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Measurements of graphs and retrieving structural information of complex networks using degree-based network entropy have
become an informational theoretical concept. (is terminology is extended by the concept of Shannon entropy. In this paper, we
introduce entropy with graphs having edge weights which are basically redefined Zagreb indices. Some bounds are calculated to
idealize the performance in limiting different kinds of graph entropy. In addition, we discuss the structural complexity of
connected graphs representing chemical structures. In this article, we have discussed the edge-weighted graph entropy with fixed
number of vertices, with minimum and maximum degree of a vertex, regular graphs, complete graphs, complete bipartite graphs,
and graphs associated with chemical structures.

1. Introduction

In network theory, entropy measure has become an inter-
esting field during last 5 decades due to Shannon [1].
Rashevsky [2] defined partitions of vertex orbits to study
structural information. Later on, Mowshowitz [3] used the
same concept to prove certain properties for some opera-
tions of graphs (see [4]). Graph entropy measurement was
used by Rashevsky to study structural complexity of graphs
based on Shannon’s entropy. Mowshowitz [3] introduced
applications of graph entropy in information technology.
(e other applicaitons of graph entropy include charac-
terizing graph patterns in chemistry, biology, and computer
scineces [5]. In the literature, the graph entropy was defined
in different ways. An important example is Körner’s entropy
[6] introduced with an information theory-specific point of
view.

(e basic properties of graph entropy were discussed in
[7]. (e graph entropy satisfies subadditive property in
union of graphs which can be extended in graph covering
problem and the problem of perfect hashing.

Graph entropy used for minimum number of perfect
hash functions over a given range of hash for all k-subsets
of a set of given size is discussed in [8]. Another application
of graph entropy is due to Kahn and Kim [9], who proposed
an algorithm based on graph entropy of an appropriate
comparability graph. Csiszar et al. [10] in 1990 charac-
terized minimal pairs of convex corners which generate the
probability density p � (p1, p2, . . . , pk) ∈ in a
k− dimensional space. Due to this fact, another definition of
graph entropy in terms of vertex packing polytope of a
graph was introduced. (ey also gave characterization of a
perfect graph using the subadditivity property of graph
entropy (see [6]). (eir examinations prompted the
thought of a class of graphs called normal graphs, a gen-
eralization of perfect graphs given in [11]. Alon and
Orlitsky [12] examined the connection between the base
entropy shading of a graph and the graph entropy. Dis-
tinctive graph invariants are utilized to create graph en-
tropy estimates, for example, eigenvalue and network data
[13], weighted graph entropy with distance-based TIs as
edge weights [14], and weighted graph entropy with degree-
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based TIs as edge weights [15]. (ere are various uses of
graph entropy in interchanges and financial matters.

Different graph invariants such as connectivity infor-
mation, distance-based topological indices (Wiener related
index), degree-based topological indices, the no. of vertices,
the vertex degree sequences, the second neighbor degree
sequences, the third neighbor degree sequences, eigenvalues,
and so on were used to define graph entropy in the literature
(see[16]). (e properties of graph entropies based on in-
formation functionals by using degree powers of graphs have
been explored in [17, 18]. (e most important graph in-
variants are the Zagreb index [19] and the zeroth-order
Randic index [20]. Chen et al. [21] proposed the idea of
graph entropy for unique weighted graphs by utilizing
Randić edge weights and demonstrated extremal properties
of graph entropy for some basic groups. Kwun et al. [22]
established the weighted entropy with atomic bound con-
nectivity edge weights.

In this paper, the idea presented in [23] is used to study
the weighted graph entropy by using redefined Zagreb in-
dices as edge weights. Some degree-based indices are por-
trayed by researching the boundaries of the entropy of
certain class of graphs [22]. Our aim is also to address the
issue proposed by Chen et al. in [21] and Kwun et al. in [24].
(e paper is organized into different sections to discuss the
proposed problems.

2. Topological Index

In chemical structures, various graph notions used are
molecular descriptors (or topological index). Few of them
are first and second Zagreb indices M1(G) and M2(G),
respectively, exhibiting applicability for deriving multi-lin-
ear regression models. Details on the chemical applications
of these indices can be seen in [25, 26]. More results on
Zagreb indices can be seen in [27, 28]. Applications of
Zagreb indices in QSPR were exposed by modeling the
structure-boiling point associated with C3 − C8 alkanes
using the CROMRsel method [29, 30]. A large number of
studies have been conducted on these two indices.

Ranjini et al. [31] introduced redefined first, second, and
third Zagreb indices as

RZ1(Γ) � 􏽘
e�xy∈E(Γ)

dx + dy

dx · dy

,

RZ2(Γ) � 􏽘
e�xy∈E(Γ)

dx · dy

dx + dy

,

RZ3(Γ) � 􏽘
e�xy∈E(Γ)

dx · dy􏼐 􏼑 dx + dy􏼐 􏼑.

(1)

3. Entropy

(e entropy of a graph is a functional depending both on the
graph itself and on a probability distribution on its vertex set.

(is graph functional originated from the problem of source
coding in information theory and was introduced by Körner
in 1973.

Consider a graph Γ having order q with degree of a vertex
x denoted by dx. For any edge xy, the probability density
function is defined as

pxy �
w(xy)

􏽐
dx

y�1w(xy)
, (2)

where w(xy) is the weight xy and w(xy> 0).
(e weighted graph entropy is defined as

H vx( 􏼁 � − 􏽘 pxy · log pxy􏼐 􏼑. (3)

Extending this method, we introduced entropy of the
edge-weighted graph. For an edge-weighted graph,
Γ � (x, E, w), where x, E, and w denote vertex sets, edge sets,
and edge weights of Γ, respectively, where the edge weight is
positive.

Let Γ � (x, E, w) be an edge-weighted graph, and the
entropy of Γ is

I(Γ, w) � − 􏽘
xy∈E(Γ)

pxy · log pxy􏼐 􏼑,
(4)

where pxy � w(xy)/􏽐xy∈E(Γ)w(xy).

4. Main Results

In this section, we extend the idea of graph entropy as edge-
weighted graphs explained in [23] that tackled the issue of
weighted synthetic graph entropy. We also addressed the
issue proposed by Chen et al. in [21] and Kwun et al. in [24].
Now we present bounds of the weighted entropy for the
connected graphs, regular graphs, complete graphs, com-
plete bipartite graph,s and graphs associated with chemical
structures. In these results, the edge weights are redefined
first, second, and third Zagreb indices.

Theorem 1. Let Γ be a connected graph with q, q≥ 3 vertices;
then, we have

(1) log(RZ1) − log(3/(q − 1)2)≤ I(Γ,ReZ1)≤ log
(RZ1) − log(q − 1).

(2) log(RZ2) − log(1/(q − 2))≤ I(Γ,ReZ2)≤ log(RZ2)

− log((q − 1)2/3).
(3) log(RZ3) − log(4q − 8)≤ I(Γ,ReZ3)≤ log(RZ3)

− log(3(q − 1)2).

Proof
(1) In simple connected graph Γ, of order q, the maximum

and minimum degrees for a vertex are q − 1 and 1, re-
spectively. (erefore, for any edge xy, the minimum and
maximum possible degrees of x and y are 1, 2 and
q − 1, q − 1, respectively. (erefore, we have
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I Γ,RZ1( 􏼁 � − 􏽘
xy∈E(Γ)

pxylog pxy􏼐 􏼑

� − 􏽘
xy∈E

(Γ)
w(xy)

􏽐
dx

y�1w(xy)
· log

w(xy)

􏽐
dx

y�1w(xy)

⎛⎝ ⎞⎠

� − 􏽘
xy∈E(Γ)

dx + dy/dx · dy􏼐 􏼑

− 􏽐xy∈E(Γ) dx + dy/dx · dy􏼐 􏼑

× log
dx + dy/dx · dy􏼐 􏼑

− 􏽐xy∈E(Γ) dx + dy/dx · dy􏼐 􏼑
⎛⎝ ⎞⎠,

I Γ,RZ1( 􏼁 �
− 1

RZ1
− 􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy/dx · dy􏼐 􏼑

RZ1

⎛⎝ ⎞⎠

�
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≤ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 ×[log(2q − 2) − log(2)]⎛⎝ ⎞⎠

� log RZ1( 􏼁 − log(q − 1).

(5)

Also,

I Γ,RZ1( 􏼁 � − 􏽘
xy∈E(Γ)

w(xy)

􏽐
dx

y�1w(xy)
· log

w(xy)

􏽐
dx

y�1w(xy)

⎛⎝ ⎞⎠

� − 􏽘
xy∈E(Γ)

dx + dy/dx · dy􏼐 􏼑

− 􏽐xy∈E(Γ) dx + dy/dx · dy􏼐 􏼑

× log
dx + dy/dx · dy􏼐 􏼑

− 􏽐xy∈E(Γ) dx + dy/dx · dy􏼐 􏼑
⎛⎝ ⎞⎠

�
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy/dx · dy􏼐 􏼑

RZ1

⎛⎝ ⎞⎠

�
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≥ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log(3) − log (q − 1)
2

􏽨 􏽩⎛⎝ ⎞⎠

� log RZ1( 􏼁 − log
3

(q − 1)
2􏼠 􏼡.

(6)

Hence,
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log ReZ1( 􏼁− log
3

(q − 1)
2􏼠 􏼡≤ I Γ,ReZ1( 􏼁

≤ log ReZ1( 􏼁 − log(q − 1).

(7)

(e proofs of (2) and (3) follow the proof of (1). □
Theorem 2. Let Γ be a graph having q vertices with minimum
and maximum degrees of c being δ and Δ, respectively. 9en, we
have

(1) log(RZ1) − log(2δ/Δ2)≤ I(Γ,RZ1)≤ log(RZ1) − log
(2Δ /δ2).

(2) log(RZ2) − log(δ2/2Δ)≤ I(Γ,RZ2)≤ log(RZ2) − log
(Δ2/2δ).

(3) log(RZ3) − log(2Δδ2)≤ I(Γ,RZ3)≤ log(RZ3) − log
(2δΔ2).

Proof
(1) For a connected graph of order q, the minimum and

maximum degrees for a vertex are 1 and q − 1, respectively.
For any edge xy, the minimum and maximum possible
degrees of vertices x and y are 1, 2 and q − 1, q − 1, re-
spectively. (erefore, we have

I Γ,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≤ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log(2Δ) − log (δ)
2

􏽨 􏽩⎛⎝ ⎞⎠

� log RZ1( 􏼁 − log
2Δ
δ2

􏼠 􏼡.

(8)

Also,

I Γ,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≥ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log(2δ) − log Δ2􏼐􏽨 􏽩⎛⎝ ⎞⎠

� log(AZI) − log
2δ
Δ2

􏼠 􏼡.

(9)

Hence,

log(AZI) − log
2δ
Δ2

􏼠 􏼡≤ I(Γ,AZI)

≤ log ReZ1( 􏼁 − log
2Δ
δ2

􏼠 􏼡.

(10)

(e proofs of (2) and (3) follow the proof of (1). □
Theorem 3. For a regular graph Γ � (V, E, w) of order
q, q≥ 3, we have

(1) log(RZ1)≤ I(Γ,RZ1)≤ log(RZ1(q − 1)/2).
(2) log(RZ2)≤ I(Γ,RZ2)≤ log log(2RZ2/(q − 1)).
(3) log(RZ3/16)≤ I(Γ,RZ3)≤ log(RZ3/2(q − 1)3).

Moreover, log(RZ1) � I(Γ,RZ1) iff Γ is cyclic graph and
log(AZI) − log(RZ1(q − 1)/2) iff Γ is complete graph.

Proof. For a t regular graph t≥ 2, as Γ is connected with
q≥ 3,

I Γ,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≤ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log(2q − 2) − log (q − 1)
2

􏽨 􏽩⎛⎝ ⎞⎠

� log
RZ1(q − 1)

2
􏼠 􏼡.

(11)

4 Mathematical Problems in Engineering



Also

I Γ,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≥ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log(2q − 2) − log (q − 1)
2

􏽨 􏽩⎛⎝ ⎞⎠

� log RZ1( 􏼁 − ([log(4) − log(4)])

� log RZ1( 􏼁.

(12)

Hence,

log RZ1( 􏼁≤ I Γ,RZ1( 􏼁

≤ log
RZ1(q − 1)

2
􏼠 􏼡.

(13)

(e proofs of (2) and (3) follow the proof of (1). □

Theorem 4. Let Γ � (V, E, w) be an arbitrary complete
graph of order q; then, we have

(1) I(Γ,RZ1)≤ q2/2 − log(q/2).
(2) I(G,RZ2)≤ (q2/2) − log(q/2).
(3) I(G,RZ3)≤ 2q2 − log(2q).

Proof. For an arbitrary complete graph Γ of order q, we have
RZ1 ≤ (q2/2); therefore, the result is obvious. □

Theorem 5. For an arbitrary complete bipartite graph
Γ � (V, E, w) with q vertices, we have

(1) log(RZ1) − log(q/q − 1)≤ I(Γ,RZ1)≤ log(RZ1)

− log(2/(q/2)).
(2) log(RZ2) − log(q − 1/q)≤ I(Γ,RZ2)≤ log(Γ,RZ2) −

log((q/2)2/2(q /2)).
(3) log(RZ3) − log(q2 − n)≤ I(Γ,RZ3)

≤ log(RZ3) − log(2(q/2)3).

Moreover, log(RZ1) − log(q/q − 1) � I(Γ,RZ1) iff Γ is a
star graph, and I(Γ,AZI) � log(RZ1) − log(2/(q/2)) iff Γ is
complete bipartite graph (balanced).

Proof
(1) Assume that Γ is a complete bipartite graph with q

vertices with two parts having s and t vertices, respectively.
(erefore, we have s + t � q, and we have

I Γ,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≤ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 ×[log(s + t) − log(st)]⎛⎝ ⎞⎠

� log RZ1( 􏼁 − log
s + t

st
􏼒 􏼓.

(14)

For minimum value, we take s � 1 and a � q − 1, while
for maximum value, s � a � (q/2), and hence

log RZ1( 􏼁 − log
q

q − 1
􏼠 􏼡≤ I(Γ,AZI)

≤ log RZ1( 􏼁 − log
2

(q/2)
􏼠 􏼡.

(15)

(e proofs of (2) and (3) follow the proof of (1). □

Chemical graphs are associated with structure of
chemical compounds. (erefore, we consider atoms as
vertices and chemical bonds as edges of that graph. (e
following theorem provides bounds for weighted graph
entropy of chemical graph by assigning RZ1 as edge weights.

Theorem 6. Let Γ be a graph with q vertices associated with a
chemical structure; then, we have

(1) log(16(RZ1)/3)≤ I(Γ,RZ1)≤ log(RZ1/4).
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(2) log(4(RZ2))≤ I(Γ,RZ2)≤ log(3(RZ2)/16).
(3) log(RZ3/16)≤ I(Γ,RZ3)≤ log((RZ3)/48).

Proof
(1) For a chemical graph Γ′, for any edge xy, the maximum

degrees of x and y are 4 and 4 and minimum possible
degrees are 1 and 2. So, we have

I G,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≤ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 ×[log(8) − log(2)]⎛⎝ ⎞⎠

� log
RZ1

4
􏼠 􏼡.

(16)

Similarly,

I G,RZ1( 􏼁 �
− 1
RZ1

− 􏽘
xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 × log
dx + dy

dx · dy

􏼠 􏼡 − log RZ1( 􏼁⎛⎝ ⎞⎠

≥ log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 ×[log(3) − log(16)]⎛⎝ ⎞⎠

� log
16 RZ1( 􏼁

3
􏼠 􏼡.

(17)

(erefore,

log
16 RZ1( 􏼁

3
􏼠 􏼡≤ I Γ,RZ1( 􏼁≤ log

RZ1

4
􏼠 􏼡. (18)

(e proofs of (2) and (3) follow the proof of (1). □

5. Numerical Examples

Example 1. (e molecular graphs of carbon nanotubes
VC5C7[p, q] are depicted in Figure 1. (e structure of

VC_5C_7 [p,q] nanotubes consists of C_5 loops and C_7 net
following the trivalent decoration. It can cover a cylinder or a
ring. Two-dimensional lattice of VC5C7[p, q] is depicted in
Figure 1. Now, we focus on calculating the entropy of a given
structure.

It can be observed from Figure 1 that the edge set of
VC5C7[p, q] has partition given in Table 1.

(erefore, the entropy of Γ is computed as

I Γ,RZ1( 􏼁 � log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy

dx · dy

􏼠 􏼡⎛⎝ ⎞⎠

� log(24pq + 2p) −
1

24pq + 2p
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
3

􏼒 􏼓 · log
2
3

􏼒 􏼓􏼒 􏼓

� log(24pq + 2p) −
1

24pq + 2p
(24pq − 6p)

4
4

􏼒 􏼓 · log
· 4

4
􏼒 􏼓􏼒 􏼓 +(12p)

2
3

􏼒 􏼓 · log
2
3

􏼒 􏼓􏼒 􏼓

� log(24pq + 2p) +
1.408738p

24pq + 2p
.

(19)
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Also,

I Γ,RZ2( 􏼁 � log RZ2( 􏼁 −
1

RZ2
􏽘

xy∈E(Γ)

dx · dy

dx + dy

􏼠 􏼡 · log
dx · dy

dx + dy

􏼠 􏼡⎛⎝ ⎞⎠

� log(24pq + 12p) −
1

24pq + 12p
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3
2

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒 􏼓

� log(24pq + 12p) −
1

24pq + 12p
(24pq − 6p)

4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓􏼒 􏼓 +(12p)
3
2

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒 􏼓

� log(24pq + 12p) −
1.408738p

24pq + 12p
.

(20)

Moreover,

I Γ,RZ3( 􏼁 � log RZ3( 􏼁 −
− 1

RZ3

− 􏽘
xy∈E(Γ)

dx + dy􏼐 􏼑 dx · dy􏼐 􏼑 · log dx + dy􏼐 􏼑 dx · dy􏼐 􏼑􏼐 􏼑􏼐 􏼑 dx + dy􏼐 􏼑􏼐⎛⎝

� log(384pq − 552p) −
1

384pq − 552p
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(16) · log(16) + E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(54) · log(54)􏼐 􏼑

� log(384pq − 552p) −
1

384pq − 552p
((24pq − 6p)(16) · log(16)) +(12p)((54) · log(54))

� log(384pq − 552p) −
462.3820pq − 115.5955p

384pq − 552p
􏼠 􏼡.

(21)

Example 2. (e molecular graphs of carbon nanotubes
VC5C7[p, q] and HC5C7[p, q] are shown in Figures 2 and 3,
respectively. (e structure of these nanotubes consistes of
C_5 loops and C_7 net following the trivalent decoration. It
can cover a cylinder or a ring. Two-dimensional lattice of
VC5C7[p, q] is depicted in Figure 2 and that of HC5C7[p, q]

is depicted in Figure 3. Now, we focus on calculating the

entropy of a given structure. From Figure 2, it can be ob-
served that the edge set of VC5C7[p, q] has the following
partitions.

It can be observed from Figure 3 that the edge set of
HC5C7[p, q] can be divided into following three classes as
given in Table 2.

Furthermore,

Figure 1: VC5C7[p, q].

Table 1: Edge partition based on end vertices’ degree of VC5C7[p, q].

(da, db) (2, 2) (3, 3)

Number of edges 24pq − 6p 12p

Mathematical Problems in Engineering 7



I Γ,RZ1( 􏼁 � log RZ1( 􏼁 −
1

RZ1
􏽘

xy∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy

dx · dy

􏼠 􏼡⎛⎝ ⎞⎠

� log(20pq + 3p) −
1

20pq + 3p
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
3

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒 􏼓

+ E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
5
6

􏼒 􏼓 · log
5
6

􏼒 􏼓􏼒 􏼓

� log(20pq + 3p) −
1

20pq + 3p
(p)

4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓􏼒 􏼓 +(8p)
2
3

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒 􏼓

+(24pq − 4p)
5
6

􏼒 􏼓 · log
5
6

􏼒 􏼓􏼒 􏼓

� log(20pq + 3p) +
1

20pq + 3p
,

Figure 2: HC5C7[p, q].

Figure 3: Naphtalenic nanotubes.

Table 2: Edge partition based on end vertices’ degree of HC5C7[p, q].

(da, db) (2, 2) (3, 3) (2, 3)

Number of edges p 8p 24pq − 4p
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I Γ,RZ2( 􏼁 � log RZ2( 􏼁 −
1

RZ2
􏽘

xy∈E(Γ)

dx · dy

dx + dy

􏼠 􏼡 · log
dx · dy

dx + dy

􏼠 􏼡⎛⎝ ⎞⎠

� log
144pq

5
+
41p

5
􏼒 􏼓 −

1
(144pq/5) +(41p/5)

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3
2

􏼒 􏼓 + E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
6
5

􏼒 􏼓􏼒 􏼓

� log
144pq

5
+
41p

5
􏼒 􏼓 −

1
(144pq/5) +(41p/5)

(p)
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓􏼒 􏼓

+(8p)
3
2

􏼒 􏼓 · log
4
4

􏼒 􏼓􏼒 􏼓 +(24pq − 4p)
5
6

􏼒 􏼓 · log
5
6

􏼒 􏼓􏼒 􏼓

� log(24pq + 12p) −
1.408738p

24pq + 12p
.

(22)

I Γ,RZ3( 􏼁 � log RZ3( 􏼁 −
− 1
RZ3

− 􏽘
xy∈E(Γ)

dx + dy􏼐 􏼑 dx · dy􏼐 􏼑􏼐 􏼑 · log dx + dy􏼐 􏼑 dx · dy􏼐 􏼑􏼐 􏼑⎛⎝

� log(720pq − 80p) −
1

720pq − 80p
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(16) · log(16) + E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(6) · log(6)􏼐 􏼑

+ E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(30) · log(30)􏼐 􏼑

� log(720pq − 80p) −
1

720pq − 80p
((p)(16) · log(16) +(8p)(6) · log(6))·

+(24pq − 4p)((30) · log(30))

� log(720pq − 80p) −
1

720pq − 80p
􏼠 􏼡.

(23)

Example 3. In nanosciences, SC5C7[p, q] (where p and q

represent number of heptagons and number of cycles in each
row separately in the entire lattice) nanotubes are a class C5C7,
and this is generated by alternating C5 and C7. (e standard
tiling ofC5 andC7 can cover cylinders or rings, and each covers
SC5C7[p, q]. Nanotubes NPHX[p, q] (where p and q are

expressed as the number of hexagon pairs in the first row and
the other hexagons in the column) are trivalent modifications
in the order of C6, C6, C4, C6, C6, C4, . . .(e first row of the
sequence is C6, C8, C6, C8, . . . in the other rows. In other
words, the nanolattice can be viewed as a tile ofC4, C6, andC8.
(erefore, such tiles can cover cylinders or rings.
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I Γ,RZ1( 􏼁 � log RZ1( 􏼁 −
1

RZ1
􏽘

ij∈E(Γ)

dx + dy

dx · dy

􏼠 􏼡 · log
dx + dy

dx · dy

􏼠 􏼡⎛⎝ ⎞⎠

� log(8pq) −
1

8pq
E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3
2

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒 􏼓

+ E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
5
6

􏼒 􏼓 · log
5
5

􏼒 􏼓

� log(8pq) −
1

8pq
(p)

4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 +(12pq − 9p)
3
2

􏼒 􏼓 · log
3
2

􏼒 􏼓􏼒

+(6p)
5
6

􏼒 􏼓 · log
5
5

􏼒 􏼓􏼒 􏼓,

I Γ,RZ2( 􏼁 � log RZ2( 􏼁 −
1

RZ2
􏽘

xy∈E(Γ)

dx · dy

dx + dy

􏼠 􏼡 · log
dx · dy

dx + dy

􏼠 􏼡⎛⎝ ⎞⎠

� log 18pq −
15p

2
􏼒 􏼓 −

1
18pq − (15p/2)

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 + E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
3

􏼒 􏼓 · log
2
3

􏼒 􏼓􏼒 􏼓

+ E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
6
5

􏼒 􏼓 · log
6
5

􏼒 􏼓

� log 18pq −
15p

2
􏼒 􏼓 −

1
18pq − (15p/2)

(p)
4
4

􏼒 􏼓 · log
4
4

􏼒 􏼓 +(12pq − 9p)
2
3

􏼒 􏼓 · log
2
3

􏼒 􏼓􏼒 􏼓

+(6p)
6
5

􏼒 􏼓 · log
6
5

􏼒 􏼓􏼒 􏼓,

I Γ, RZ3( 􏼁 � log RZ3( 􏼁 −
− 1

RZ3
− 􏽘

xy∈E
(Γ) dx + dy􏼐 􏼑 dx · dy􏼐 􏼑􏼐 􏼑 · log dx + dy􏼐 􏼑 dx · dy􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

� log(72pq − 127p) −
1

72pq − 127p
16 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · log(16) + 6 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · log(6)􏼐 􏼑

+ 30 E3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · log(30)􏼐 􏼑

� log(720pq − 80p) −
1

720pq − 80p
(16p · log(16) + 6(12pq − 9p) · log(6))

+ 6p(30 · log(30))

� log(72pq − 127p) −
1

72pq − 127p
􏼠 􏼡.

(24)

6. Conclusions

In study of information theory, the graph entropymeasures the
information rate achievable by communicating symbols over a
channel in which certain pairs of values may be confused
[32–36]. (is measure introduced by Körner in the 1970s has

proven itself useful in other settings, including combinatorics.
In the present paper, we studied weighted graph entropy by
using first, second, and third redefined Zagreb indices as edge
weights. We also presented numerical examples to justify our
results. Interesting work would be to study weighted graph
entropy with other degree and distance-based topological

10 Mathematical Problems in Engineering



indices. (e bounds achieved for degree-based network
weighted graph entropy can be used for national security, social
networks, Internet networks, structural chemistry, computa-
tional systems biology, and so on. (ese studies will play an
important role in asymmetry in real networks and analyzing
structural symmetry in future.
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maximal/minimal modified first Zagreb connection indices,”
Molecular informatics, vol. 38, no. 4, Article ID 1800116, 2019.

[30] R. P. Kumar, S. D. Nandappa, M. R. Rajesh Kanna, and
P. Bettampady, “Redefined zagreb, randic, harmonic and GA

Mathematical Problems in Engineering 11



indices of graphene,” International Journal of Mathematical
Analysis, vol. 11, no. 10, pp. 493–502, 2017.

[31] P. S. Ranjini, V. Lokesha, and A. Usha, “Relation between
phenylene and hexagonal squeeze using harmonic index,”
International Journey Graph 9eory, no. 1, pp. 116–121, 2013.

[32] W. Gao, A. Asghar, A. Asghar, and W. Nazeer, “Computing
degree-based topological indices of Jahangir graph,” Engi-
neering and Applied Science Letters, no. 1, pp. 16–22, 2018.

[33] S. Kang, Z. Iqbal, M. Ishaq, R. Sarfraz, A. Aslam, and
W. Nazeer, “On eccentricity-based topological indices and
polynomials of phosphorus-containing dendrimers,” Sym-
metry, vol. 10, no. 7, p. 237, 2018.

[34] W. Gao, M. Younas, A. Farooq, A. Virk, and W. Nazeer,
“Some reverse degree-based topological indices and poly-
nomials of dendrimers,” Mathematics, vol. 6, no. 10, p. 214,
2018.

[35] J.-B. Liu, Z. Zahid, R. Nasir, and W. Nazeer, “Edge version of
metric dimension and doubly resolving sets of the necklace
graph,” Mathematics, vol. 6, no. 11, p. 243, 2018.

[36] A. Ali, Z. Raza, and A. A. Bhatti, “On the augmented zagreb
index,” 2014, https://arxiv.org/abs/1402.3078.

12 Mathematical Problems in Engineering

https://arxiv.org/abs/1402.3078

