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-e production data of mineral resources are noisy, nonstationary, and nonlinear. -erefore, some techniques are required to
address the problem of nonstationarity and complexity of noises in it. In this paper, two hybrid models (EMD-CEEMDAN-EBT-
MM and WA-CEEMDAN-EBT-MM) flourish to improve mineral production prediction. First, we use empirical mode de-
composition (EMD) and wavelet analysis (WA) to denoise the data. Second, ensemble empirical mode decomposition (EEMD)
and complete ensemble empirical mode decomposition (CEEMDAN) are used for the decomposition of nonstationary data into
intrinsic mode function (IMF). -en, empirical Bayesian threshold (EBT) is applied on noise dominant IMFs to consolidate
noises, which are further used as input in the data-driven model. Next, other noise-free IMFs are used in the stochastic model as
input for the prediction of minerals. At last, the predicted IMFs are ensemble for final prediction. -e proposed strategy is
exemplified using Pakistan’s four major mineral resources. To measure the prediction performance of all the models, three
methods, that is, mean relative error, mean square error, and mean absolute percentage error, are used. Our proposed framework
WA-CEEMDAN-EBT-MM has shown improvement with minimum mean absolute percentage error value compared to other
existing models in prediction accuracy for all four minerals. -erefore, our proposed strategy can predict the noisy and
nonstationary time-series data with an efficient mechanism. Hence, it will be helpful to the policymakers for making policies and
planning in mineral resource management.

1. Introduction

-e industrial and economic development of any country is
mainly based on mineral resources as those are among the
most important natural resources of that country. Mineral
resources provide the raw material to the different sectors of
the country. It is said with considerable truth that the ac-
cessibility of essential minerals is one of the decisive factors
in war. A strong positive correlation exists between

economic growth and natural mineral resources wealth
reported by Dollar and Kraay [1]. So, accurate prediction of
minerals is needed as it also plays a significant role in its
economic development. For prediction purposes, many
algorithms are available from the study of Aichouri et al. [2];
Ch et al. [3]; Cheng et al. [4]; Lapedes and Farber [5];
Solomatine and Ostfeld [6]. Many authors widely use the
Box-Jenkins technique from the study of Tang et al. [7] in
literature, that is, in autoregressive model (AR),
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autoregressive moving average (ARMA) model, autore-
gressive integrated moving average (ARIMA) model, and
many other models, but its drawback is that it considered the
only linear and stationary behavior of the given process box
[8]. On the other hand, data on the production of mineral
resources are nonlinear, noisy, and nonstationary. -e noisy
and nonstationary characteristics of mineral resources make
the prediction a challenging task.

-e development of data-driven models makes it easy to
deal with nonstationary and nonlinear time-series data from
the study of Lapedes and Farber [5]. -e data-driven models
are further categorized as traditional statistical and machine
learning (ML) models. -e traditional statistical methods,
that is, autoregressive integrated moving average (ARIMA),
only consider the stationary and linear data. ARIMA model
is successfully applied to predict the production of mineral
resources [9]. Lapedes and Farber [5] compared neural
network and conventional methods based on two time series
having no noises and concluded that neural network per-
forms better than traditional methods, many times by
magnitude’s order. Huang et al. [10] proposed the extreme
learning machine (ELM) algorithm using a single hidden
layer feed-forward neural network that randomly selects the
input weights and then produces the output weights ana-
lytically [11]. -ey concluded that the ELM algorithm
produced better results than traditional methods. Yaseen
et al. [12] used an improved version of ELM in forecasting,
exhibited its variability, and concluded that ELM with an
enhanced version produced better results than traditional
statistical methods. But the characteristics of varying time
and noise of minerals production data are ignored by data-
driven models. -ese drawbacks of data-driven models
inhibit the researcher from predicting the data accurately.

To overcome the drawbacks of a data-driven model,
hybrid models are introduced that capture the character-
istics of varying times and reduce the noises, which even-
tually improves the accuracy of prediction from the study of
Nourani et al. [13]; Pramanik et al. [14]; Yaseen et al. [15].
Hybrid models are the combination of some preprocessing
techniques, that is, wavelet analysis (WA), empirical mode
decomposition (EMD), and ensemble empirical mode de-
composition (EEMD), with data-driven models. An ad-
vantage of hybrid models over data-driven models is that
they decompose the data into the frequency components and
remove the noises.

Several algorithms are developed, such as spectral
analysis, WA, Fourier analysis, and EMD, to reduce these
noises or stochastic volatiles from the data [16]. Fourier
analysis and spectral analysis are used for those kinds of data
that are stationary or linear. However, EMD andWA are the
most commonly used preprocessing algorithms for non-
linear or nonstationary data and provide better results. -e
algorithms of WA decompose the nonlinear and nonsta-
tionary data of mineral resources into multiscale compo-
nents [17]. -ese components are used as inputs at the
prediction stage, and then, these predicted components are
ensemble for final prediction. -e present paper uses EMD
andWA-based thresholds to reduce noises from the mineral
production data.

-e WA has developed a powerful tool for converting a
signal into a stationary signal with specific effectiveness.-ere
are many articles in the literature in which different hybrid
models with wavelet decomposition are used to predict
different kinds of nonlinear and nonstationary time-series
data [18, 19]. Singh et al. [19] proposed hybrid models based
on the discrete wavelet decomposition which can partition the
data into series. -e prediction indicates a sharp rise in death
rate compared to the simple ARIMA model.

Wu et al. [20] used data preprocessing techniques
coupled with data-driven models to predict the monthly
streamflows and concluded that the hybrid techniques
provide better prediction than traditional models. Azadeh
et al. [21] described the effectiveness of the preprocessing
techniques to enhance the precision of data-driven models
by considering many data preprocessing techniques and
concluded that simple statistical models and neural net-
works with preprocessing methods could efficiently forecast
the nonlinear data. Asadi et al. [22] proposed a hybrid model
by utilizing the preprocessing techniques coupled with
neural networks to predict the runoff process and concluded
that the proposed hybrid model predicted the runoff process
better than artificial neural network (ANN) and neuro-fuzzy
inference system (ANFIS) models. However, the perfor-
mance of the WA depends upon the selection of the type of
mother wavelet. Prior knowledge about the signal, which is
to be analyzed, and prior knowledge about its frequency
content, is needed for a suitable choice of the mother
wavelet.

Huang et al. [23] proposed an EMDmethod to overcome
the shortcomings of WA for scrutinizing the nonlinear data
and nonstationary datasets. Complex time-series data can be
decomposed into a small and finite number of IMFs by using
EMD.-e EMD strategy has the advantage of converting the
nonstationary series into stationary series. Di et al. [24]
proposed a four-stage hybrid model using EMD, EEMD, and
WA techniques to remove the noise from the time series
with soft and hard thresholds to find denoised time-varying
information that decreases the complexity of hydrological
series coupled with RBFNN for the prediction purpose.-ey
concluded that the performance of their proposed hybrid
model is better than conventional single-stage and other
hybrid models without preprocessing techniques. Different
studies exist in the literature that used EMD with different
data-driven models such as EMD-ANN, EMD-radial basis
function (EMD-RBF), EMD-support vector machines
(EMD-SVM), EMD-relevant vector machine (EMD-RVM),
EMD-ARIMA; these hybrid models improve the prediction
accuracy from the study of Huang et al. [25]; Liu et al. [26];
Wang et al. [27]. -e EMD is combined with ANN in many
past studies, especially in hydrology from the study of Liu
et al. [28], and also a novel model based on EMD and deep
learning is used by Mi et al. [29] to reduce the noises and
extract the information of trend of the original data of wind
speed. Ruiz-Aguilar et al. [30] proposed a hybrid model by
combining a preprocessing technique, EMD, an informa-
tion-based method, the permutation entropy (PE), and a
machine learning technique using an ensemble learning
methodology for wind speed prediction.
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-ese preprocessing techniques have their own short-
comings in the extraction of the optimal multiscale com-
ponents, that is, theWA-based denoising technique depends
upon the choice of a mother wavelet function, which may
create problems and decrease its performance. EMD tech-
nique suffered from mode mixing problem although it is
purely a data-driven technique. Because of the mode mixing
problem, it provides bogus information about the time
frequency. An improved version of EMD was introduced,
which added the white Gaussian noise to solve the mode
mixing problem.-e EEMDmethod can separate the signals
without inappropriate mode mixing. It uses white noise that
helps to establish the dyadic reference frame on time-scale
space. Many hybrid techniques based on EEMD are used for
streamflow and wind speed prediction and in hydrology
from the study of Niu et al. [31]; Santhosh et al. [32]. Al-
though the EEMD technique of denoising has proved ef-
fective, it has its drawback as it may not be influential in the
extraction of powerful IMFs through average. To tackle and
improve the deficiency of the EEMD technique and to cope
with the simple averaging problem of EEMD, complete
ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), Torres et al. [33] proposed CEEMDAN
[34], which was used by Jun et al. [35] to decompose the
given time-series data into frequency components which
were further used for prediction purposes. Also, Jiang and
Zhou [36] used CEEMDAN with Wigner-Ville distribution
(WVD) to decompose and analyze the nonstationary signals
of hydro-turbine. Dai et al. [37] used the CEEMDAN al-
gorithm to predict the daily peak load in their proposed
model. -e proposed three-stage hybrid model comprises
the CEEMDAN technique, which showed a robust
decomposed ability of reliable prediction. Wang et al. [38]
proposed a hybrid model based on CEEMDAN, detrended
fluctuation analysis (DFA), and improved wavelet thresh-
olding. In their proposed model, a denoising method of
CEEMDAN-DFA-improved wavelet threshold function was
presented to reduce the distortion of the noised signal.
Qurban et al. [39] used CEEMDAN in combination with
multimodels to bring improvements in the prediction of the
production of mineral resources. -ey concluded that the
CEEMDAN technique provides excellent performance.
Johnstone and Silverman [40] used the empirical Bayesian
threshold (EBT) with WA to denoise the multiscale com-
ponents obtained from WA. -ey said that EBT could ef-
ficiently tackle the problem of noises by taking different
priors for each level. Nazir et al. [41] used EBT with
CEEMDAN to decompose the river flow time-series data.
-ey concluded that their proposed model is efficient to
predict the nonstationary and nonlinear noisy time-series
data. It is hoped that such methods can be used to denoise
the nonstationary and noisy data, enhancing the prediction
accuracy.

-is study aimed to develop a CEEMDAN-based hybrid
model coupled with the EBT technique. Here, we consider
the EBT as the threshold as it is a purely data-based tech-
nique, and it optimally reduces noises from IMFs, which are
then used to predict mineral resources at the prediction
stage. Furthermore, the current study explores its prediction

performance using a 33-step-ahead prediction by consid-
ering this emerging hybrid modeling technique. Based on
the outlined above, this paper is focused on developing an
improved model to improve the prediction of mineral re-
sources production, hybrid models with CEEMDAN-EBT-
based multimodels (EMD/WA-CEEMDAN-EBT-MM).

-e remainder of this paper is organized as follows:
Section 2 focuses on the motivations behind the proposed
study to predict the production of mineral resources. A short
review of models used for mineral data predictions and an
introduction to EMD, EEMD, EBT, and their modified
versions are also discussed in Section 2. Additionally, a short
review of various approaches used in hybrid CEEMDAN-
EBT models to select the appropriate prediction methods
considering the characteristics of respective IMFs is also
discussed in Section 2. -e application of the proposed
hybrid models, and data description is presented in Section
3. Section 4 describes details of the study area and data.
Finally, Section 4 presents and discusses the case study
results, while conclusions are made for this research in
Section 5.

Accurate prediction of mineral resources has become a
challenging task for researchers in recent years. Although
Pakistan is blessed to have abundant mineral resources, it is
still facing an alarming situation as its power generation is
based on foreign exchange. -erefore, there is a need for
accurate and improved prediction of the production of
mineral resources and strong management and policy-
makers. -e mineral sector of Pakistan is dominated by four
principal minerals: gas, oil, coal, and gypsum. -erefore,
there is a need to analyze and improve the accurate pre-
diction of the production of these four major minerals to
deal with emerging challenges.

-e primary purpose of accurate prediction of mineral
production data is to get the efficient and optimum utili-
zation of natural resources in the development of the
economy by dealing with the nonstationarity and nonlin-
earity of the data. Due to the nonlinearity and non-
stationarity of mineral resources time-series data, statistical
models usually cannot achieve satisfactory results by directly
conducting predictions. Instead, there is a simple but also
effective way called the divide and conquer rule, which
means decomposing the complex data into simple com-
ponents and extracting each component’s relevant features
for future prediction. Many researchers are working to deal
with and improve different kinds of nonstationary data,
having complex time-varying characteristics. -ese re-
searchers work with different motivations, but they have the
same goals.

Li et al. [42] improved CEEMDAN preprocessing
technique to decompose the complex oil prices into different
components. Each component is forecasted using ridge
regression, and differential evolution is used to optimize the
regularization item. -ey concluded that their experimental
results showed that their proposed strategy achieved better
results than other states of arts. Nazir et al. [41] used
CEEMDAN with EBT to tackle the multiscale and noise
complexity of hydrological time-series data, which de-
compose the nonstationary data into different noise
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dominating and noise-free IMFs. -ey concluded that their
proposed model provides efficient prediction results for
nonstationary time-series data compared to HT, ST, and ITF
by using different evaluation criteria.

2. Proposed Method

Here, an improved framework constitutes four stages, that is,
decomposition, denoising using novel thresholds, prediction,
and ensemble. For handling nonlinear and nonstationary
data, EMD-CEEMDAN and WA-CEEMDAN techniques are
used for decomposition to obtain IMF. After obtaining the
IMFs, they are divided into two parts; one consists of the
noisiest IMFs, and the other consists of noise-free IMFs. -e
noisiest IMFs contain sparsity and errors. -erefore, the
noisiest IMFs are combined with EBT thresholds for re-
moving the sparsity from the noisiest IMFs to denoise them.
-en, for prediction purposes, the complex data-driven and
simple stochastic models are used to predict the denoised and
noise-free IMFs, respectively. Here, the denoised IMFs are
predicted using data-drivenmodels, and the remaining noise-
free IMFs are predicted using stochastic methods.

At last, all the predicted IMFs are merged to obtain the
eventual prediction. Here, we represent the improved novel
framework of getting the multiscale IMFs by using the method
of EMD-CEEMDAN-EBT and WA-CEEMDAN-EBT, which
are combined with the optimal method of denoising. Here, in
this study, EBTplays a crucial role in predicting the production
data of minerals resources. For the convenience of the reader,
the proposed technique is labeled as EMD/WA (denoised),
CEEMDAN (decomposed), EBT (denoised using threshold),
and MM (multimodels for prediction), that is, EMD-
CEEMDAN-EBT-MM and WA-CEEMDAN-EBT-MM
whose complete structure is described in Figure 1.

2.1. Denoising and Decomposition of IMFs. Empirical Mode
Decomposition (EMD): Huang et al. [23] introduced the
multiresolution technique for decomposing nonlinear and
nonstationary series, called EMD.

From the study of Yang and Chen [43], the main steps of
the EMD for an original time series p(x), (x � 1, 2, 3, . . . , N)

are as follows:

(1) All the local extrema of the original time series p(x)

are identified
(2) By using cubic spline interpolation, the upper and

lower envelope is created as U(x) and G(x),

respectively.
(3) -emean value of upper envelope and lower envelope

is estimated, that is, m(x) � (U(x) + G(x))/2.

(4) In this step, the difference of the mean envelope from
the original signal x(p) is found.-e difference d(x)

is calculated as (x) � p(x) − m(x).
(5) -e properties of the difference of mean envelope

and signal d(x), that is, are examined.

(a) If (a) and (b) conditions are satisfied by the
difference d(p), then it is denotedas ith IMF, and
also, signal x(p) is replaced by residue e(x) �

p(x) − d(x) -e ith IMF is symbolized with
Ci(x), and i is the order of the IMF.

(b) Replace p(x) with d(x) if d(x) is not an IMF.

(6) Repeat 1–5 steps before the number of extrema are
less than or equal to one so that no more IMF can be
extracted from or residue e(x) becomes a monotonic
function.

At last, the signal can be shown as the sum of all the IMFs
and residue e(x), where n is the number of IMFs, Ci(x)(i �

1, 2, 3, . . . , n) is the ith IMF, and e(x) is the residue (Tang
et al., 1991). -e way of denoised IMF is the same as
mentioned in steps (1)-(5), except the last two because of the
low frequencies IMFs which are entirely used without
denoising from the study of Qurban et al. [39].

p(x) � 􏽘
n

i

di + e(x), (1)

where n shows the number of sifted IMF’s as
(i � 1, 2, 3, . . . , n), e(x) is the trend of the signal, and di(x) is
the ith IMF. Although it is a useful technique for noise
reduction, it cannot accurately get the true information for
the mode mixing problem. Mode mixing is defined as the
phenomenon of the appearance of similar or different scales
in the same mode. -e closeness of the frequency of the
noisy signal creates the problem of mutual energy pene-
tration, and then, EMD cannot accurately separate the noise
and useful signals.

2.2. Ensemble Empirical Mode Decomposition (EEMD).
To improve the EMD and mitigate the mode mixing, EEMD
is developed by N. E. Huang et al. [23]. EEMD is an effective
tool for reducing noise and provides accurate results. -e
original signal includes the white noise and repeatedly
calculating the mean of the IMFs. According to Zhang et al.
[44] and Wei et al. [45], the procedure presented is as
follows:

(1) Initialization of the ensemble number Y

(2) Set the amplitude of the added white noise, i � 1
(3) Add the random white noise signal wni(p) in the

original signal p(x)

pi(x) � p(x) + wni(x), (2)

where wni(x) is the ith added series of white noise,
and pi(x) denotes the ith added noise signal
i � 1 ∼ Y, Y〉1.

(4) By using EMD, decompose the noise signal pi(x)

into N IMFs Cj,i(x)(j � 1, 2, 3, . . . , X), where Cj,i

(x) shows the jth IMF of the ith noise signal and X is
the total number of IMFs
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(a) Connects the maximal points of the signal with
cubic splines after localizing them. -e signal’s
upper envelope is denoted by U(x)

(b) Connects the minimal points of the signal with
cubic spline after localizing them. -e signal’s
lower envelope is denoted by G(x)

(c) To obtain the pro-IMF, s1(p) subtract the mean
envelope m1(p) from the original x1(p), that is,
s1(x) � p1(x) − m1(x) where
m1(x) � (U(x) + G(x))/2

(d) Consider s1(x) as a new signal if the average of
the lower and upper envelope becomes zero and
if the number of zero-crossing and number of
extrema are equal or almost one

(e) Consider the points (a)-(d) of 4th step as far as
the resulting signal as proper IMF C1(x)

(f ) From the original signal, p1(x) subtract the
resulting IMF C1(x). Consider the residue e1(x)

as the new data and go back to Step 1.

p1(x) � C1(x) + e1(x). (3)

(g) In the substep, if the residue becomes the
monotonic function, complete the algorithm,
and if i〈Y, then go back to Step 3. -e last re-
sidual is treated as the trend.

p1(x) � 􏽘
x

j�1
C1(x) + e(x). (4)

(5) Estimate the ensemble mean IMFj(x) of all trials of
each IMF.

IMFj(x) �
1
Y

􏽘

Y

i�1
Cj,i(x) j � 1, 2, 3, . . . , X i � 1, 2, 3, . . . , Y.

(5)

(6) Consider the mean IMFj(x) as the final mean of all
the P IMFs.

In the final mean of the interrelated IMFs, the added white
noise cancels each other apparently, and mean IMFs remain
inside the natural dyadic filter windows, which significantly
truncate the hazard of mode mixing and sustain the dyadic
property. -erefore, this process can reduce the problem of
mode mixing significantly and repeat the fundamental de-
velopment in the original EMD. However, although EEMD
can bring down the problem of mode mixing to a certain
degree with added white noise sequence, an error cannot be
eliminated after computation, the averaging to a finite
number. Moreover, it affects the sequence of reconstruction.

2.3. Complete Ensemble Empirical Mode Decomposition
(CEEMDAN). Consequently, Flandrin et al. [46] proposed
CEEMDAN by considering the previous studies of EEMD.
CEEMDAN adds the adaptive white noise to eliminate the
mode mixing, smoothing pulse interference in decompo-
sition. To make the decomposition of the data more com-
plete, it uses the properties of the mean Gaussian white
noise, whose mean is zero. -e detailed procedure of the
CEEMDAN from the study of Qian et al. [47] is as follows:

(1) Persistent with EEMD, in the computation of
CEEMDAN, P times decompose the original signal
p(x), that is, p(x) + riwni(x), where ri is the
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Figure 1: Proposed EMD/WA-CEEMDAN-EBT-MM structure for the prediction of mineral production.
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parameter which controls the signal to noise ratio.
-e first component of IMF is as follows:

IMF1(x) �
1
x

􏽘

x

i�1
cj,1(x). (6)

-e residual of the signal is

e1(x) � p(x) − IMF1(x). (7)

(2) -e d(x) is defined as the lth IMF component ob-
tained by EMD. To get the second IMF component,
the sequence v1(x) + r1d1(x)(nj(x)) is decomposed
as follows:

IMF2(x) �
1
x

􏽘

x

j�1
d1 e1(x) + r1d1 nj(x)􏼐 􏼑􏼐 􏼑. (8)

-e second residual signal is

e2(x) � e1(x) − IMF2(x). (9)

Similarly, by following the above procedure, the ex-
pression of the lth the residual signal is as follows:

el(x) � el−1(x) − IMFl(x). (10)

-e expression of the l + 1th residual signal is

IMFl+1(x) �
1
x

􏽘

x

j�1
dl el(x) + rldl nj(x)􏼐 􏼑􏼐 􏼑. (11)

Till the requirement and need of the lending criteria, the
above procedure is repeated. -e expression of the original
sequence, if the number of IMF components is M, is as
follows:

p(x) � 􏽘
M

i�1
IMFi(x) + e(x), (12)

where IMFi(x) is the ith IMF, e(x) is the overall residual
signal, and p(x) is the signal obtained after decomposition.
-e selection of ensemble number and size of white noise is
still an issue. Here, in this study, the ensemble size is set to be
900, and the standard deviation is set to be 0.2 from the study
of Zhang et al. [48].

2.4. Identification ofNoisy andNoise-free IMFs. After getting
all IMFs through EMD, EEMD, and CEEMDAN, the
screening of these IMFs started in the next step into noisy
IMFs with high frequencies and noise-free IMFs which have
low frequencies. -e IMFs with high frequencies are noise-
corrupted IMFs, and the low-frequency IMF is noise-free
from the study of Wei et al. [45]. We calculated the
crosscorrelation between all IMFs and original production
data of mineral resources for the screening process. -e low
crosscorrelation value specifies that the high-frequency
IMFs contain noises, and the high correlation shows that the
low-frequency IMFs are noise-free. After identifying the
noisy and noise-free IMFs, some thresholds are applied to
the noisy IMFs to make them noise-free.

2.5. Denoising of Noisy IMFs through 8resholds. After
decomposing and screening process of IMFs, the noisy IMFs
are decomposed using appropriate thresholds. -e main
purpose of selecting the appropriate estimator is to find the
optimal threshold value as the lowest, and maximum
threshold values introduced the bias in prediction. For
extracted IMF, the empirical Bayesian threshold estimator is
used for denoising the noisy IMFs. In addition, latter soft
and hard, and improved threshold functions are also used to
denoise the noisy IMFs compared with EBT. -e detailed
procedure of EBT is described below.

2.6. Empirical Bayesian 8reshold (EBT). EBT is used to
estimate the noises and sparsity from the IMF from the study
of Wei et al. [45] after decomposition. -e idea of EBT was
inspired by the wavelet denoising method. -e first step of
implementing the EBT is transformed to select the prior
distribution for sparsities and noises. -e data follow the
normal distribution with mean ϑ0 and variance one after
scaled transformation. -en, for ϑ0, the mixture priors are
selected as follows:

fprior(ϑ) �� (1 − u)δ0(ϑ) + uc(ϑ), (13)

where δ0(ϑ) and c(ϑ) are the zero part and density of the
part other than zero of the scaled data, respectively.-e prior
density must be carefully selected; it should belong to a
family of distributions whose parameters may be estimated
using the maximum likelihood method for estimation of the
parameters and weights of the mixture prior distributions.
-e main reason for using the maximum likelihood method
to estimate the parameters is that the maximum likelihood
method estimates the unknowns to be proportional to the
maximum likelihood function from the study of Hossain
et al. [49]. After the estimation procedure, the median of the
posterior distribution 􏽥ϑi(IMF, u) is estimated by using a
mixture of the prior distribution. -e posterior median is
calculated as follows:

􏽥F∗ (μ|IMF)dμ . (14)

-e above-mentioned posterior median is used as a rule
of a threshold for 􏽥μ. Generally, according to the estimation
rule composed on ς(IMF, x) specified for u> 0 is a
thresholding condition⇔∀x〉0, ς(IMF, x) is an asymmetric
and increasing kind of function of data and ς(IMF, x) �

0⇔∀|IMF|≤x where x is the median value which is esti-
mated by using (14).

2.7. Existing 8resholds for Comparison. For comparison of
EBTwith other thresholding techniques, soft threshold (ST),
hard threshold (HT), and improved threshold function
(ITF) are used to decompose the nonlinear and noisy data
from the study of Chang and Vetterli [50]; Jansen and
Bultheel [51]; Jeng et al. [52]; Om and Biswas [53]. -e
mathematical expressions for soft, hard, and improved
thresholds are given as follows:
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c
’
x,l � dx,l cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Thl0 cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌〈Thl􏽮 ,

c
’
x,l � sgn cx,l􏼐 􏼑 cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Thl􏼐 􏼑 cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Thl0 cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌〈Thl􏽮 ,

(15)

and

c
’
x,l � sgn cx,l􏼐 􏼑 cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

Thl

α cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Thl􏼐 􏼑/Thl􏽨 􏽩

, cx,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Thl0, ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌〈Thl􏼨 , (16)

where Thl is the threshold which is calculated as
Thl � a

��������
2El ln(N)

􏽰
, l � 1, 2, 3, . . . L, where a is constant

which considers the values between 0.4 and 􏽢Mdl is the
median deviation, that is, 􏽢Mdl � median( cl−1,l|l � 1, 2, 3,􏽮

. . . , 2l−1 − 1})/0.6745.

2.8. Prediction and Ensemble. Because of the nonlinearity
and nonstationarity of the production data of mineral re-
sources, the traditional statistical techniques are not suffi-
cient for capturing these characteristics of mineral
production data. To overcome the shortcomings of the
traditional techniques, data-driven models are used to
predict the denoised and decomposed IMFs. In contrast,
traditional techniques are used to predict the noise-free
IMFs and residual terms. For the training model, 80% of the
production data is used, and for the testing model, 20% of
production data is used to test the accuracy of the proposed
model. -e description of the models which are used for
prediction purposes is given below.

2.9. Prediction of Denoised IMFs Using Multilayer Perception
Architecture (MLP). 8e neural network is a powerful
technique to model complex nonlinear data. -e multilayer
perception architecture (MLP) model is an ANNs modeling
approach widely used to model nonstationary time-series
data. It belongs to a general structure called the feed-forward
ANN model. -is structure can deal with both continuous
and integrable functions. -e structure of MLP contains
neurons that are grouped in layers.

In the MLP model, there is one layer for input nodes and
one or more than one hidden layer.-e structure of theMLP
with a feed-forward network is exhibited in Figure 2.

-e step-by-step process of the MLP network contains
the following four parts:

Step 1. Variable selection
Step 2. Formulation of the training set, testing set, and
validation set
Step 3. Architecture
Step 4. Verification of model and forecasting

-e relationship between the output yl layer and input
yl−1, yl−2, . . . , yl−v layers has the following mathematical
expression:

yl � φo + 􏽘
u

i�1
φiq 􏽘

v

j�1
ϕi,jyl−1 + ϕoi

⎛⎝ ⎞⎠ + εl, (17)

where φi(i � 0, 1, 2, .., u) and
ϕi,j(i � 0, 1, 2, . . . , u; j � 1, 2, 3, .., v) are the model parame-
ters, which are usually named as weights, u and v show the
number of input and hidden nodes, respectively. Here, the
MLP model executes the functional mapping of nonlinear
types from past yl−1, yl−2, . . . , yl−v to future yk observations.

y(l) � f yl−1, yl−2, . . . , yl−v, z( 􏼁 + ϵl. (18)

-e activation function which is usually used for acti-
vation is the logistic function, defined as follows:

h(y) �
1

1 + exp − 􏽐
u
i�1 φlq 􏽐

v
j�1 ϕl,jyl−1 + ϕol􏼐 􏼑 + εl􏼐 􏼑

. (19)

-e back and forward propagation can be used by
someone to optimize the neurons.

2.10. Prediction of Noise-free IMFs Using ARIMA Model.
ARIMA model is selected to predict the residual term and
noise-free IMFs whose description is given as follows:

IMF
l
x � ψ1IMF

l
x−1 + . . . + ψpIMF

l
x−p

+ εl
p + φ1ε

l
x−1 + . . . + φqε

l
x−q,

(20)

Here, IMFl
x and εl

p that show the lth IMF and residual term,
which is obtained byCEEMDAN, p, and q, are the lag terms of
the AMRA model. Suppose the time series is nonstationary
and nonlinear. In that case, it is needed to make the difference
to an appropriate degree, making the time-series stationary. If
the difference is taken, then the model is called ARIMA
(p, d, q), where d is used for the difference.

2.11.MultistepAheadPrediction. Time-series prediction can
be used for both single (one-step-ahead prediction) and
multiple periods (multistep-ahead prediction). -e multi-
step-ahead prediction has to deal with problems, such as
accumulation error, uncertainty, and accuracy, unlike one-
step-ahead prediction. However, accurate time-series pre-
diction for long horizon has become challenging. A mul-
tistep-ahead time-series prediction consists of predicting the
next H values of a time series consisting of N observations,
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where the forecasting horizon is denoted by H> 1 from the
study of Sorjama et al. [54].

3. Application

In the current study, the production of mineral resources is
considered to check the accuracy of the proposed model.
Gas, oil, gypsum, and coal are among the principal mineral
resources of Pakistan selected for the application of the
proposed strategy. Pakistan is blessed with giant reserves of
minerals covering 600,000 sq. Kms area. Out of the 92
minerals, 52 are exploited commercially, with 68.52 million
metric tons per year. Our country has the second-largest coal
deposits and billions of barrels of crude oil. However, the
mineral sector’s contribution towards the GDP of Pakistan is
3%, and exports are only 0.1% of the total of the world.
-erefore, continuous development and planning towards
themineral sector are needed. Also, there is a need to analyze
the problem and predict the accurate production of mineral
resources of Pakistan.

3.1. Description of Data. Four major mineral resources are
used in the current study to implement and investigate the
proposed and improved framework. -e production data
comprises from 1st July to 30th June for the 2005–2019
period. -e production of coal and gypsum is measured in
metric tons, crude oil is measured in US barrels, and gas is
measured in a million cubic feet. -e used data are obtained
from the Pakistan Bureau of Statistics. It consists of 168
monthly observations recorded from July 2005 to June 2019.
-e data are divided into training and testing data to observe
the model performance. -e data set contains 135 obser-
vations from July 2005 to April 2016, and the testing data set
contains 33 observations from May 2016 to June 2019. -e
training data set consists of 80% observations of the observed
series, and the testing data set includes 20% observations.

In a current study, several types of multistep-ahead
prediction are conducted with L lag in the experiments. For

example, a kind of h-step-ahead predictionmeans predicting
the production of mineral resources on the (x + h)th month
with the h production samples before the xth month but
including the xth month.

3.2. Evaluation Measures. After using the noise reduction
techniques or thresholds, some distinctive approaches are
needed to evaluate the denoised series of data performance.
In the current study, the performance of the denoised and
decomposed series, that is, EEMD-EBT and CEEMDAN-
EBT, is observed based on three evaluation measures, that is,
signal to noise reduction (SNR), mean absolute error (MAE),
mean square error (MSE), and mean absolute percentage
error (MAPE) from the study of Kim and Kim [55].

SNR � 10log 10
􏽐

n
x�1 (y(x)o)

2

􏽐
n
x�1 y(x)pred − y(x)o( 􏼁

2
⎛⎝ ⎞⎠,

MAE �
1
n

􏽘

n

x�1
y(x)o − y(x)pred

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MSE �
1
n

􏽘

n

x�1
y(x)o − y(x)pred􏼐 􏼑

2
,

MAPE �
y(x)m0 − y(x)m(pred)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

y(x)m0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
∗ 100,

(21)

where y(x)pred is the predicted series, y(x)0 is the series of
real data, and n is the data size also y(x)m0 is the mean of the
original series, y(x)m(pred) is the mean of the predicted
series. Basically, MAE, MAPE, and MSE measure the de-
viation between the original values of the series and pre-
dicted values of the expected series. -e performance of the
proposed strategies, that is, EMD/WA-EEMD-EBT-MM
and EMD/WA-CEEMDAN-EBT-MM, is evaluated using
MAE, MSE, and MAPE described in equation (21).

MLP

Inputs
(4)

Hidden
(5) Output

Figure 2: Structure of multilayer perceptron model.
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4. Results and Discussion

-is section presents the results of the proposed EMD/WA-
EEMD-MM and EMD/WA-CEEMDAN-MM in compari-
son with other selected models.

4.1. Decomposition Stage. First, the augmented Dickey-
Fuller (ADF) unit root test is used to confirm the non-
stationarity of mineral resources data for all four minerals.
-e ADF unit root test results showed that the selected data
of all four minerals are nonstationary with p values 0.2702,
0.0699, 1.4269, 1.1605 for gas, oil, and coal gypsum pro-
duction, respectively. To decompose the data, EMD, WA,
EEMD, and CEEMDAN decompositionmethods are used to
extract IMFs of production data of mineral resources. All
four mineral production data are decomposed into six IMFs
and one residual term. -e first few IMFs showed high
frequencies as compared to the last IMFs, and residual
showed an overall trend. -e WA-CEEMDAN-based de-
composition results of gas and oil production are shown in
Figure 3. -e white noise magnitude is set to 0.2 from the
study of Di et al. [24], and the number of ensemble members
is fixed as 1000. According to Figure 3, it is noticed that IMF
represents some fluctuations. Before proceeding to the next
stage, the crosscorrelation method is used to find the IMFs
with noises from all six IMFs. First, the decomposed IMFs
are divided into two groups, that is, noisiest IMFs and noise-
free IMFs, through crosscorrelation between IMFs and
original data. -e nature of correlation shows how much
uncertainty exists in IMFs.

-e low correlation indicates high uncertainty, and the
high correlation shows less uncertainty in IMFs. -e first five
IMFs showed less correlationwith original gas production data,
which indicated the noisy IMFs. -e graph of the cross-
correlation between the first IMF and fifth IMF and the original
series of gas is shown in Figure 4.-e cross correlation between
these IMFs and gas production is very low at all lags indicating
that these IMFs contain noises.-e correlation graphs between
both first IMF and sixth IMFwith gas production are shown in
part (A) and part (B) of Figure 4, respectively.

In plot (A), the starting IMF is full of noises with a very
low correlation. In plot (B), it can be observed that it is noise-
free, and there is a 0.60 correlation existing at lag zero and
other lags for gas production. -erefore, for gas production
data, the first five IMF components are labeled as noisiest,
and the last two IMFs are characterized as noise-free IMFs
and similarly for other minerals. For all four minerals, the
first five IMFs are labeled as noisiest IMFs, and the last two
IMFs are characterized as noise-free IMFs.

4.2. Denoising Stage. -e noisiest IMFs obtained in the
previous step are denoised in this step using different
thresholds. -e estimator of EBT is used to build the sug-
gested model in which a mixture prior is assumed for each
IMF as defined in (13) to remove noises from IMFs. -e
selection of mixture prior depends upon the nature of IMF.
First, each IMF is transformed into normal distribution
using scale transformation.

According to their nature, most of the coefficients are
zero, and some are nonzero in IMFs, as shown in Figure 5;
some are very high, and some are very low. By observing
different parts of IMFs, the combination of probability at
zero part of IMF and more than one distribution are con-
templated for nonzero parts (Figure 5). After doing that, the
Laplace distribution is considered as prior among all the
priors of θi with a maximum value of SNR. Finally, the IMFs
with the posterior median threshold estimator are selected to
have the highest value of SNR and minimumMSE and MAE
values. -e values of SNR, MSE, and MAE for all minerals
are presented in Table 1.

-e ordinary denoising methods, that is, soft, hard
thresholds, and ITF, are applied to all mineral production
data for comparison. It is observed that the CEEMDAN-
EBT-based decomposition and denoising method has the
highest SNR value than CEEMDAN or EEMD-ST,
CEEMDAN or EEMD-HT, and CEEMDAN or EEMD-ITF
based denoising methods. For removing noises from data,
the sparsity and noises are not considered by these methods
separately except CEEMDAN-EBT based denoised method.
-e graphs of denoised methods CEEMDAN, EEMD-EBT,
and other methods used for comparison are exhibited in
Figures 6 and 7, respectively.

To understand the accomplishment of the suggested
model, EEMD or CEEMDAN-EBT, the EEMD, and CEEM-
DAN occupied denoised and other denoising methods, that is,
EEMD or CEEMDAN-HT, EEMD or CEEMDAN-ST, and
EEMD or CEEMDAN-ITF models are used for comparison
purposes. -e evaluation of the suggested model and other
models is measured using SNR, MSE, and MAE for the major
four minerals resources. In Table 1, it can be observed clearly
that from all decomposition and denoising methods, the
performance of CEEMDAN-EBT is better than other models.
Actually, CEEMDAN-EBT eliminates the noises efficiently by
taking the mixture priors for IMFs, which attains the highest
value of SNR and lowest values of MSE and MAE than
CEEMDAN-HT, CEEMDAN-ST, and CEEMDAN-ITF
techniques which have low values of SNR and high values of
MSE. In addition, the decomposition and denoising technique
based on the EEMD algorithm in combination with EBT, HT,
ST, and ITF thresholds as compared to suggested CEEMDAN-
EBT performed poorly for all four minerals. -e poor per-
formance of the EEMD-EBT is because of the mode mixing as
shown in Figure 7, where the results of gas and oil production
are plotted. Due to limitations in decomposition, the SNR
values of all decomposition and denoising methods based on
EEMD are low. -e values of MSE and MAE are high for all
four mineral production data, which shows that the CEEM-
DAN decomposition method has the capability of optimally
extracting IMFs, which are denoised by optimal methods of
denoising to obtain noise-free IMFs as presented in Figure 6;
the results of denoising of all mineral production are plotted.
FromTable 1, it is concluded that the strategy of combining the
CEEMDAN-based decomposition with the EBT denoising
technique showed better results than other thresholding
techniques. From Figures 6 and 7, it is shown that ST and HT
combined with CEEMDAN overestimated the noises for gas
and oil productions as these thresholds do not contemplate the
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Figure 3: WA-CEEMDAN-based decomposition of gas and oil production. Both series are decomposed into six IMFs and one residual.
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Figure 4: Crosscorrelation plot. Part (a) of the plot presents the correlation between the first IMF and gas production, and (b) part shows the
correlation between the sixth IMF and gas production.
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Table 1: -e numerical measures of suggested CEEMDAN-EBT and other denoising methods for four major minerals production.

Mineral’s production Model SNR MSE MAE

Gas production

CEEMDAN-HT −33.43 164.03 4.07
CEEMDAN-ST −82.16 537323.50 629.80
CEEMDAN-ITF −52.74 17922.28 112.60
CEEMDAN-EBT 17.74 0.00 0.03

EEMD-HT −39.30 1462.15 29.65
EEMD-ST −54.38 18883.73 113.11
EEMD-ITF −53.50 18873.04 113.19
EEMD-EBT −61.81 206258.00 354.88

Oil production

CEEMDAN-HT 6.74 349.57 2.76
CEEMDAN-ST −63.75 540139.50 591.92
CEEMDAN-ITF −30.99 537953.40 588.10
CEEMDAN-EBT 7.27 0.04 0.16

EEMD-HT −79.00 12356570.00 2745.34
EEMD-ST −86.93 86887096.00 7286.76
EEMD-ITF −73.65 848831080.00 22770.34
EEMD-EBT −97.94 859046156.00 22904.20

Coal production

CEEMDAN-HT −36.72 1651.05 9.87
CEEMDAN-ST −70.71 324869.10 468.47
CEEMDAN-ITF −64.89 316194.70 470.60
CEEMDAN-EBT 18.00 0.00 0.03

EEMD-HT −66.75 534782.20 570.28
EEMD-ST −49.37 750473.30 677.51
EEMD-ITF −53.98 484511.60 543.01

Gypsum production

CEEMDAN-HT −33.79 289.06 3.27
CEEMDAN-ST −63.97 96132.27 251.26
CEEMDAN-ITF −62.57 95933.80 251.12
CEEMDAN-EBT 16.49 0.00 0.04

EEMD-HT −78.28 21621484.00 3634.54
EEMD-ST −76.52 21068132.00 3569.88
EEMD-ITF −76.82 21071969.00 3570.38
EEMD-EBT −78.20 21623969.00 3633.90
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Figure 6: Decomposed and denoised series using CEEMDAN with suggested EBT and existing HT, ST, and ITF of (a) gas and (b) oil
production.
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magnitude and sparsity of noises separately to eliminate the
noises from data and ITF thresholds with CEEMDAN and
EEMD worst performed for oil production data. However, the
performance of the proposed CEEMDAN with EBT is optimal
for the major four minerals.

4.3. Prediction Stage. At this stage, the IMFs obtained after
denoising and decomposing are then predicted using tradi-
tional statistical and data-driven models. -e prediction of
denoised IMFs is obtained using theMLP-NNmodel. Training
is carried out by utilizing forward propagation and back-
propagation methods where the learning rate parameter is
decided from 0.1 to 1. For the testing model, the appropriate
learning rate of backpropagation is selected.-e noise-free and
denoised IMFs and residual are predicted using the ARIMA (p,
d, q)model for all fourmajorminerals.-emineral production
data of all four minerals are divided into 70% for training and
30% for the testing set. -e results of training errors after
splitting the data are presented in Table 2. After estimating all
IMFs and residuals, their accuracy is measured using MAE,
MAPE, andMSE.-e comparison of the proposedmodel with
other existing models for four major mineral productions, that
is, gas production, oil production, coal production, and gyp-
sum production, is presented in Table 2. -e proposed model,
that is, WA-CEEMDAN-EBT-MM, illustrates its effectiveness
by attaining the least values of MAE, MAPE, and MSE than
other selectedmodels for gas, oil, coal, and gypsum production.
-e proposed model demonstrated its productivity and effi-
ciency for oil production by showing minimum values of
MAPE and MSE compared to other models.

-e predicted graphical view of WA-CEEMDAN-EBT-
MM and WA-EEMD-EBT-MM with their benchmark
models for gas, oil, and coal production is shown in Figures 8
and 9, respectively. For verification of the superiority of the
proposed model by using the strategy WA-CEEMDAN-

EBT-MM for modeling mineral production data, we choose
EMD-CEEMDAN-EBT-MM, WA or EMD-EEMD-EBT-
MM, CEEMDAN or EEMD-EBT-MM, CEEMDAN or
EEMD-HT-MM, CEEMDAN or EEMD-ST-MM, CEEM-
DAN or EEMD-ITF-MM model to find and analyze the
results of prediction using nonlinear and noisy data.

Our proposed framework for prediction purposes based
on the novel strategy of denoising and decomposition
performs better than all other denoising and decomposition
methods. It is evident from Table 2 and Figure 8 that the
proposed model, that is, WA-CEEMDAN-EBT-MM, reveals
good prediction results for oil, coal, and gypsum production
with minimum values of MAE MSE and MAPE. -e values
of MAE and MAPE for gas production are also better than
the selected models. -e other selected models have no
consistency in terms of efficiency except CEEMDAN-EBT-
MM after WA-CEEMDAN-EBT-MM, as they vary in their
behaviors during each mineral’s prediction EMD-CEEM-
DAN-EBT-MM provides efficient results for oil and coal
production but is not much efficient in predicting gas and
gypsum production. However, the proposed model WA-
CEEMDAN-EBT-MM provides excellent and consistent
prediction results, illustrating that by using appropriate
decomposition technique and novel denoising technique,
one can get improvements in the performance of the data-
driven model to handle the production of mineral resources.

To verify the dominance of our proposed strategy, that is,
EMD andWA-CEEMDAN-EBT-MM, the testing data set of
mineral production is also utilized. -e results of the pre-
diction error of the proposed and other benchmark models
are exhibited in Table 3. It can be observed from Table 3 that
the proposed methods performed better than other existing
models, not only for training data set but also for testing data
set because our proposedmethod attains theminimum value
of MSE, MAD, and MAPE for all production of minerals. In
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Figure 7: Decomposed and denoised series using EEMDwith suggested EBTand existing HT, ST, and ITF of (a) gas and (b) oil production.
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Figure 10, all the models based on the EEMD strategy in the
combination of ST, HT, ITF, andWA are exhibited. It can be
inferred from Figure 10 that our proposed model (WA-
CEEMDAN-EBT-MM) overcomes the problem of mode
mixing, which provides better results of prediction for all
minerals, that is, gas, oil, coal, and gypsum, as all the other
models based on EEMD decomposition suffer from mode
mixing problem.

4.4. Overall comparison of Proposed Model. Altogether, the
proposed models behaved better than all other selected
models as the proposed model attains the least values of
MAE, MRE, and MSE for all four minerals. But WA-
CEEMDAN-EBT-MM performs better among both pro-
posed models by getting the lowest MAE, MRE, and MSE’s
compared to EMD-CEEMDAN-EBT-MM for all mineral
productions listed in Tables 2 and 3. Furthermore, it is

Table 2: Calculated index of estimating prediction error of proposed model (WA-CEEMDAN-EBT-MM) with all selected models for all
minerals for training data set.

Mineral production Method MAE MAPE (%) MSE

Gas production

CEEMDAN-HT-MM 5304.52 0.26 12774831
CEEMDAN-ST-MM 5317.78 0.24 11322218
CEEMDAN-ITF-MM 5345.36 0.25 12102083
CEEMDAN-EBT-MM 5032.89 0.19 7385481

EEMD-HT-MM 5416.71 0.25 12017612
EEMD-ST-MM 5485.98 0.24 11577010
EEMD-ITF-MM 5300.14 0.24 11707157
EEMD-EBT-MM 5544.93 0.23 10622160

EMD-CEEMDAN-EBT-MM 5017.59 0.22 9093509
WA-CEEMDAN-EBT-MM 4542.63 0.14 3985012
EMD-EEMD-EBT-MM 5483.79 0.23 10628112
WA-EEMD-EBT-MM 2930.08 0.26 13125316

Oil production CEEMDAN-HT-MM 113910.80 0.72 46194638775

Coal production

CEEMDAN-ST-MM 113765.70 0.74 48551504399
CEEMDAN-ITF-MM 114119.50 0.83 61798819694
CEEMDAN-EBT-MM 116116.80 0.71 44523217961

EEMD-HT-MM 118991.10 0.73 47839442452
EEMD-ST-MM 116942.50 0.73 46998880429
EEMD-ITF-MM 103288.20 0.71 44903334225
EEMD-EBT-MM 118982.80 0.73 47843257120

EMD-CEEMDAN-EBT-MM 128277.10 0.66 39136609182
WA-CEEMDAN-EBT-MM 89162.36 0.62 34516665678
EMD-EEMD-EBT-MM 118733.20 0.73 47848016344
WA-EEMD-EBT-MM 75571.16 0.71 44467200002
CEEMDAN-HT-MM 79308.30 0.32 109961324
CEEMDAN-ST-MM 76324.59 0.27 79147294
CEEMDAN-ITF-MM 76124.60 0.28 85323250
CEEMDAN-EBT-MM 75970.91 0.21 50089231

EEMD-HT-MM 77767.61 0.34 127476519
EEMD-ST-MM 77109.78 0.36 141105507
EEMD-ITF-MM 77353.18 0.34 125934260
EEMD-EBT-MM 79021.64 0.31 107708021

EMD-CEEMDAN-EBT-MM 76677.20 0.16 28150475
WA-CEEMDAN-EBT-MM 62097.61 0.02 631706
EMD-EEMD-EBT-MM 78838.57 0.32 112101829
WA-EEMD-EBT-MM 65352.05 0.20 44115854

Gypsum production
CEEMDAN-HT-MM 17597.64 4.66 2145766805
CEEMDAN-ST-MM 17369.72 4.64 2127547391
CEEMDAN-ITF-MM 17615.60 4.69 2171388807

Mineral production

Method MAE MAPE MSE
CEEMDAN-EBT-MM 15054.63 4.58 2070755942

EEMD-HT-MM 18224.62 4.62 2111476775
EEMD-ST-MM 17885.33 4.63 2116428672
EEMD-ITF-MM 17754.59 4.65 2141721948
EEMD-EBT-MM 19334.32 4.61 2130810674

EMD-CEEMDAN-EBT-MM 15008.87 4.62 2104316567
WA-CEEMDAN-EBT-MM 7359.75 4.43 1939268959
EMD-EEMD-EBT-MM 17821.09 4.69 2175846815
WA-EEMD-EBT-MM 12617.22 4.47 1976495272
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shown in these tables that in comparison with 1-stage, 2-
stage, and 3-stage models, both proposed models perform
well.

It is observed by considering the MAE from the
quantitative analysis of the mineral resources data that
WA-CEEMDAN-EBT-MM performed on average 32.5%
better than CEEMDAN-HT-MM, 30.4% better than

CEEMDAN-ST-MM, 30.7% better than CEEMDAN-ITF-
MM, 30% better than CEEMDAN-EBT-MM, 35.1% better
than EEMD-HT-MM, 33.2% better than EEMD-ST-MM,
24.8% better than EEMD-ITF-MM, 36.6% better than
EEMD-EBT-MM, 37.9% better than EMD-CEEMDAN-
EBT-MM, 35.4% better than EMD-EEMD-EBT-MM, and
4.1% better than WA-EEMD-EBT-MM.
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Figure 8: Prediction results of gas and oil production using proposed model EMD/WA-CEEMDAN-EBT-MM in comparison with other
benchmark models.
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Figure 9: Prediction results of gas and oil production using EMD/WA-EEMD-EBT-MM in comparison with other benchmark models.
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Table 3: Calculated index of the prediction error of proposed model (WA-CEEMDAN-EBT-MM) with all selected models for all minerals
using testing data set.

Mineral production Method MAE MAPE (%) MSE

Gas production

CEEMDAN-HT-MM 6124.62 1.49 85776560
CEEMDAN-ST-MM 6067.94 1.49 86213206
CEEMDAN-ITF-MM 6060.91 1.49 85663915
CEEMDAN-EBT-MM 6497.42 1.45 80863903

EEMD-HT-MM 6299.46 1.52 89526223
EEMD-ST-MM 6162.96 1.49 85768731
EEMD-ITF-MM 6133.99 1.47 84174150
EEMD-EBT-MM 6196.67 1.47 83710228

EMD-CEEMDAN-EBT-MM 6087.81 1.47 83267636
WA-CEEMDAN-EBT-MM 5981.35 0.52 10644436
EMD-EEMD-EBT-MM 6498.35 1.39 75549936
WA-EEMD-EBT-MM 4656.62 1.32 67560768

Oil production

CEEMDAN-HT-MM 94487.81 0.55 3574451945
CEEMDAN-ST-MM 89367.79 0.58 3950412921
CEEMDAN-ITF-MM 89112.90 0.59 4117443855
CEEMDAN-EBT-MM 95011.93 0.53 3331061007

EEMD-HT-MM 94687.77 0.55 3586516558
EEMD-ST-MM 94145.47 0.56 3718436914
EEMD-ITF-MM 94421.73 0.56 3763903042
EEMD-EBT-MM 97759.10 0.54 3526833910

EMD-CEEMDAN-EBT-MM 93675.74 0.54 3421733829
WA-CEEMDAN-EBT-MM 53672.63 0.01 1479480
EMD-EEMD-EBT-MM 97564.55 0.55 3582983333
WA-EEMD-EBT-MM 59518.42 0.59 4224621468

Coal production

CEEMDAN-HT-MM 78961.34 4.74 6152379238
CEEMDAN-ST-MM 75085.79 4.78 6268716519
CEEMDAN-ITF-MM 75758.74 4.81 6351402799
CEEMDAN-EBT-MM 79648.01 4.58 5743522563

EEMD-HT-MM 79033.33 4.63 5881443482
EEMD-ST-MM 78581.31 4.65 5926195810
EEMD-ITF-MM 78326.25 4.63 5878805864
EEMD-EBT-MM 79137.63 4.65 6006845315

EMD-CEEMDAN-EBT-MM 78951.86 4.59 5782519245
WA-CEEMDAN-EBT-MM 46134.15 2.45 1627064349
EMD-EEMD-EBT-MM 78400.32 4.58 5862885160
WA-EEMD-EBT-MM 63512.19 4.86 6493517535

Mineral production Method MAE MAPE (%) MSE

Gypsum production

CEEMDAN-HT-MM 12842.70 2.81 57920741
CEEMDAN-ST-MM 11996.57 3.51 90260488
CEEMDAN-ITF-MM 11809.15 3.46 87781588
CEEMDAN-EBT-MM 12907.45 2.80 57304120

EEMD-HT-MM 13307.93 2.87 60794755
EEMD-ST-MM 13017.17 2.91 62552982
EEMD-ITF-MM 13016.39 2.89 61585436
EEMD-EBT-MM 13280.97 2.86 60331565

EMD-CEEMDAN-EBT-MM 12796.11 2.79 57183784
WA-CEEMDAN-EBT-MM 8215.01 0.02 4346.341
EMD-EEMD-EBT-MM 13125.16 2.89 61419788
WA-EEMD-EBT-MM 9809.22 3.33 86638488
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Moreover, it is observed that many of the IMF com-
ponents are predicted by using the ARIMA model, which
shows that by using ARIMA in predicting IMFs, WA-EBT-
CEEMDAN-MM provides more accurate prediction in
mineral production.

5. Conclusion

For the optimal mineral supply of mineral resources, the
accurate prediction of mineral resources is necessary. Here,
some data processing methods are utilized to increase the
prediction accuracy of such stochastic type data by using
decomposition techniques to efficiently reduce the com-
plexity of mineral production time-series data. Since the
noises and nonlinearity of the mineral production data, a
scheme is proposed here to improve the prediction accuracy
of data-driven models with a suitable novel decomposition
and denoising method. It is observed by considering the
MAPE from the quantitative analysis of the mineral re-
sources data that WA-CEEMDAN-EBT-MM performed on
average 14.4% better than CEEMDAN-HT-MM, 13.1%
better than CEEMDAN-ST-MM, 16.1% better than
CEEMDAN-ITF-MM, 9.2% better than CEEMDAN-EBT-
MM, 14% better than EEMD-HT-MM, 14.4% better than
EEMD-ST-MM, 14% better than EEMD-ITF-MM, 12.9%
better than EEMD-EBT-MM, 8.6% better than EMD-
CEEMDAN-EBT-MM, 14.9% better than EMD-EEMD-
EBT-MM, and 8.2% better than WA-EEMD-EBT-MM.
Furthermore, our suggested method of denoising enhances
the working of the decomposition method based on
CEEMDAN through improvement in time-scale compo-
nents which increases the prediction efficiency of the data-
driven models. Our proposed method contained four stages:
decomposition stage, denoising stage, prediction stage, and
ensemble stage. -e suggested model’s performance, that is,
WA-CEEMDAN-EBT-MM and EMD-CEEMDAN-EBT-

MM, is appraised using four major mineral production data.
As a result, the WA-CEEMDAN-EBT-MM has the smallest
value of MAPE for all four minerals compared to other
models.
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