
formula, and a linearly decreasing strategy is adopted for the
inertia weight factor. Based on this, a new update formula of
particle swarm optimization is constructed, and the com-
parison results of multiple sets of test functions show that the
new optimization algorithm enhances the particle diversity.
*e improved algorithm shows the controllability of local
convergence and the efficiency of global convergence and
improves the ability of the algorithm to capture the global
optimal solution. In this paper, the IFPSO algorithm is
applied to the parameter optimization of support vector
machines and K-means.*e effectiveness and stability of the
IFPSO algorithm are verified by simulation experiments.

Inspired optimization algorithms have been used in a
variety of fields (such as image detection [5–7], image
segmentation [8, 9], parameter optimization [10–13], PID
control [8, 14], feature selection [15], scheduling problem
[16, 17], K-means (KM) [18, 19], and clustering [20, 21]).*e
improved PSO algorithms are also used in classification,
such as adaptive particle swarm optimization for parameter
optimization in classificationmodels [22] andmultiobjective
particle swarm optimization approach for feature selection
in classification [23]. At the same time, the medical decision
support system based on machine learning has a good de-
velopment prospect as described in the articles in [24, 25]. In
particular the support vector machine (SVM) training re-
sults are stable, and the number of samples required is
relatively small. However, its prediction accuracy is not high
enough; the improved fractional particle swarm optimiza-
tion algorithm is applied into optimizing the parameters of
SVM in this paper. *e IFPSO-SVM is constructed in heart
disease prediction model and the red wine classification
prediction model. Simulation experiments verify the

superiority of the model based on IFPSO-SVM in terms of
diagnosis efficiency and accuracy. Diagnosis error is reduced
significantly and prediction results have certain practical
significance.

*e IFPSO algorithm is used to optimize the clustering
center of the KM clustering. It effectively improves the
K-means algorithm’s problems about excessive dependence
on the selection of the initial center and sensitivity to noise
data. Simulation experiments also confirm that the classi-
fication effect of the IFPSO-KM algorithm is more accurate
and stable than K-means and PSOK-means, and there is no
empty class phenomenon, the classification accuracy is
higher, and the clustering effect is relatively stable.

*e rest of this paper is organized as follows. In Section
2, firstly the definition and properties of particle swarm
optimization algorithm with a linearly decreasing inertia
weight are introduced. *en fractional calculus is given
briefly. Lastly, the IFPSO algorithm is derived in this part.
Section 3 describes the application examples of IFPSO-SVM.
Classification method based on IFPSO-KM algorithm is
described in Section 4. Experiments are illustrated and
analyzed in Section 5. *e conclusions are illustrated in
Section 6.

2. Improved Fractional Particle Swarm
Optimization Algorithm

*is section briefly introduces the inertial weighted particle
swarm optimization algorithm and fractional calculus, and
then the IFPSO algorithm is derived in this part.

2.1.Weight Particle SwarmOptimization (WPSO) Algorithm.
*e standard integer-order PSO is inspired by the swarm’s
behavior, where the particles have a synchronized motion
during maneuvers such as for searching food and for de-
fense. *e (k + 1) − th iteration of the velocity of the id − th
particle Vid can be determined as

V
k+1
id � w × V

k
id + c1 × r1 × P

k
id − X

k
id  + c2 × r2 × P

k
g d − X

k
id , (1)

where Pk
id is its best position found so far in k − th iteration,

Pk
g d is the best position found by neighbourhoods of the

current particle, and the random values r1 and r2 are between
[0, 1]. c1 and c2 are the cognitive and social coefficients that are
used to determine the effects of individual and group expe-
rience on the particle trajectory. w is the inertia weight factor.

After calculating the velocity, the new position of each
particle can be computed as

X
k+1
id � X

k
id + V

k+1
id . (2)

If the inertia weight w in PSO algorithm is set to a fixed
value, oscillations are likely to occur around the global
optimal solution in the later stage of convergence. To solve
this phenomenon, the paper in [26] uses the method of

linearly decreasing inertia weight in the PSO algorithm to
control the velocity from exploding, and the formula of the
WPSO algorithm is expressed as

w(k) � wmax −
wmax − wmin( ∗ k

kmax
, (3)

where k is the current iteration number, kmax is the maxi-
mum iteration number, wmax is the initial inertia weight
value, and wmin is the final inertia weight value.

2.2. Fractional Calculus. Fractional calculus is the theory of
any order of differentiation and integration, which is derived
from the generalization of integer-order calculus. It is closer
to the actual situation of the application background. *e
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fractional differential operator is a nonlocality overall op-
erator [27]. *e integer differential is only related to the
current sampling point and the sampling value of the
previous sampling point at the current moment, while the
fractional differential is related to the values of all previous
sampling points related. *e fractional derivative of order α
(α ∈ R), also known as the Grunwald-Letnikov (G-L) defi-
nition, defined by the series, can be expressed as

D
α
f(x) � lim

h⟶0

1
h

a 

+∞

k�0

(−1)
kΓ(α + 1)f(x − kh)

Γ(k + 1)Γ(α − k + 1)
⎡⎣ ⎤⎦. (4)

In the formulation of fractional PSO, the discrete-time
approximation is utilized in equation (4); we have

D
α
f(x) �

1
T

a 

r

k�0

(−1)
kΓ(α + 1)f(x − kh)

Γ(k + 1)Γ(α − k + 1)
, (5)

where T is the sampling period, while r is the truncation
order. Γ(•) represents the standard Euler gamma function,
which is mathematically defined by the following relation for
a convergent improper integral: Γ(z) � 

∞
0 e− ttz− 1dt.

According to the definition of GL, it can be found that
the integer-order differential is only a special case of the
fractional-order differential. For the fractional calculus of a
continuous function at a certain point, not only is it to find
the limit at that point but also it is related to the value of the
function at all times from the initial moment to the point, so
the fractional calculus has memory.

2.3. Improved Fractional Particle Swarm Optimization
(IFPSO) Algorithm. Since the particle swarm algorithm is
based on the long-term dynamic evolution of individual
biological populations, the inherent long memory char-
acteristic of the fractional-order model is suitable to
describe the optimization process of particle swarms.
Solteiro Pires et al. [3] proposed the FOPSO algorithm.
*e algorithm corrects the order of the velocity derivative
by rearranging the original velocity of the particle swarm
to control the convergence speed of the algorithm.
However, the algorithm does not consider the influence
caused by the fixed value of the inertia weight factor. *e
convergence performance of the existing fractional par-
ticle swarm optimization directly depends on the frac-
tional-order α. When the value α increases, the
convergence speed of particles becomes slower, and when
the value α decreases, the probability of the particle swarm
trapping into the local optimum becomes higher. In this
paper, new variables are added, and fractional derivation
is considered for both velocity and position formulas at
the same time to reduce the dependence of the update
formula on α, and the inertia weight factor w uses the
principle of linear decrease. *is method reduces the
oscillation while increasing the randomness of the par-
ticles and also reduces the probability of the articles falling
into a local optimum solution.

According to equation (1), the following can be obtained
by transforming left and right:

V
k+1
id − V

k
id � (w − 1) × V

k
id + c1 × r1 × P

k
id − X

k
id  + c2 × r2 × P

k
g d − X

k
id , (6)

where Vk+1
id − Vk

id is the fractional derivative of the discrete
state and, assuming that the sampling period T � 1,

equation (6) can be extended to the fractional-order
derivative:

D
a

V
k+1
id  � (w − 1) × V

k
id + c1 × r1 × P

k
id − X

k
id  + c2 × r2 × P

k
g d − X

k
id . (7)

Due to the memory characteristics of fractional calculus
and considering that the relationship between the particles
in the current iteration and the particles of the first few
generations has gradually faded, we choose to keep the

vector in the current 4 generations (the truncation order
r � 4) and let T � 1. Using the G-L derivative (equation (5))
to extend the speed formula of the particle swarm algorithm
from the first order to any order, one has

D
a

V
k+1
id  � V

k+1
id − aV

k
id −

1
2

a(1 − a)V
(k−1)
id −

1
6

a(1 − a)(2 − a)V
(k−2)
id

−
1
24

a(1 − a)(2 − a)(3 − a)V
(k−3)
id .

(8)
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Combining equations (7) and (8), we obtain the speed
formula of the fractional-order particle swarm algorithm
with linearly decreasing weight factors:

V
k+1
id �(w − 1 + a)V

k
id +

1
2

a(1 − a)V
(k−1)
id +

1
6

a(1 − a)(2 − a)V
(k−2)
id

+
1
24

a(1 − a)(2 − a)(3 − a)V
(k−3)
id + c1 × r1 × P

k
id − X

k
id  + c2 × r2 × P

k
g d − X

k
id .

(9)

*rough the introduction of the fractional differential
operator, the current particles are connected with the ve-
locity of the particles of the previous stage, which makes the
algorithm have memory. Next, the position formula is also
improved in fractional order, and the term of equation (2)
can be shifted to obtain

X
k+1
id − X

k
id � V

k+1
id . (10)

Using the G-L definition to extend it to the fractional
differential, we get

D
β

X
k+1
id  � V

k+1
id . (11)

When β≠ 1，choose to keep the current 4 generation
vectors and take T � 1; using the G-L definition (equation
(5)) to extend the position formula of the particle swarm
algorithm from the first order to any order, we have

D
β

X
k+1
id  � X

k+1
id − βX

k
id −

1
2
β(1 − β)X

k−1
id −

1
6
β(1 − β)(2 − β)X

k−2
id

−
1
24

β(1 − β)(2 − β)(3 − β)X
k−3
id .

(12)

Combining equations (11) and (12) can get the position
update formula of the fractional particle swarm algorithm:

X
k+1
id �V

k+1
id + βX

k
id +

1
2
β(1 − β)X

k−1
id +

1
6
β(1 − β)(2 − β)X

k−2
id

+
1
24

β(1 − β)(2 − β)(3 − β)X
k−3
id

�(w − 1 + a)V
k
id +

1
2

a(1 − a)V
(k−1)
id +

1
6

a(1 − a)(2 − a)V
(k−2)
id

+
1
24

a(1 − a)(2 − a)(3 − a)V
(k−3)
id + c1 × r1 × P

k
id − X

k
id 

+ c2 × r2 × P
k
g d − X

k
id  + βX

k
id +

1
2
β(1 − β)X

k−1
id

+
1
6
β(1 − β)(2 − β)X

k−2
id +

1
24

β(1 − β)(2 − β)(3 − β)X
k−3
id .

(13)

It can be seen from equation (13) that the position of the
particle is no longer only affected by the fractional-order α.*e
introduction of the fractional-order β makes the updated
position also havememory and related to the previous position,
and due to the inertia weight factorw uses a linearly decreasing
strategy, which protects the diversity of particles.

3. Prediction Model Based on IFPSO-SVM

In this section, the improved fractional particle swarm opti-
mization algorithm is applied to the parameter optimization of

SVM, and the radial basis function (RBF) is used as the kernel
function.*e improved fractional particle swarm optimization
algorithm is used to determine the appropriate error penalty
factor and the parameters of the kernel function.

3.1. Parameter Optimization of SVM. SVM is a unified
framework constructed based on the principle of structural
risk minimization to solve the problem of small sample
learning. It can learn the optimal prediction results under
limited information conditions and can better solve the
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classification problems of nonlinearity, overlearning, high
latitude, and so forth and has good generalization ability.
*emain point of SVM is to map data to a high-dimensional
space with a kernel function. Its classification performance
depends on the selection of kernel function type, the setting
of kernel function parameters, and the error penalty factor.
*e setting of the error penalty factor C adjusts the ratio of
the confidence range of the learning machine to the nuclear
experience risk and ensures that the trained SVM has a
better generalization ability. *erefore, choosing the ap-
propriate parameters (C and σ) affected the precision of the
SVM significantly. However, there is no mature theory to
guide the parameter optimization of SVM. *e parameter
optimization problem limits the classification effect of SVM in
practical applications. Traditional SVM parameter optimization
methods mainly include experimental methods, grid search
methods, and gradient descent methods [28, 29]. *ese methods
involve a large number of calculations and are easy to fall into
local optimal solutions and can no longer meet the current re-
quirements in terms of solving speed and accuracy. In recent
years, with the rise of artificial intelligence algorithms, many
scholars have applied a variety of metaheuristic algorithms to the
parameter optimization problem of SVM, such as the genetic
algorithm and the PSO algorithm [30]. However, these optimi-
zation methods also have defects such as being easy to fall into
local optimumsolutions, slow convergence speed, and insufficient
accuracy. *erefore, this paper considers using the IFPSO al-
gorithm to encapsulate SVM to build a prediction model, aiming
to improve the prediction accuracy and stability of the model.

*e RBF is as follows:

K xi, yi(  � exp −
xi − yi

����
����
2

σ2
⎛⎝ ⎞⎠, σ is the nuclear parameter.

(14)

*e value of the parameter affects its learning ability and
generalization ability. From equation (14), it can be found
that the radial basis function only needs to determine one
parameter, which is beneficial to parameter optimization.
*e paper in [31] also believes that RBF is a more suitable
kernel function. *erefore, this paper selects RBF as the
kernel function and then uses the IFPSO algorithm to find
the best parameter combination (σ, C) for SVM.

3.2.PredictiveModelAlgorithm. In this model, the SVM uses
RBF as the kernel function, uses the IFPSO algorithm to
optimize the parameters of the SVM, determines the ap-
propriate error penalty factor C and kernel function pa-
rameter σ, and then builds a complete prediction model. *e
steps of the algorithm are as follows:

Step 1: Set the individual extremum of each particle as
the current position, use the fitness function to calculate
the fitness value, and take the individual extremum with
the best fitness value as the global extremum.
Step 2: Calculate and update the current inertia weight
factor according to the weight update formula (equa-
tion (3)).

Step 3: Calculate according to the velocity formula
(equation (9)) and position update formula (equation
(13)) of the improved particle swarm algorithm to
update the velocity and position of the particles.
Step 4: Use the fitness function of the particles to
calculate the fitness value of each particle after each
iteration. Compare the fitness value of each particle
with its individual extreme value pbest; if the fitness
value is better, update the individual extreme value;
otherwise, keep the original value; compare the updated
individual extreme value of each particle with the global
extreme value gbest; if the updated individual extreme
value is better, update the global extreme value; oth-
erwise, keep the original value.
Step 5: Judge whether the iteration value and accuracy
range match the optimization conditions. If they are
satisfied, this iteration ends, and the next iteration is
performed; otherwise, go back to step 3.
Step 6: After the iteration, use the best optimized pa-
rameters (σ,C) to establish IFPSO-SVM prediction
model.

*e algorithm flow chart of the IFPSO-SVM prediction
model is shown in Figure 1.

In the particle update process, the inertia weight factor
decreases linearly. *e new fractional-order update formula
is used when updating the velocity and position of the
particle. In subsequent experiments, the genetic algorithm
mutation operations were added to the particles to increase
the randomness and diversity of the particles. *e improved
fractional particle swarm optimization algorithm is used to
optimize the SVM parameters to improve the prediction
accuracy of the model.

4. Clustering Model Based on IFPSO-KM

*is section uses the improved fractional particle swarm al-
gorithm to select the clustering centers of the KM algorithm.
*e model effectively solves the excessive dependence of the
KM algorithm on the selection of the initial clustering centers.

4.1. Improvement Idea of K-Means Clustering. *e basic
principle of the KM algorithm is a clustering algorithm
based on partition. Given a dataset X and the total number
of data samples n, first randomly select k initial clustering
centers (cluster points), and assign each object to the nearest
cluster point to get a set of clusters. *en calculate the
average value of each cluster as the new cluster point, and
redistribute each data sample to the nearest aggregation
point. *is process is performed in a loop until the termi-
nation condition is met and the algorithm ends. In the KM
algorithm, the Euclidean distance formula is used to mea-
sure the distance, which is the square root of the sum of the
squares of the difference of each attribute. *e most com-
monly used objective function is f � 

k
j�1 xi∈Cj

d(xi, zj)，
where xi is the i-th object and zj is the center of the j-th
cluster. *e purpose of clustering is to find a set of cluster
centers which minimizes the above objective function value.
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However, due to the existence of local extreme points and
the greedy nature of the heuristic algorithm, the traditional
KM algorithm has the shortcomings of being sensitive to the
initial clustering center and easily converging to the local
extreme value. In this paper, the IFPSO algorithm is used to
find cluster centers, and mutation operation is added in the
particle update process, which increases the diversity of
particles and dynamically adjusts particles. It avoids the
phenomenon of premature convergence of particles in the
PSO algorithm and has strong global search capabilities. It
also eliminates the dependence of the KM algorithm on the
selection of the initial cluster centers. *rough the algo-
rithm, the global optimal N cluster centers are obtained and
then used as the initial cluster centers to implement the
improved algorithm to obtain the ideal cluster division.

4.2. Principle of IFPSO-KMAlgorithm. Given a sample set X,
the total number of data samples is n, which is divided into k

clusters to form a partition C � C1,C2, . . . , Ck . For each

cluster center, calculation formula and sample set are obtained.
*e total cumulative dispersion and formula are as follows:

zrj �
1
nj


xi∈Cj

xi. (15)

f Zr(  � 
k

j�1


xi∈Cj

d xi, zrj . (16)

*e fitness value of the particle is calculated according to
equation (16), where Zr is the r-th particle (1≤ r≤N), N is the
number of particles, and zrj is the cluster center position of the
j-th class of the r-th particle. d(xi, zrj) is the distance from the
i-th sample data to the corresponding cluster center. *e
clustering criterion function f(Zr) is the sum of the distances
from various samples to the corresponding cluster centers and
is also the fitness function of the particles. *e particle velocity
and position update formula are as follows:

V
(t+1)
r �(w − 1 + a)V

t
r +

1
2

a(1 − a)V
(t−1)
r +

1
6

a(1 − a)(2 − a)V
(t−2)
r

+
1
24

a(1 − a)(2 − a)(3 − a)V
(t−3)
r + c1 × r1 × P

t
r − Z

t
r  + c2 × r2 × P

t
g − Z

t
r 

+c3 × r3 × P
t
g − P

t
r . (17)

IFPSO algorithm SVM classification prediction model 

Start

Initialize particles

Calculate particle fitness value

Update the individual
extreme value and global

extreme value of the particle

Update inertia weight

Update the speed, position, and
optimal solution of particles 

Find the optimal solution

parameter combination
(σ, C)

Data preprocessing

Input the feature vector and
label of the training set sample 

Train and build SVM
prediction model 

Output prediction results 

Eligible for
termination?

Y

N

Figure 1: Algorithm flow chart of the IFPSO-SVM prediction model.
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Z
(t+1)
r �V

(t+1)
r + βZ

t
r +

1
2
β(1 − β)Z

t−1
r +

1
6
β(1 − β)(2 − β)Z

t−2
r

+
1
24

β(1 − β)(2 − β)(3 − β)Z
t−3
r .

(18)

Based on the standard particle swarm optimization al-
gorithm, in the process of updating the particle speed, we
consider increasing the connection between the global op-
timum and the local optimum and adding the
c3 × r3 × (Pt

g − Pt
r) variable on the basis of the previous

algorithm (Algorithm 1).

4.3. Improved Clustering Model Algorithm. *e steps in-
volved in improved clustering model algorithm are given
below.

5. Analysis of the Experiment

*is part is mainly divided into three parts of simulation
experiments, which are as follows: (1) *e contrast experiment
of the convergence characteristics of the IFPSO algorithm and
the FOPSO algorithm is to test whether the efficiency of the
algorithm is effectively improved. (2) Use the IFPSO algorithm
and support vector machine to optimize parameters to con-
struct two-category and multicategory prediction models.
Analyze and evaluate the classification effect of the model. (3)
Combine the IFPSO algorithm with K-means clustering to
obtain the best combination of cluster centers. *en analyze
and evaluate the clustering effect of the algorithm.

5.1. Convergence Analysis of IFPSO Algorithm

5.1.1. Introduction to Test Functions. To verify the perfor-
mance of the IFPSO algorithm given in this paper, we
compare the IFPSO algorithm and the FOPSO algorithm
through several commonly used unimodal and multimodal
test functions. Analyze whether the IFPSO algorithm ef-
fectively improves the convergence performance through

the solution of the test functions. *e characteristics of the
four selected test functions are as follows:

Holder function is as follows:

f(x) � −sin x1( cos x2( exp 1 −

������

x
2
1 + x

2
2



π





⎛⎜⎜⎝ ⎞⎟⎟⎠





. (19)

Inputting domain is xi ∈ [−10, 10], i � 1, 2.
Global minimum is f(x∗) � −19.2085. *ere are four

minimum points, namely, x∗ � (8.05502, 9.66459), (8.05502,

−9.66459), (−8.05502, 9.66459), (−8.05502, −9.66459). *is
function hasmany localminima and four globalminimums. It is
a multimodal function.

Generalized Rastrigin function is

f(x) � 10 d + 

d

i�1
x
2
i − 10 cos 2πxi(  . (20)

Inputting domain is xi ∈ [−5.12, 5.12], i � 1, . . . , d.
Global minimum is f(x∗) � 0, x∗ � (0, . . . , 0).
*e Rastrigin function has multiple local minima, but

the positions of the minima are regularly distributed. It is a
highly multimodal function, so it is not easy to search for the
global best solution.

Schaffer function is

f(x) � 0.5 −

����������
sin x

2
1 + x

2
2 


− 0.5

1 + 0.001 × x
2
1 + x

2
2 

2. (21)

Inputting domain is xi ∈ [−4, 4], i � 1, 2.
Global maximum is f(x∗) � 1, x∗ � (0, . . . , 0).
*is function has a global maximum point, and there are

infinite subglobal maximum points within a range of 3.14 from
the global maximumpoint. In the simulation experiment, if the
opposite value is taken, the extreme point should be −1.

Sphere function is

Input: data set X

Output: divided k cluster center solution sets
Step 1: Initialize the population and parameters, determine the k value according to the SSE and Silhouette Coefficient, randomly
select k data sample points as the initial center point, and calculate the fitness value of each particle according to the formula.
Step 2: Compare the fitness value of each particle with its individual extreme value Pr, and update Pr if the new value is better.
Step 3: Compare the fitness value of each particle with the population extreme value Pg, and update Pg if the new value is better.
Step 4: According to the velocity formula (equation (17) and position formula (equation (18)) the velocity and position of the particles
are updated respectively. At the same time, the experiment uses the basic idea of GA to randomly perform mutation operations on
some particles, randomly encode particles within the set number of dimensions and perform single-point mutation operations to
generate new groups. *en recalculate the fitness value of the particles, and update the fitness value according to equtaion (16).
Step 5: According to the update process of the above algorithm, the optimal cluster center point is generated.
Step 6: Using the nearest neighbor rule in the KM algorithm, reclassify each sample to obtain a new cluster division.
Step 7: Determine whether the termination conditions are met. If it is satisfied, output the optimal solution; otherwise, return Step 2.
*e termination condition is that the cluster centers obtained within a given number of iterations do not change, or the maximum
number of iterations is reached.

ALGORITHM 1: IFPSO-KM algorithm.
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f(x) � 
d

i

x
2
i . (22)

Inputting domain is xi ∈ [−5.12, 5.12], i � 1, . . . , d.
Global minimum is f(x∗) � 0, x∗ � (0, . . . , 0).
*is function has a unique global minimum point. It is a

continuous, convex, unimodal function.

5.1.2. Analysis of Convergence Results. In this paper, the
IFPSO algorithm and FOPSO algorithm are simulated in
Python, and the parameters of the comparison algorithm
involved in this paper are given in Table 1.

In the experiment, the parameter settings of the IFPSO
algorithm are maintained as the combination of the pa-
rameter settings of IFPSO-SVM. Set the parameters in the
FOPSO algorithm to the parameter settings in literature
[33], and change the inertia weight to linear inertia weight.
*e population size and number of iterations of the two
algorithms are the same, and the optimization and con-
vergence effects of the four test functions are shown in
Figures 2–5.

In these four figures, the red line is the convergence
curve of the IFPSO algorithm, and the gray line is the
convergence curve of the FOPSO algorithm.

From the comparison chart of the optimization simu-
lation curves of the four test functions above, it can be seen
that the IFPSO algorithm in this paper has better optimi-
zation capabilities in the process of solving unimodal
functions or multimodal functions. Moreover, its conver-
gence speed and the ability to search for the best value are
faster and more accurate than the algorithm before the
improvement. Its performance is improved more obviously
in complex multimodal functions. It can be seen from
Figure 3 that, in the optimization process of the Generalized
Rastrigin function, the FOPSO algorithm falls into the
local optimum solution, and it fails to capture the global
minimum. *e position update of the IFPSO algorithm
also has the characteristics of long-term memory of the
fractional differential, which makes the algorithm’s
particle diversity higher, with better ability to jump out of
the local optimal solution. Experiments show that the
IFPSO algorithm not only improves the convergence
speed but also enhances the ability of the particle global
search.

5.2. Prediction Model Based on IFPSO-SVM

5.2.1. Experimental Data of the Prediction Model. *is
experiment uses the Statlog (heart) dataset. *e dataset
is obtained from the UCI machine learning database.
*is dataset contains a total of 303 cases, and each row
records 13 characteristics and a label of the sample.
Preprocess the data, and use 242 cases (about 80% of the
total number of samples) as the training set and 61 cases
(about 20% of the total number of samples) as the test
set. *e main attributes of the dataset are shown in
Table 2.

*e physical meaning, data unit, and magnitude of each
attribute in the selected dataset are different. *e original
data is normalized and mapped in [0, 1], and the indicators
are in the same order of magnitude, which is convenient for
comprehensive comparison and evaluation.

5.2.2. Heart Disease Prediction Model Based on IFPSO-SVM.
*e modeling environment is Python, and the SVM model
used is the SVC module of the sklearn tool. *e full name is
C-Support Vector Classification, which is a support vector
machine based on LibSVM. *e main purpose of this ex-
periment is to test the effectiveness and progress of classi-
fication models and algorithms through simulation
experiments of predictive models.

Use the IFPSO algorithm to build a machine learning
binary classification model. Input the known heart disease
data (training set) into the model, let the model learn, and
obtain the ability to predict new unknown data (test set).*e
model is evaluated by comparing the prediction results of the
test set with the real labels of the test set, and the classifi-
cation performance of the model is evaluated. *e kernel
function selects the RBF function, and the most important
parameters of the model are optimized through the IFPSO
algorithm. *e SVM model constructed by the IFPSO al-
gorithm greatly improves the prediction accuracy of the
model and reduces the time consumption of model
calculations.

In the IFPSO algorithm, through experiments, it can be
found that when the inertia weight value is less than 0.5, the
search accuracy of the algorithm is not high, and it is easy to
fall into the local optimal solution later. After many ex-
periments, the accuracy of the algorithm is higher when
wmin � 0.4 and wmax � 0.8. Compared with traditional al-
gorithms, the calculation speed is faster, and the global
search capability is also good. *e introduction of the
fractional-order algorithm also enriches the search behavior
and avoids falling into the local optimum solutions. At the
same time, the change of the current particle depends not
only on the moment but also on the previous state, and the
particle can obtain a better fitness value. *e literature [20]
shows that the accuracy of the algorithm is better when the
value of the fractional operator α is between [0.3, 0.8]. After
several experiments, this paper takes α � 0.4 and β � 0.7,
and the results show that the algorithm’s performance at this
time is relatively balanced and stable. In SVM, the kernel
function uses the RBF function, and we obtain a set of
optimal parameters (σ, C) through the IFPSO algorithm.
After the IFPSO-SVM model is trained on the training set,
the data in the test set can be predicted. Compare the test
results with the real labels in the test set. Evaluate the model
by drawing a confusion matrix, calculating evaluation in-
dicators such as Precision, Recall, and F1-Score, and drawing
ROC curves.

5.2.3. Multiclass Prediction Experiment Based on IFPSO-
SVM. *e dataset used in the experiment is UCI’s red wine
dataset. *is dataset includes three types of wine, with 13
different composition characteristics and a total of 178 rows
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of data. �e three types of wine are marked as “1,” “2,”
and “3.” �ere are 59 samples in the �rst category, 71
samples in the second category, and 48 samples in the
third category. Preprocess the data, use 142 cases (about

80% of the total number of samples) as the training set
and 36 cases (about 20% of the total number of samples)
as the test set. �e experimental parameters are the

Table 1: Algorithm parameter settings.

Algorithm Parameter settings Reference
PSO ω ∈ [0.4, 0.9]; c1 � c2 � 2.0 [32]
FOPSO ω: 0.9; a � 0.632; c1 � c2 � 1.5; r1 d � r2 d � [0, 1] [3]
IFPSO ω ∈ [0.4, 0.8]; a � 0.4; β � 0.7
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parameters of the two-category prediction model in the
previous section.

5.3. ClusteringModel Based on IFPSO-KM. In the simulation
experiment, the classic dataset in the UCI database is used as
the test dataset to verify the performance of the KM, PSO-K,
ADPSO-AKM, and IFPSO-KM algorithms. *e test dataset
description is shown in Table 3. *ere are four attributes in
the Iris dataset, namely, calyx length, calyx width, petal
length, and petal width. *ere are three types of iris flowers,
namely, Iris setosa, Iris versicolor, and Iris virginica. *e
Wine quality dataset contains two data subtypes. Sets are
samples of red wine and white wine. Among them, there are
1599 samples in the red wine dataset and 4,858 samples in
the white wine dataset. *ere are 11 physical and chemical
properties of red wine (white wine) and the quality (score
from 0 to 10) of red wine (white wine).

In the experiment, take the particle population m � 80
and the maximum number of iterations Tmax � 15. In the
IFPSO algorithm, the inertia weight is also linearly de-
creased. *rough many experiments, set c1 � c2 � 1.49,
ωmax � 0.8, ωmin � 0.3, α � 0.6, and β � 0.4. *rough the
IFPSO algorithm, we obtain a set of particle combinations of
cluster centers and use the KM algorithm to cluster
according to this particle combination. Use common clus-
tering evaluation indicators (Rand index, homogeneity
score) for model evaluation. *e clustered data can be
compared with the real data in the way of supervised
learning to get the accuracy of the model.

5.4. Analysis of Results

5.4.1. Confusion Matrix. A confusion matrix can effectively
measure the accuracy of a classifier’s classification. It is a
situation analysis table for summarizing and predicting the
results of classification models in data science, data analysis,
and machine learning. In the form of a matrix, the records in
the dataset are summarized according to the two criteria of
the real category and the classification judgment made by the
classification model. Take the binary classification problem

as an example. *ere are two types of records in the dataset:
positive and negative. *e classification model will make
positive judgments (judgment records belong to the positive
category) or negative judgments (judgment records belong
to the negative category). *e row represents the reality, and
the column represents the forecast.

*e evaluation indicators extended by the confusion
matrix as follows:

Accuracy: the percentage of correctly classified samples
in the total sample.
Precision: the probability of a positive sample among
the samples predicted to be positive.
Recall: the probability that the model predicts a positive
sample in the actual positive sample.
F1-score: it can be regarded as the harmonic mean of
model Accuracy and Recall.

5.4.2. Evaluation Index of Clustering Model. SSE (sum of
the squared errors) is a measure of cluster looseness. As an
objective function, it is actually a strict Coordinate De-
cedent process. SSE cannot guarantee finding the global
optimal solution but can only guarantee the local optimal
solution. In other words, it may cause a variety of k cluster
divisions.

Silhouette Coefficient combines the degree of cohesion
and the degree of separation to evaluate the effect of
clustering. *e value range of the average profile coeffi-
cient is [−1, 1]. *e larger the coefficient, the better the
clustering effect. After each clustering, each sample will
get a contour coefficient. When it is 1, it means that the
point is far away from the surrounding clusters, which is a
good classification. When the value is 0, it means that the
point is on the boundary of the two clusters. When the
value is negative, it means that the point may be
misclassified.

Adjusted Rand index is proposed to achieve “in the case
of clustering results randomly generated, the index should be
close to zero,” which has a higher degree of discrimination;
the calculation formula is

Table 2: *e attributes of the heart disease dataset.

Number Attribute name Types
1 Age Continuous
2 Sex Two categories
3 cp (types of chest pain) Four categories
4 trestbps (blood pressure) Continuous
5 chol (cholesterol) Continuous
6 fbs (fasting blood glucose) Two categories
7 restecg (ECG results) *ree categories
8 thslach (maximum heart rate) Continuous
9 exang (whether angina during exercise) Two categories
10 oldpeak (ST depression) Continuous
11 slope (ST segment) Ordered, three categories
12 ca (the number of blood vessels) Continuous
13 thal (types of defects) *ree categories

14 Target 0, healthy
1, diseases
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ARI �
RI − E[RI]

max(RI) − E[RI]
. (23)

�e value range of ARI is [−1, 1]. �e larger the value is,
the more consistent the clustering result is with the real
situation. In a broad sense, ARI measures the degree of
agreement between the two data distributions.

5.4.3. Evaluation of Predictive Models. Figure 6 is an illus-
tration of the confusion matrix drawn by the prediction
results after the dataset is trained with IFPSO-SVM. Each
row represents the real situation, each column represents the
prediction situation, and the main diagonal represents the
correct sample size of the prediction.

It can be seen from the �gure that the total number of
data samples in the test set is 61, of which 29 are health data
samples and 32 are disease data samples. 26 of the health
data samples were correctly predicted, and 29 of the disease
data samples were correctly predicted.

Table 4 shows the values of some evaluation indicators
calculated from the confusion matrix obtained by the pre-
diction model.

To compare the performance of the heart disease pre-
diction model based on the IFPSO-SVM proposed in this
paper, several other algorithms [34, 35] are used to predict
the same dataset, as well as the Precision, Recall, and F1-
Score. �e experimental results are shown in Table 5.

�rough the comparison experiment, we can see that,
for the basic PSO-SVM classi�cation model, the predic-
tion accuracy is about 80%. �e accuracy of the model
built by the PSO algorithm that only updates the velocity
in fractional order is about 83%. �e prediction accuracy
of the IFPSO-SVM model in this article has reached 90%,
which greatly improves the e�ectiveness and accuracy of
the model. All indicators are better than those in other
algorithms.

Finally, draw the ROC (Receiver Operating Character-
istic) curve of the method in this article. Combining the two
variables (1 − specificity and sensitive) with a graphical
method can more clearly and accurately integrate the ac-
curacy of the reaction model. �e horizontal axis is the false
positive rate, and its value is proportional to the false positive
rate. �e vertical axis is the true positive rate, and its value is
proportional to the accuracy rate.�erefore, the closer to the
upper left corner of the ROC space, the better the judgment
e�ect, as shown in Figure 7.

AUC is the area under the ROC curve. In the experiment,
the larger the AUC value, the better the model e�ect.
Usually, (1) AUC ≈ 1.0 means the model is the most ideal,
(2) 0.7≤AUC≤ 0.9 means the accuracy of the model is high,
and (3) AUC � 0.5 means the model is meaningless. In

general, an AUC of 0.9 or more can be regarded as a highly
accurate judgment experiment. �e prediction at this time is
of practical signi�cance. In the above model, AUC � 0.9385
(the parameter combination is as follows: gamma� 0.055;
c� 0.7915). It shows that the accuracy of the model has
reached the standard of practical signi�cance, and the in-
troduction of the IFPSO algorithm greatly improves the
accuracy of the model.

In the multiclassi�cation application of IFPSO-SVM, the
model also has a better improvement e�ect. Table 6 shows

Table 3: Properties of the test dataset.

Test dataset Number of data samples Number of clusters Data dimension
Iris 150 3 4
Wine quality-white 4858 12
Wine quality-red 1599 12

Confusion Matrix
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Figure 6: Confusion matrix.

Table 4: Evaluation index value of IFPSO-SVM algorithm (heart
disease dataset).

Precision Recall F1-Score Support
Healthy 0.90 0.90 0.90 29
Disease 0.91 0.91 0.91 32
Accuracy 0.90 61
Macro avg. 0.90 0.90 0.90 61
Weighted avg. 0.90 0.90 0.90 61

Table 5: Comparison of prediction results of di�erent algorithms.

Algorithms Precision Recall F1-Score
PSO-SVM 0.809 0.759 0.783
BP 0.831 0.783 0.806
XGBoost 0.865 0.804 0.833
FOPSO-SVM 0.865 0.845 0.855
IFPSO-SVM 0.910 0.910 0.900
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the algorithm evaluation of the model to classify the Wine
dataset.

It can be seen that we selected 20% of the dataset as the
test set, and the Precision, Recall, and F1-Score obtained
from the simulation experiment all reached 1 (the parameter
combination is as follows: gamma� 0.158; c� 6.5811). Ex-
plain that the predictions for all test data are accurate. At the
same time, it shows that the IFPSO algorithm effectively
improves the prediction accuracy and accuracy of SVM, not
only for accidental datasets. *e algorithm has a good
classification effect on two-category and multicategory
problems.

In summary, the IFPSO algorithm in this paper has
better performance in the parameter optimization problem
of SVM.*e time complexity of the algorithm is significantly
reduced, and the ability to find the global optimal solution is
improved.*e IFPSO-SVM predictionmodel constructed in
this paper has achieved a higher diagnostic success rate than
other models in the diagnosis of heart disease, which makes
the research of the model have certain practical reference
significance. *e accuracy of the multicategory model has
also reached 100%. *e effect of the algorithm has improved
significantly.

5.4.4. Evaluation of the Clustering Model. According to the
change curve of SSE and profile coefficient, the number of
clusters is dynamically obtained. Use the standard dataset
Iris as the test data. Set the range of the number of clusters k
to [2, 10], and draw the SSE and Silhouette Coefficient
corresponding to different numbers of clusters, to select the
value of k more intuitively, as shown in Figure 8.

Combining the graph, it can be seen that when k � 3, the
SSE value decreases significantly, and the Silhouette Coef-
ficient value is also higher. *e actual number of classifi-
cations in the Iris dataset is also 3, which is consistent with
the calculated k value.

*e IFPSO-KM algorithm is verified through experi-
ments on UCI’s Iris and Wine dataset. *e clustering effect
of the Iris dataset can be represented by three-dimensional

images. Figure 9 shows the clustering effect diagram of the
IFPSO-KM algorithm, and Figure 10 shows a diagram of
scattering clustering according to the true value. It can be
seen that the effect of the improved algorithm clustering is
better. Its clusters are relatively close and the distance be-
tween clusters is large, which meets the clustering
requirements.

When using IFPSO-KM to cluster two datasets, the
parameters are set as follows: take c1 � c2 � 1.49, ωmax � 0.8,
ωmin � 0.3, α � 0.6, and β � 0.4. Table 7 shows the number
of error points for training on the Iris and Wine datasets by
different clustering methods. Since the Wine dataset has
more attribute values, only the corresponding initial center
points of Iris are given in the table. *e optimal initial center
points obtained by the IFPSO- KM algorithm are the 49th,
98th, and 129th data points in the sample set, respectively.
After experiments, we can see that the KM algorithm is very
sensitive to the initial center point. Although the number of
misclassifications in some experiments is relatively small, the
improved algorithm combined with the PSO algorithm is
better than the KM algorithm in terms of the degree of
dependence on the initial center point and the accuracy of
the classification. Effectively reduce the randomness of
clustering.

It is worth pointing out that the standard KM algorithm
is not very effective for clustering datasets with more data
attributes and a relatively large amount of data, and the
classification accuracy can only reach about 80%. *e
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Table 6: Evaluation index value of IFPSO-SVM algorithm (Wine
dataset).

Precision Recall F1-Score Support
Type 1 1.00 1.00 1.00 14
Type 2 1.00 1.00 1.00 14
Type 3 1.00 1.00 1.00 8
Accuracy 1.00 36
Macro avg. 1.00 1.00 1.00 36
Weighted avg. 1.00 1.00 1.00 36
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classification accuracy of the IFPSO algorithm in this article
combined with KM reached 98.183%, and the Rand index
also reached 0.924, with a homogenization score of 0.905. It
is a clustering model with a better clustering effect.

6. Conclusion

For the problems of FOPSO algorithm and FODPSO al-
gorithm, which only improve the velocity update formula
with fractional factor, we consider adding new variables.*e
fractional derivation is performed on both velocity and
position formulas. It can reduce the dependence on mop-
erator α and increase the randomness of the particles. *e
probability of the population falling into the local optimum
is reduced. Experiments have also proved that the improved
algorithm has better convergence performance and better
ability to find the global optimal solution.

Aiming at the problem of low prediction accuracy of
SVM, this paper establishes the prediction model of
IFPSO-SVM.*e IFPSO algorithm is used to optimize the
error penalty factor of the SVM and the parameter of the
kernel function. Combining the heart dataset for simu-
lation experiments and comparing the prediction results
with the previous model, the results show that the IFPSO-
SVM model has the characteristics of higher prediction
accuracy and faster convergence speed. Moreover, it has a
good classification effect on two-category and multi-
category datasets. Due to the shortcomings of the KM
algorithm, such as excessive reliance on the selection of
the initial center, difficulty to obtain the global optimal
solution, and empty class, this paper uses the IFPSO al-
gorithm to select the clustering center of the dataset to
optimize the clustering effect. *e IFPSO-KM algorithm
has a fast convergence speed and a stable clustering result.
It is worth pointing out that the combination of fractional
particle swarm algorithm and mutation operation can
prevent empty classes and improve clustering accuracy at
the same time.

In the future research, adopting an adaptive algorithm
for the fractional order to better enhance the diversity and
randomness of particles shall be considered. For the dataset,
it is possible to consider setting different size impact factors
on the input feature vector according to the degree of im-
portance to facilitate better training of the model.
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