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With the proliferation of portable digital products, image quality degradation has received a lot of attention. As the most common
phenomenon in image degradation, the issue of image deblurring is the focus of much attention. Blind motion blur removal is the
main target of this paper. �e heavy-tailed distribution is the most dominant statistical feature of natural images. However, most
image deblurring methods use a gradient prior with �xed parameters to recover a clear image, which leads to loss of details in the
recovered clear image and does not consider the higher order prior of the natural image. �erefore, this paper proposes a new
regularized image recovery model based on the Gaussian-scale mixture expert �eld(GSM-FOE) model. First, the GSM-FoEmodel
learns �lters and corresponding parameters with higher order prior information of images by training images in a natural image
library; second, these learning results are used to guide the image recovery process. �e GSM-FoE model and gradient-�delity
based image recovery model is proposed, which can be used with an iterative re-weighted least squares (IRLS) method. Ex-
periments demonstrate that the suggested recovery approach is simple to use and successful at reducing blur and noise, as well as
suppressing ringing e�ects while preserving image information. Moreover, the image restoration method performs well for large
blurring kernels.�e results fully re�ect the e�ectiveness and robustness of the proposedmethod for complex noise scenarios.�e
quality of the generated images is signi�cantly better than that of several classical methods.

1. Introduction

Images are the primary form in which humans acquire,
express, and communicate visual information. Motion blur
is commonly used to portray the relative motion between the
target object and the camera using a blur kernel. �e goal of
deblurring is to recover a clear-edged image from the ob-
served blurred image for subsequent use in intelligent ap-
plications. �erefore, the problem of motion blur image
restoration is of great theoretical and practical importance.

Algorithms on image deblurring have also evolved in the
image �eld. Qin et al. proposed to remove motion blur based
on the feature information (transparency information) of
the image content itself [1]. Liu et al. proposed a deep
learning approach to estimate the probability distribution of
motion blur blocks using the CNN andMarkov random �eld

model and then use the information based on the image
blocks to solve the global inconsistent motion blur problem,
but the blind deblurring problem of a single image increases
the di�culty [2]. Abdelrahim estimated the blur kernel by
extracting the salient edges of the blurred image, but there is
a large amount of noise and ringing in the recovered image
[3] Sun et al. proposed a constraint based on the Laplace
prior that can better preserve the edge and detail infor-
mation of the recovered image [4]. Sun et al. introduces a
new model to guide the image restoration process, namely,
the use of continuous segmented function stitching to ap-
proximate the gradient distribution [5]. To better charac-
terize the sparse nature of image gradients, Kja et al.
proposed a constraint based on a super-Laplacian prior that
makes the recovered image more consistent with natural
scene properties, but the method cannot adaptively adjust
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the strength of the penalty for different regions in the image.
[6]. For the image noncoherent motion blur problem, Wang
proposed a deep learning method of convolutional neural
networks that can estimate and remove noncoherent motion
blur more effectively [7]. Yang et al. used the TV blind
convolution method, applying a sparse gradient prior as a
constraint to solve the blind convolution problem [8]. Based
on the edge information of the image, Xu et al. proposed a
blind deconvolution method for MAP estimation model of
the image [9]. In order to solve the problem of noncoherent
motion blur, Jin et al. proposed the method of estimating
blur kernel using a learning convolutional neural network
(CNN) [10]. In recent years, some scholars have broken
away from the original research idea and proposed the
concept of learning-based image restoration to replace the
smoothing constraint term based on regularization methods
[11–15]. ,e basic idea of this class of methods is to obtain a
priori knowledge of natural images through learning algo-
rithms. For image prior terms, Huang et al. proposes a
Gaussian scale mixture learning method combined with the
Bayesian minimum mean squared error estimation to train
the model [16]. In low-level computer vision, Nazarinezhad
et al. proposed to learn prior information of natural images
with the higher-order Markov random fields (MRF) [17].

Digital image processing techniques are increasingly
used in high-end fields, and the study of image deblurring is
the key factor to promote its development. Considering the
fact that common algorithms are still prone to multipeaks,
this paper proposed the GSM-FOE model, which represents
the spatial structure information of images, to mine the
higher-order prior knowledge of natural images, and learns
eight 3× 3 filters that contain the higher-order prior
knowledge of natural images. In the image restoration
process, the gradient information of the image is also in-
troduced into the image prior term in this paper. Experi-
mental results and comprehensive comparison analysis
demonstrate its superiority.

Concretely, our contributions are four-fold as follows:

(i) ,is paper argues that although the gradient dis-
tributions of natural images all obey a heavy-tailed
distribution, it is not appropriate to take a function
to approximate this distribution directly, which
would increase the error in the image recovery step.
,is will increase the error in the image recovery
step.

(ii) ,is paper argues that it is not sufficient to consider
only the first-order a priori information of natural
images. Based on a profound learning of the GSM-
FoE model, this paper uses the GSM-FoE model to
learn higher-order prior knowledge of natural im-
ages, and the results of these learned filters acting on
the images reflect their intrinsic feature
information.

(iii) ,e deblurring algorithm, which combines the
learning results with the gradient fidelity term, is
used to maintain the image details and edge in-
formation well and suppress the ringing effect.

(iv) For the image restoration model in this paper, we
give an effective solution that works well for large
images or large blur kernels.

2. GSM-FoE Model Offline Natural Image a
Priori Learning Method

2.1. FoE Method. In a regularization-based approach, the
Markov field (MRF) model can be used to model the spatial
structure information of an image using potential functions
to form a priori constraints. However, it is limited in that it
can only use a simple neighborhood structure (each pixel is
only related to its four nearest neighboring pixels), whereas
the FoE (Field of Expert) model, which represents the spatial
structure information of an image, can better address this
limitation and can learn higher-order prior knowledge from
the training image library. Figure 1 shows the flow process of
the FoE model.

An a priori model based on image spatial information is
introduced into the objective function of image deblurring.
In other words, the FoE model is incorporated into the
image restoration model. A neighborhood system is defined
for a m × m (m is generally odd) square region such that it
connects all nodes within the region. ,ere are km × m

systems of neighborhoods that may overlap with each other
throughout the image x. Each neighborhood center pixel k

(k � 1, . . . , K) then has an extremely large group x(k). ,e
potential function of the group x(k) is denoted by f(xk),
f(xk) � ΠN

i�1ϕ(JT
i x(k);Θ). Under the FoE model, the

probability density function of the image x is as follows:

P(x) �
1
Z
ΠK

k�1f x(k) 

�
1
Z
ΠK

k�1Π
N
i�1ϕ J

T
i x(k);Θ .

(1)

Among them,N denotes the number of expert functions,
ϕi is the expert function to be defined, Ji is the filter to be
learned, Θ denotes the set of parameters to be learned, and
the filter Z is the normalized parameter. ,e number of
parameters in the model depends only on the size of the
group and the number of filters, and there is no requirement
for the size of the learned image x. In practice, the model is
often transformed into the form of a Gibbs distribution for
convenience.

P(x) �
1
Z
exp −EFoE(x)( ,

EFoE(x) � − 
k



N

i�1
log ϕ J

T
i x;Θ .

(2)

2.2. Selection of Canonical Terms and Expert Functions under
the GSM-FoE Model. ,e literature [18] mentions, respec-
tively, the use of TV regularization and lp parametric reg-
ularization methods to fit the heavy-tailed distribution of
image gradients. In addition to TV regularization and lp
parametric regularization methods, the concept of learning-
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based image restoration has been proposed by some scholars
in recent years. In addition to �rst-order derivative infor-
mation, the intrinsic features of an image include higher-
order prior information, and learning methods that train the
prior can learn these higher-order priors from a given image
database and are therefore more accurate than methods that
approximate the prior.

If the image x in the training image library is trans-
formed into the image I in the image restoration process,
then the regular term describing the higher order prior of the
image p(I) under the FoEmodel can be expressed as follows:

P(I) �
1
Z
ΠKk�1Π

N
i�1ϕ JTi Ik;Θ( ). (3)

Among them,N denotes the number of expert functions,
ϕi is the expert function to be de�ned, Ji is the �lter to be
learned, Θ denotes the set of parameters to be learned, and
the �lter Z is the normalized parameter.

Under the MAP model, the selected expert function
needs to satisfy the condition that it is guaranteed to be
logarithmically continuous and di�erentiable. �ere are
three classical expert functions: one is based on the student-t
distribution, the second is Charbonnier’s light and heavy-
tailed expert function, and the third is the Gaussian scale
mixture expert function. In spite of losing detail, the Stu-
dent-t expert function’s logarithmic distribution is more
consistent with the heavy-tailed distribution than the
Charbonnier expert function. �e Gaussian scale mixture
expert function [19] not only retainsmore detail information
in the image but can also eliminate noise better, so the GSM
expert function is used in this paper.

Although the gradient distributions of natural images all
obey a neutral distribution, it is not reasonable to take a
function to approximate this distribution directly, which
would increase the error in the image recovery step.
�erefore, in this paper, the expert function represented by
the Gaussian scale mixtures with zero mean is chosen.

ϕ JΤi I;Θ( )∝ ∑
L

l�1

πl
σl
e− JΤi I( )2/2σ2l . (4)

Here, πl and σl are the parameters of Θ. Filter Ji with
higher order information about the image and the param-
etersΘ can be learned from the Berkeley image library using
the EM (Maximum Expectation) algorithm [20] with the
following training procedure:

Algorithm 1 describes the basis rotation algorithm.
Figure 2 shows the logarithmic distribution of the GSM

expert function. �e logarithmic distribution shows that the
GSM expert function has thicker tails on both sides and a
small spike in the middle, so the log-weighted tail distri-
bution is more approximate. �e advantage of the Gaussian
scale hybrid expert function is that it includes a variety of
represented expert functions, including Student-t experts
and Charbonnier experts, and the scales and parameters of
the GSM experts are adjustable, so the GSM experts are more
�exible and diverse. It is not su�cient to consider only the
�rst-order priori information of natural images. Based on a
deep learning of the GSM-FoE model, we learn the higher-
order prior knowledge of the natural images. 15 scales are
selected in the training process, and eight 3× 3 �lters are
learned.�e result of these �lters acting on the image re�ects
its intrinsic feature information. From the distribution of the
weights in Figure 2, it can be seen that the yellow, red, and
orange curves are more consistent with the heavy-tailed
distribution at the −3, −4 scale, which means that the weight
distribution at the −3, −4 scale �ts the higher-order prior of
the image better and can better re�ect the intrinsic char-
acteristics of the image itself. Based on the above analysis, the
GSM expert function is selected in this paper for the image
restoration process.

3. Image Deblurring Algorithm Based on the
GSM-FoE Model

�e quality of image recovery can be improved by using a
priori constraints on image spatial structure information in
regularized image recovery methods. �e advantages of the
FOE model in representing spatial structure information
have attracted increasing attention [21–23].

By taking into account the higher-order prior of natural
images, this paper introduces an a priori model based on
image spatial information in the objective function of de-
claring and applies the learning results under the model of
GSM FoE to guide image restoration. In the image resto-
ration process, considering that the image gradient term can
better suppress noise, this paper incorporates the gradient
�delity term into the image deblurring model as well, im-
proves the traditional regularization term, proposes a reg-
ularization method based on GSM FoE and gradient �delity,
applies it to the single image blind deblurring problem, and
gives an e�ective algorithm based on IRLS.

convolution
Pixelwise

expert
nonlinearity

Blurred Image I Filtered image Experts Recovered image

II

Figure 1: Flow process of the FoE model.
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3.1. Regularization Methods Based on the GSM-FoE Model.
�e energy function describing the higher order prior of the
image under the GSM FoE model can be expressed from the
reasoning in the literature [24] as follows:

E(I) � min
q
∑
i,l

ql
1
2σ2l

JΤi I( )
2
− ln

πl
σl
+ ln ql( ). (5)

Of these, ql∝ πl/σle− 1/2σ
2
l (J
Τ
i Ik)

2
,∑Ll ql � 1, l represent

scales, 15 scales were selected during the course of the
training. Ji denotes the �lter learned by training, and σl, πl{ }
is the parameter learned.

From the distribution about the weights of the GSM
experts at di�erent scales, it is known that the weights at the
−3, −4 scale are more in line with the heavy-tailed distri-
bution, so the −3, −4 scale is chosen in this section, which
can better �t the higher-order prior of the image.�is soft �t
can reduce the error in �tting the energy function and
improve the accuracy of the image prior when the restriction

is changed from (JΤi I)
2 to JΤi I. Based on the above analysis,

the energy function used in this paper is as follows:

E(I) �∑
i

1
2

1
2σ2(−3)

JΤi I( ) +
1

2σ2(−4)
JΤi I( ) − ln 4

π(−3) × π(−4)
σ(−3) × σ(−4)

 .

(6)

A conventional image restoration model based on reg-
ularization takes the following concrete form:

min
I
‖k∗ I − B‖22 + c‖∇I‖2. (7)

�e second of these is noise suppression through image
gradient information. More clear images with intrinsic
priori information are obtained using an image prior term
approach based on an expert �eld model. Within the
framework of the MAP model, this paper incorporates the
higher-order prior knowledge of natural images learned
from the GSM-FOE model into the image prior term, while

Input: Rotation �lter JΤi (base) as column composition matrix J, Berkeley training image bank, small image blocks Ik
(1) Step E: qj(k)∝ πj/σje

− 1/2σ2j(J
ΤIk)

2

(2) Step MM: R is the orthogonal matrix to be learned, satisfyingW � RJ, where r is the column vector of the orthogonal matrix R
r � eigmin JΤ(∑k,jqj(k)/σ2jI(k)IΤ(k))J
J � Jr
Output: �lter J

ALGORITHM 1: Basis Rotation Algorithm.
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Figure 2: Logarithmic distribution of GSM-FoE functions.

4 Mathematical Problems in Engineering



suppressing noise by introducing image gradients infor-
mation. ,e optimization model is as follows:

minI ‖ I⊗ k − B‖
2
2 + λI

i

1
2

1
2σ2(−3)

J
T
i I  +

1
2σ2(−4)

J
T
i I  − ln 4

π(−3) × π(−4)

σ(−3) × σ(−4)

⎛⎝ ⎞⎠,

min
I

‖ I − I‖
2
2 + c ‖ ∇I‖

2
.

(8)

To solve model (9), we use an algorithm based on the
iterative reweighted least squares (IRLS) method and the
conjugate gradient method [20] for the iterative solution.
,e weights updated for each iteration are as follows:

w
(i)
v �

1
2 σ2(−3) + σ2(−4)  J

T
i Iv−1 

, (9)

where v denotes the position of the pixel in the image. ,e
advantage of the new improved model is that this soft fit
reduces the error of the energy function and thus improves
the accuracy of the image prior.

Before giving the algorithms in this paper, we illustrate
some notation as follows:

(1) ,e symbol Cϕ is used to denote a Toeplitz matrix,
i.e., the matrix indistinct is first pulled into a row
vector form, Cϕ denotes the matrix formed by the
elements of this row cycling backwards each time
and then arranging them in rows.

(2) ,e convolution B � k⊗ I of the image is expressed
in a matrix form: B � CkI.To ensure that the matrix
is multipliable, the rest of the values of the elements
of each row in Ck, except for the elements of the
fuzzy kernel k, are complemented by 0.

(3) J denotes the learned filter.

Algorithm 2 describes the estimation process for clear
images:

3.2. Process of Blind Image Deblurring. ,e recovery of
blurred images in this paper is divided into three parts:
offline GMS higher-order prior learning training, blur kernel
estimation, and clear image recovery, as shown in flowchart
Figure 3.

Assuming that motion blur is spatially globally consis-
tent, the recovery model in this paper estimates the blur
kernel k and the clear image I by iterating the following two
equations alternatively.

min
I

‖ I⊗ k − B‖
2
2 + c ‖ ∇I‖

2
+ λIE(I),

min
k

‖ I⊗ k − B‖
2
2 + λk ‖ k‖

2
2 + μC(k).

(10)

Among them, K is the unknown fuzzy kernel and ⊗ is
the 2D convolution operator. Under the assumption of
Gaussian noise, the fidelity term E(B|I, k) is generally

denoted as ‖I⊗ k − B‖22. E(I) is an image prior term based on
the GSM-FoE model, which guides the recovery of clear
images by mining the higher-order prior information of
natural images. ‖∇I‖2 is based on image gradient infor-
mation to suppress noise. λk‖k‖22 is the fuzzy kernel prior
term. ,e weights λk and λI are the parameters of the kernel
prior and the image prior, respectively, are the parameters of
the image gradient and are the parameters of the discrete
metric C(k).

,e fuzzy image is first converted into a gray-scale
image; in the estimation stage of the fuzzy kernel, given the
input iterative image I, this paper uses a constraint-based l0
approach to extract the significant structure; in order to
retain more structural information, the strong edges are
restored with impact filtering; finally, the fuzzy kernel is
estimated.

In the image recovery phase, the offline GMS-FoE model
is used to train the Berkeley image database so as to learn
higher-order prior knowledge of natural images, which is
used to guide the recovery of clear images; the GSM-FoE
prior model and the gradient-fidelity regularization term are
used as model constraints, and an optimization algorithm is
proposed.

,e detailed parts of blurred images tend to cause
inaccuracy in the estimation of the blur kernel. ,e double-
sided filter allows more low frequency information to be
retained. ,e specific algorithm is as follows:

F(I(x)) �
1

Zx


y∈T

f(|x − y|)g(|I(x) − I(y)|)I(y). (11)

Among them, x and y are the coordinates of the pixel
points in the image, W is the image pixel space, Zx is the
normalized term, I is the image to be filtered, F(I(x)) is the
image after bilateral filtering, and both f and g denote
domain filters.

Considering the problem of noise in the image, this
paper performs a bilateral filtering algorithm on Ib of Al-
gorithm 2 to obtain the image Ib′. Calculate the image detail
layer as Id � Ib − Ib′. Finally, a clear image Is

′ � I + Id with
more detailed information is obtained.

In recent years, many papers have considered sparsity
constraints in the kernel estimation process, but they tend to
lead to non-convexity problems. To avoid this problem and
to take into account the continuity of the kernel, the kernel
estimation model [24] used in this paper is as follows:
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min
k
‖ ∇I⊗ k − ∇B‖2 + λk ‖ k‖

2
2 + μC(k),

s.t.k(x, y)≥ 0 and ∑
(x,y){ }

k(x, y) � 1. (12)

Among them, C(k) � # (x, y)||zxk(x, y)| + |zyk(x, y){
|≠ 0} . Due to the use of discrete metricsC(k) , the solution is
to alternate iterations of the following two processes.

min
k
‖ ∇I⊗ k − ∇B‖2 + λk ‖ k‖

2
2,

min
k
‖ k̂ − k‖2 + μC(k̂).

(13)

λk and μ denote adjustable parameters to balance the
strength of the �delity and kernel similarity terms. �e �rst
process is a convex function on the fuzzy kernel k. �e
second process is the L0 gradient minimization problem.

Once the fuzzy kernel has been estimated, the image can
be recovered using the fuzzy image and the estimated fuzzy
kernel. In order to make full use of the learned higher order
prior knowledge, while avoiding noise in the image recovery
process, a GSM FoE prior model and gradient �delity regular
terms are used and the recovery model is as follows:

min
I
‖ k∗ I − B‖22 + c ‖ ∇I‖2 + λI∑

i

1
2

1
2σ2(−3)

JTi I( ) +
1

2σ2(−4)
JTi I( ) − ln 4

π(−3) × π(−4)
σ(−3) × σ(−4)

 . (14)

Input: Fuzzy kernels k, Filters J, Fuzzy image B, steps iter
Initialization: value w(0)i � 1;

(1) Calculate A � CT
kCk + λ∑

N
CT
Ji
CJi, b � C

T
k B;

For v � −1: iter
(2) Calculate A � ∑i�1N ATw(i)v A, b � ∑

i�1
N ATw(i)v b;

(3) Solving systems of equations using the conjugate gradient method AI � b, result is Iv
(4) Value uv � AIv − b,

If uv > ther then w
(i)
v+1 � 1/2(σ2(−3) + σ2(−4))JTi Iv−1

Else exit
End

Output: Clear image I∗

ALGORITHM 2: Algorithms IRLS.

Fuzzy image
Learning out
image features
using GSM

Impact filtering
(repair of strong
edges)

Bilateral
filtering
(enhances detail
information)

Fuzzy kernel
estimation

Final recovery
image

Selecting the
edge of
significance

Judge

Temporary
images

Extraction of salience structure

Figure 3: Flowchart of the proposed blind deblur algorithm.

6 Mathematical Problems in Engineering



Ji, πl, σl, l � −3, −4  indicates the filter that has been learned
and the parameters.

Value a � σ2−3 + σ2−4/2σ
2
−3σ

2
−4, b � ln 4π−3 × π−4/σ−3

× σ−4. ,e relative energies ratio of the regularization
methods based on the GSM-FOE model is i,p∈Ia(JTi I)

−b/i,p∈Ia(JTi B) − b. Experiments show that the property
that a regular term based on GSM-FOE model and gradient
fidelity has an image energy greater than that of a clear
image, making the model converge more towards the clear
image.

4. Numerical Experiments and Analysis

In this paper, a coarse to fine multiscale approach is used to
recover a clear image. ,e total number of layers is deter-
mined by the size of the fuzzy kernel k. ,e size of k de-
termines the number of iteration steps per layer to be 25.
First, the color image is converted into a gray-scale image, on
which the saliency structure is extracted; second, the esti-
mation of the blur kernel and the recovery of the image are
performed; then, the recovered image is upsampled and used
as the initial input for the next iteration. In the final image
restoration stage, the three channels of the color image are
processed separately.

,e parameters of the experiments are set as follows: the
parameters in the model β � 0.7, λk � 0.001, and μ � 0.01.
,e parameters under the GSM-FoE model λI and c are
adjustable parameters, and the experiments generally take
λI � 0.001, c � 0.01, the number of expert functions N � 8,
and the window size 3 × 3. ,e EM learning algorithm is
applied to learn eight filters and their corresponding pa-
rameters from the training database set.

,e simulation platform is MATLAB R2018a, the
computer configuration is: 64 bit windows 10 system,
Pentium dual-core 2.8GHz, runningmemory is 2GB. In our
experiments, our learning data came from the Berkeley
Segmentation Benchmark image library. ,ere are 500
benchmark images in this database, including many com-
mon natural scenes in everyday life, such as animals, people,
landscapes, buildings, etc. It is the most commonly used
image database for image segmentation, edge detection, and
other related fields. ,e eight 3× 3 filters used in the fol-
lowing experiments are the result of learning this database as
a whole, which is undoubtedly very time consuming. Given
the efficiency of the experiments, the user can also manually
select images in the image library that have some correlation
with the blurred image B for training.

4.1. Experimental Comparison of Image Prior Terms with and
without the Gradient Fidelity Term. Tikhonov first proposed
to use this constraint on the squared norm ‖∇I‖22 of the
gradient as a regular term to solve the discomfort problem of
images to better remove noise. In this paper, we combine the
gradient fidelity term with the GSM-FoE model, proposing a
novel image regularity term. ,e experimental results show
that the addition of a gradient fidelity term significantly
suppresses noise in the recovered image and reduces the
generation of the ladder effect. Since the gradient fidelity

term is a convex problem that can be solved by the fast
Fourier transform, it does not destroy the existence of the
optimal solution of the deblurred model.

Figure 4 shows an experimental comparison of the image
prior term with and without the gradient fidelity term.
Figure (a) shows a clear image, figure (b) shows a blurred
image, figure (c) shows the image restoration results with
only the GSM FoE model introduced in the image prior
term, and figure (d) represents the introduction of the GSM-
FoE model and the gradient fidelity term in the image prior
term. In terms of the recovery results, some information
such as edges and textures are partially missing in figure (c).
Figure (d) not only eliminates the noise but also suppresses
the ringing effect by adding the image gradient fidelity term,
and the recovered image has a clearer and more natural
visual effect at the edges and textures.

4.2. Comparison of Quantitative Experiments. Using accu-
racy and time-consuming experiments as indicators, liter-
ature [5], literature [18], and literature [20] were used as
control groups for the experiments and their experimental
results were compared with the experimental results of this
research method. ,e Bregman reweighted alternating
minimization (BRAM) was applied to image deblurring [5].
Nonblind image deblurring was proposed via deep learning
(DL) in a complex field [18]. ,e image restoration method
used in this paper is the GSM-FOE model. ,e gradient-
based conditional generative adversarial network (CGAN)
was used to image deblurring [20]. ,e experimental data
samples were obtained from the Berkeley image database,
and the effect of different methods on the recovery of de-
graded images was verified through synthetic datasets.

4.2.1. Recovery Time Comparison. 500 blurred images under
synthetic data were selected for blind recovery, and the
algorithm in this paper was compared with other three
algorithms for recovery time, and the experimental results
are shown in Figure 5.

According to the analysis of the data in Figure 5, the
recovery times for the methods of literature [18], literature
[20] and this paper are relatively short when the number of
images is small. Between 190 and 230 images, there is a
relatively large qualitative change in the recovery time of the
methods of literature [5], literature [18], and literature [20]
as the number of images increases, followed by a relatively
stable oscillation. Overall, as the number of images increases,
the recovery time of the method in this paper is relatively
stable and the time required for recovery is short and
efficient.

4.2.2. Comparison of the Degree of Recovery. To further
validate the performance of this method, PSNR (peak signal-
to-noise ratio), MSE (mean square error), and the degree of
recovery were used as test metrics, and the methods of
literature [5], literature [18], and literature [20] were used as
control groups to blindly recover blurred images,
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respectively, to compare the recovery e�ects of the �ve al-
gorithms, and the metric data are shown in Table 1.

�e experiments show that the peak signal-to-noise ratio
value of the method in this paper is 93.25 db, which is at least
7 db higher than that of other methods in the literature. �e
mean square error value is 15.18%, which is much lower than
that of other methods. Figure 6 shows the comparison of the
recovery degree of di�erent methods. As shown in Figure 6,
as the number of images increases, the recovery degree of the
literature [18] method shows a sudden low change between
the number of 10 and 50 images, followed by a smooth
decrease. Overall, there is a steady oscillation in the degree of
recovery in literature [5] and literature [20] as the number of
images increases, while the degree of recovery of the method
in this paper then increases and is signi�cantly higher than
that of the other three literature methods, indicating that the

recovery results in this paper are clearer and better maintain
the details of the images.

4.3. Recovery E�ect. �e blind recovery experiments of the
method are shown in Figure 7, where the fuzzy kernel is
unknown. On the left is the fuzzy image, and on the right is
the recovery result. In addition to the �rst-order derivative
information, the intrinsic features of the image also include
higher-order prior information, and the training prior
learning method can learn these higher-order priors from a
given image database, so the regular term method in this
paper is more accurate than the approximation prior
method. In terms of the overall visual e�ect, this paper
e�ectively suppresses the ringing e�ect while removing blur,
and maintains the edges of the image well.

(a) (b) (c) (d)

Figure 4: Results with and without the gradient �delity term in the GSM-FoE model. (a) Clear image. (b) Blurred image. (c) No gradient
�delity term. (d) With gradient �delity term.
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Figure 5: Comparative results of recovery times for di�erent methods.
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5. Conclusion

Image deblurring techniques have a wide range of appli-
cations in daily life, industrial production, and other �elds
and have received widespread attention in research areas
such as image processing and computer vision. �e method
of learning with the GSM-FoE model can better �t the
higher-order prior of natural images and accurately portray
the global prior knowledge of natural images. �e graph of
the logarithmic distribution of the expert function shows
that the Gaussian mixed-scale expert function �ts the heavy-
tailed distribution better than other expert functions. In this
paper, using the GSM-FoE model, 500 images from the
Berkeley database were trained to learn eight �lters and the
corresponding parameters.

In this paper, these learning results under the line of
GSM-FoE model are used to guide the image restoration
process in the objective function of image deblurring. In the
image restoration process, the gradient �delity term is also
incorporated into the image deblurring model in this paper,
considering that the image gradient term can better suppress
noise, so the traditional regular term is improved. An ef-
fective algorithm based on IRLS is proposed for the GSM-
FoE model and the image gradient �delity based regular
term, which adaptively changes the parameter values during
the iterative process and the recovered image can better
maintain the details. In this paper, an e�cient algorithm
with alternate iterations of fuzzy kernel and image recovery
is used, and experiments show that the algorithm can ef-
fectively handle the case of large fuzzy kernels.

Table 1: Evaluation indicator values for each method.

Evaluation indicators BRAM [5] DL [18] CGAN [20] GSM-FoE
PSNR/DB 76.59 83.45 85.64 93.25
MSE/% 24.6 38.17 34.94 15.18
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Figure 6: Comparative results of the degree of recovery by di�erent methods.

Figure 7: Experimental results of the method in this paper.
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In future research work, more consideration needs to be
given to the following issues. First, training against the
Berkeley image library is time-consuming, so we need to find
a relatively fast learning method; second, given the diversity
of learning models, further research studies will follow on
other learning models and their application in the direction
of image deblurring. ,erefore, the next step is to investigate
a more efficient method of extracting saliency structure,
which can incorporate it into the global inconsistent image
deblurring problem.
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