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+is paper addresses the two-dimensional loading heterogeneous fixed fleet vehicle routing problem, which is a complex and
unstudied variant of the classical vehicle routing problem and has a wide range of applications in transportation and logistics
fields. In this problem, each customer demands a set of rectangular two-dimensional items, and the objective is to find the
minimum cost delivery routes for a limited set of vehicles with different capacities, fixed and variable operating costs, and
rectangular two-dimensional loading surfaces. We formulate a mixed integer linear programming model to obtain optimal
solutions for small-scale problems. To obtain solutions for large-scale problems, we develop an algorithm based on simulated
annealing and local search, which uses a collection of packing heuristics to address the loading constraints, and we also propose
three new heuristics. We conduct experiments on benchmark instances derived from the two-dimensional loading heterogeneous
fleet vehicle routing problem. +e results indicate that the proposed model correctly describes the problem and can solve small-
scale problems, that the new packing heuristics are effective in improving the collection of packing heuristics, and that the
proposed simulated annealing algorithm can find good solutions to large-scale problems within an acceptable computational time.
Hence, it can be used by logistic companies using a heterogeneous fixed fleet in the integrated planning of vehicle loading
and routing.

1. Introduction

In many organizations, the management of distribution
activities is a major decision-making problem. Every
manufacturing system needs an efficient way to supply its
products to retailers and customers. Most firms require
delivery vehicles to service a network of demand locations,
meaning the efficient use of a vehicle fleet is the main feature
of almost all distribution problems, since transportation
costs and lead time have an important impact on supply
chain management [1, 2].

+e vehicle routing problem (VRP) is considered one of
the most important factors in both logistics and freight
transportation systems. It consists of proposing themost cost-
effective way to deliver items from depots to customers using

a fleet of vehicles.+emost common costs associated with the
problem are related to driving distance. +ere are several
variants of the VRP due to additional constraints encountered
in real-world applications [3]. Regarding fleet composition,
the classical problem, called the capacitated vehicle routing
problem (CVRP), considers vehicles with the same limited
capacity, whereas the heterogeneous fleet vehicle routing
problem (HFVRP) considers vehicles with different capacities
and costs [4]. Different features of these heterogeneous VRPs
have been studied. For instance, the fleet size and mix vehicle
routing problem (FSMVRP) deals with an unlimited number
of vehicles, and in this case, in addition to routing, the
problem includes the management of the fleet composition,
while the heterogeneous fixed fleet vehicle routing problem
(HFFVRP) considers a limited number of vehicles.
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In the above VRP variants, customer demands are
usually expressed simply as weights or volumes. In this case,
checking the feasibility of a solution simply requires one to
ensure that the sum of the customer demands assigned to
each vehicle does not exceed its total loading capacity.
However, a variety of real-life applications in the distribu-
tion management context involve the transportation of
rectangular-shaped items, that is, items that cannot be
stacked due to their weight or fragility, such as household
appliances or delicate pieces of furniture. In all these cases, it
is necessary to consider additional constraints to reflect the
two-dimensional loading feature of the problem, because the
way these items are packed into vehicles might have a
significant influence over distribution costs. When dealing
with rigid discrete items, their geometry may lead to in-
feasible solutions if the vehicle does not have sufficient
capacity. In other words, it may not be possible to ac-
commodate items in vehicles because of their geometrical
characteristics, so logistic managers must simultaneously
deal with routing and packing [5–7]. Since routing and
packing are well knownNP-hard problems, combining them
leads to an extremely challenging optimization problem.

+e two-dimensional loading capacitated vehicle routing
problem (2L-CVRP) is one of the first approaches to inte-
grate vehicle routing and loading problems. In this problem,
customers demand a set of rectangular two-dimensional
items, and identical vehicles have a two-dimensional loading
surface. In real-world problems, in contrast to the 2L-CVRP,
enterprises own a diverse fleet of vehicles, which offers the
flexibility to design a more profitable distribution plan. +e
two-dimensional loading heterogeneous fleet vehicle routing
problem (2L-HFVRP) treats the 2L-CVRPwith an unlimited
heterogeneous fleet. Nevertheless, since most companies
that have to deliver goods own a limited fleet of vehicles, it is
crucial to study routing problems that involve heteroge-
neous fixed fleets and loading constraints. To the best of our
knowledge, we are not aware of studies that have been
conducted to address such a VRP, although it is a practical
problem in real-world transportation and logistics
enterprises.

In this paper, we thus combine the HFFVRP with two-
dimensional loading constraints, which is called the two-
dimensional loading heterogeneous fixed fleet vehicle
routing problem (2L-HFFVRP). In the 2L-HFFVRP, there
are limited numbers of vehicles of different types. Each
vehicle has a carrying capacity, a fixed cost related to the use
of the vehicle, a variable cost proportional to the distance
traveled, and a rectangular loading surface with a given
length and width. Customer demand is defined by a set of
rectangular items of a given width, length, and weight. All
items belonging to a particular customer must be assigned to
the same route. +e objective is to describe the most cost-
effective item delivery routes that start from and return to a
depot. In practice, the need for different types of vehicles is
determined by customer characteristics. Usually, larger
vehicles are more appropriate for serving customers who
require large orders, while smaller vehicles are more ade-
quate for delivering small quantities or serving customers
that have access restrictions.

Due to their structure, it happens frequently that the
items may not be picked up from any side by the loading/
unloading equipment. Additionally, vehicles are generally
rear-loaded, and load rearrangement at the customer site can
be difficult, time-consuming, or even impossible due to the
weight and size of the items or the limitations of forklift
trucks; therefore, each item to be unloaded must not be
blocked by other items yet to be unloaded, even partially, in
the rectangular area from its loading position to the
unloading side of the truck. From the viewpoint of the
loading problem, there are different constraints that could be
considered. Depending on these constraints, it is possible to
distinguish between the following loading settings: (a) ori-
ented loading (OL), where the rotation of items is not
allowed, that is, it is assumed that all items have a fixed
orientation; (b) nonoriented loading (RL), where it is
allowed to rotate items by 90° during the packing process; (c)
sequential loading (SL), where items are always loaded in a
reverse order to the order in which customers are visited but
rearrangements of the items inside the vehicle are not
allowed once the route has started; and (d) unrestricted
loading (UL), where items are allowed to be rearranged
during the distribution process. Figure 1 illustrates the
difference between unrestricted and sequential loading.

+e purpose of this paper is to present two approaches
for solving 2L-HFFVRP. First, a mixed integer linear pro-
gramming model is formulated to obtain optimal solutions
for small-scale problems. To this end, we developed a four-
index formulation that simultaneously manages the routing
and loading aspects and also considers the sequential loading
constraints. Second, to obtain solutions for large-scale
problems, we propose an algorithm based on simulated
annealing (SA) and local search. Specifically, we developed a
heuristic algorithm to obtain an initial feasible solution and
used SA and local search to explore the routing problem
search space, while the loading constraints were solved by a
bundle of packing heuristics composed of five heuristics
from the literature and three new heuristics. We assume that
all items have a fixed orientation and consider both unre-
stricted and sequential loading.

+e remainder of this paper is organized as follows.
Section 2 briefly reviews the literature on combined two-
dimensional loading and routing problems. In Section 3, we
define the problem to be addressed. In Section 4, we present
the mathematical formulation for this problem. In Section 5,
the packing heuristics are described, and a hybrid SA al-
gorithm is developed. Section 6 presents the set of instances
generated and explains the computational experiments and
results. Finally, Section 7 provides the managerial insights of
the study and Section 8 draws concluding remarks and
perspectives for future research.

2. Literature Review

Integrated vehicle routing and loading problems have been
increasingly studied, owing to their relevance to logistics
distribution systems [5–7]. To the best of our knowledge,
there are no studies on the 2L-HFFVRP to date. +is section
will focus on the previous studies on the 2L-CVRP and the
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2L-HFVRP. Both these problems combine vehicle routing
and two-dimensional loading constraints but consider a
homogeneous and an unlimited heterogeneous fleet, re-
spectively. As a generalization of VRP, these problems and
their variants are known to be NP-hard problems, so exact
methods are suitable for solving only small-scale problems,
while metaheuristic algorithms are more favored for solving
complex problems.

+e 2L-CVRP was first presented by Iori et al. [8]. +ey
addressed the sequential oriented version of the problem
using an exact methodology that employs a branch-and-cut
algorithm to deal with the routing aspects of the problem,

combined with a nested branch-and-bound procedure to
guarantee feasible loadings of the items into the vehicles.
Subsequently, Gendreau et al. [9] proposed a metaheuristic
based on tabu search for the routing problem, and checking
for a feasible loading is performed via heuristics, lower
bounds, and a truncated branch-and-bound procedure,
considering both sequential and unrestricted oriented
loading. Zachariadis et al. [10] developed a hybrid heuristic
algorithm based on tabu search and guided local search and
introduced a collection of packing heuristics to check the
feasibility of the loading. Leung et al. [11] developed an
improved algorithm based on guided tabu search and SA
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Figure 1: Unrestricted and sequential loading.
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and introduced a new packing heuristic to address loading
constraints. Fuellerer et al. [12] developed an ant colony
algorithm to solve the routing problem, combined with
heuristics for the loading subproblem. +e authors
addressed sequential and unrestricted problems, as well as
oriented and nonoriented loading, and the rotation of items
was allowed for the first time. Duhamel et al. [13] proposed a
method that combines greedy adaptive random search with
evolutionary local search and transformed the loading
constraints into a project scheduling problem. A heuristic
algorithm called promise routing-memory packing, based
on the compression idea, was introduced by Zachariadis
et al. [14]. Wei et al. [15] proposed an SA algorithm, with a
mechanism of repeatedly decreasing and increasing the
temperature that uses an open space-based heuristic to deal
with loading constraints, which outperformed all previous
approaches on all problem versions. Recently, Ji et al. [16]
proposed an enhanced neighborhood search algorithm in-
corporated with a based tabu search packing algorithm to
solve 2L-CVRP with split delivery. +is variant was also
addressed by Ferreira et al. [17] through an exact branch-
and-cut approach, where a tailored procedure that includes
the computation of lower bounds, a constructive-based
heuristic, and a constraint programming model are pro-
posed to handle the packing problem.

Concerning 2L-HFVRP, Leung et al. [18] first addressed
the problem through an SA algorithm with a heuristic local
search to solve the routing problem and a collection of six
packing heuristics to solve the loading constraints, con-
sidering oriented sequential and unrestricted versions of the
problem. Dominguez et al. [19] developed an algorithm that
combines biased-randomized versions of routing and
packing heuristics to solve oriented and nonoriented un-
restricted problems. +e biased randomization of heuristics
refers to the use of skewed probability distributions to in-
duce nonsymmetric random behavior in a heuristic pro-
cedure and transform a deterministic heuristic into a
multistart probabilistic algorithm. A hybrid swarm algo-
rithm based on artificial bee colony and artificial immune
system was proposed by Zhang et al. [20] to deal with se-
quential and unrestricted problems. More recently, Sabar
et al. [21] proposed an adaptive memetic algorithm that
integrates new multiparent crossover operators with mul-
tilocal search algorithms in an adaptive manner for solving
the routing problem, while hybridization of five packing
heuristics is used to perform the loading process, consid-
ering only nonoriented unrestricted loading. A comparison
between the previous studies, involving heterogeneous ve-
hicle routing problems and two-dimensional loading con-
straints, and this study is shown in Table 1.

Our literature review of the vehicle routing problems
that considers a heterogeneous fleet and two-dimensional
loading constraints reveals that other researchers only solved
these problems considering an unlimited fleet. However, in
practice, it is not a realistic scenario, since companies
generally own a limited fleet. +erefore, we address the 2L-
HFFVRP.

3. Problem Statement

+e 2L-HFFVRP is defined on a complete undirected graph
G � (N, A), where N � 0, 1, . . . , n{ } is a set of n + 1 vertices,
the vertex 0 denotes the depot, and the vertices 1, 2, . . . , n

correspond to the positions of the customers 1, 2, . . . , n. A �

(i, j); i, j ∈ N  is a set of edges, and each edge (i, j) ∈ A is
associated with a distance dij (dii � 0) that denotes the
distance from customer i to customer j. A set V � 1, . . . , v{ }

of v vehicles is available at the depot. Each vehicle k ∈ V has a
weight capacity Qk, a loading surface with length Lk and
widthWk, a fixed cost Fk, and a variable costVk. In general, a
vehicle with a larger capacity usually has higher fixed and
variable costs. +e traveling cost of each edge (i, j) ∈ A by
vehicle k is Ck

ij � Vk · dij. Each customer i (i � 1, . . . , n)

demands a set of mi rectangular items, denoted by ITi, and
the total weight of ITi is equal to Di. Each item Iir ∈ ITi

(r � 1, 2, . . . , mi) has a specific length lir and width wir.
For 2L-HFFVRP, a feasible solution must satisfy the

following constraints:

(a) Each vehicle must start and finish at the depot
(b) Each customer can be served only once
(c) +e weight capacity, length, and width of the vehicle

cannot be exceeded
(d) All items of each customer must be loaded on the

same vehicle
(e) Each item has a fixed loading orientation and must

be loaded with its sides parallel to the sides of the
loading surface

(f ) Overlap between items within the same vehicle is not
allowed

+e objective of the 2L-HFFVRP is to find a set of routes
of minimum cost that fulfill the constraints and satisfy all
customers’ demands. +e constraints mentioned above refer
to the unrestricted 2L-HFFVRP. Besides this problem ver-
sion, this study also considers the sequential 2L-HFFVRP.

4. Mixed Integer Linear
Programming Formulation

+is section proposes a mathematical formulation to rep-
resent the 2L-HFFVRP, considering the characteristics de-
scribed in Section 3. +e notation used in the model,
including indexes, sets, parameters, and variables, is

Table 1: Contributions of previous studies.

Authors Limited fleet Items
rotation

Sequential
loading

Leung et al. [18] No No Yes
Dominguez et al. [19] No Yes No
Zhang et al. [20] No No Yes
Sabar et al. [21] No No No
+is paper Yes No Yes
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presented in Section 4.1. +e mathematical model is pre-
sented in the following stages: initially, a model for the
HFFVRP is introduced in Section 4.2; then, we present
constraints for vehicle loading in Section 4.3; and subse-
quently, sequential loading constraints are developed in
Section 4.4.

4.1. Notations. +e mixed-integer linear programming
model depends on the sets, parameters, and variables de-
scribed in Table 2.

4.2. Mathematical Formulation for the HFFVRP. A number
of formulations could be used to model the HFFVRP [22]. In
this study, we present a formulation based on the time-
dependent formulation of the traveling salesman problem
for integrated routing and packing problems [23]. Although
this is a heavy four-index formulation, it gives us infor-
mation about the position of customers in each route, which
is necessary to ensure that the sequential loading constraints
are fulfilled.

It is defined that a vehicle arrives at each vertex in stage t.
Moreover, it is assumed that each route starts at vertex 0 in
stage t � 0 and finishes at vertex 0 in stage t � n + 1 if only
one vehicle is used. +erefore, the set of possible values for t

is T � 1, . . . , n + 1{ }.
+e (routing) decision variables zkt

ij indicate whether
vehicle k goes directly from vertex i to vertex j in stage t

(zkt
ij � 1) or not (zkt

ij � 0). It is assumed that dii � 0, (i, i) ∈ A.
+e mathematical model for the HFFVRP is expressed as
follows:

Minimize 
k∈V


j∈N\ 0{ }

Fkz
k1
0j + 

i∈N

j∈N


k∈V


t∈T

Vkdijz
kt
ij , (1)

subject to


j∈N


k∈V


t∈T

z
kt
ij � 1, i ∈ N\ 0{ }, (2)


j∈N


k∈V


t∈T\ 1{ }

tz
kt
ij − 

g∈N

k∈V


t∈T

tz
kt
gi � 1, i ∈ N\ 0{ },

(3)


j∈N\ 0{ }

z
k1
0j ≤ 1, k ∈ V, (4)


j∈N

z
k,t+1
ij − 

g∈N
z

kt
gi � 0, i ∈ N\ 0{ }, k ∈ V, t ∈ T\ n + 1{ },

(5)


i∈N\ 0{ }


j∈N


t∈T\ 1{ }

Diz
kt
ij ≤Qk, k ∈ V,

(6)

z
kt
ij ∈ 0, 1{ }, (i, j) ∈ A, k ∈ V, t ∈ T. (7)

In this formulation, the objective function (1) aims to
minimize the total cost for the vehicles to visit all customers.

Constraints (2) ensure that each customer is visited exactly
once. Constraints (3) ensure the connectivity of each tour;
that is, they ensure that if customer i is visited in stage t, then
this customer has to be the starting point for some other
customer in stage t + 1. Constraints (4) ensure that each
vehicle leaves the depot at most once in stage 1. Constraints
(5) ensure that if vehicle k travels from customer l to cus-
tomer i in stage t, then in stage t + 1, the same vehicle k must
travel from customer i to another customer j. Constraints
(6) ensure that the weight capacity of the vehicles is not
exceeded. Constraints (7) are the (routing) decision variable
domain constraints. To ensure the validity of this formu-
lation, we assume that zkt

0j � 0, ∀j ∈ N\ 0{ }, k ∈ V, t ∈ T\ 1{ };
that is, the vehicles can leave the depot only in the first stage.

4.3. Two-Dimensional Loading Constraints. In this section,
we show how two-dimensional loading considerations can
be embedded into formulation (1)–(7) of the last subsection.
+ese constraints address the geometrical loading aspects;
that is, they ensure that items are packed completely inside
the vehicles and that they do not overlap each other in each
vehicle.

Two-dimensional loading constraints for routing
problems have been addressed by Junqueira [23], who de-
veloped models for integrated routing and loading prob-
lems; however, the formulation does not favor the optimum
use of the vehicle loading surface when sequential loading is
considered since it contains a parameter that limits the
number of length units allowed to exceed the frontal border
of the items of customers already loaded in order to arrange
the items of a customer that will be visited earlier in the
route. Due to this limitation, we build on a formulation for
the container loading problem [24] adapted to the two-
dimensional case and to the vehicle routing context.

Let us create a set I of all items to be loaded in the
vehicles as follows.+e first m1 elements of I are the items of
customer 1, the next m2 elements are the items of customer
2, and so on. +erefore, each item r ∈ ITi becomes an item
p � 

i− 1
j�1mj + r, so each customer i demands a set of items

p ∈ I (p � 
i− 1
j�1mj + 1, . . . , 

i
j�1 mj), that is, ITi � 

i− 1
j�1mj

+1, . . . , 
i
j�1 mj}. Each item p ∈ I has a specific length lp and

width wp. +e total number of items in set I is B � 
n
i�1 mi.

We assume that the dimensions of items and vehicles are
integers, that items can be placed only orthogonally in a
vehicle, and that their orientation is fixed.

A Cartesian coordinate system with its origin in the
vehicle’s front-left corner is adopted, and the vehicle door
through which loading and unloading operations are per-
formed is placed on the side between coordinates (L, 0) and
(L, W), as shown in Figure 2.

+e (loading) decision variables indicate coordinates
(xp, yp) of the front-left corner of item p in the vehicle
loading surface, and the variables spk indicate whether item
p is loaded into vehicle k (spk � 1) or not (spk � 0). Binary
variables αpq, βpq, cpq, and δpq (p, q ∈ I, p< q) indicate the
placement of items relative to each other. αpq, βpq, cpq, and
δpq are equal to 1 if item p is, respectively, loaded behind, in
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Table 2: Model sets, parameters, and variables.

Indexes/sets
i, j, g ∈ N � 0, . . . , n{ } Set of vertices from the depot (n � 0) to customers (n> 0)
k ∈ V � 1, . . . , v{ } Set of vehicles
t ∈ T � 1, . . . , n + 1{ } Set of stages in which a customer can be served by a vehicle
p, q ∈ I � 1, . . . , 

n
i�1 mi  Set of items demanded by all customers. Each customer i demands a set ITi � 

i− 1
j�1mj + 1, . . . , 

i
j�1 mj 

Parameters
n Number of customers
dij Distance from each customer i to each customer j

v Number of vehicles
Qk Weight capacity of each vehicle k

Lk Length of the loading surface of each vehicle k

Wk Width of the loading surface of each vehicle k

Fk Fixed cost of each vehicle k

Vk Variable cost of each vehicle k

mi Number of items demanded by each customer i

Di Total weight demanded by each customer i

lp Length of each item p

wp Width of each item p

Variables

zkt
ij

Binary variable that indicates whether vehicle k goes directly from vertex i to vertex j in stage t (zkt
ij � 1) or not

(zkt
ij � 0)′

xp

Continuous variable that indicates the x-coordinate of the front-left corner of item p on the vehicle loading
surface

yp

Continuous variable that indicates the y-coordinate of the front-left corner of item p in the vehicle loading
surface

spk Binary variable that indicates whether item p is loaded into vehicle k (spk � 1)′ or not (spk � 0)′
αpq Binary variable that indicates whether item p is loaded behind item q (αpq � 1)′ or not (αpq � 0)′
βpq Binary variable that indicates whether item p is loaded in front of item q (βpq � 1)′ or not (βpq � 0)′
cpq Binary variable that indicates whether item p is loaded on the left side of item q (cpq � 1)′ or not (cpq � 0)′

δpq Binary variable that indicates whether item p is loaded on the right side of item q (δpq � 1)′ or not (δpq � 0)′

x

y
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L

W

(L,W)

Figure 2: Vehicle loading surface.
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Figure 3: Relative positions of two items.
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front of, on the left side of, or on the right side of item q. An
example of the use of these variables is shown in Figure 3,
which shows two items p and q loaded in a vehicle.

Assuming that p< q, we have αpq � 1, βpq � 0, cpq � 0,
and δpq � 0. Note that an item p is said to be loaded behind or
in front of an item q only if there is no intersection of its
projections on the x-axis. Analogously, item p can be on the
left or on the right of item q if there is no intersection of its
projections on the y-axis.+erefore, it is possible to have αpq +

βpq ≤ 1 and cpq + δpq ≤ 1, while 1≤ αpq + βpq + cpq +δpq ≤ 2.
Let M be a sufficiently large number.+e formulation for

the 2L-HFFVRP is composed of the objective function (1)
and constraints (2), (3), (4), (5), (6), and (7) presented
before, plus the following constraints:

xp + lp ≤xq + 1 − αpq M, p, q ∈ I, p< q, (8)

xq + lq ≤ xp + 1 − βpq M, p, q ∈ I, p< q, (9)

yp + wp ≤yq + 1 − cpq M, p, q ∈ I, p< q, (10)

yq + wq ≤yp + 1 − δpq M, p, q ∈ I, p< q, (11)

αpq + βpq + cpq + δpq ≥ spk + sqk − 1, p, q ∈ I, p< q, k ∈ V,

(12)

xp + lp ≤Lk + 1 − spk M, p ∈ I, k ∈ V, (13)

yp + wp ≤Wk + 1 − spk M, p ∈ I, k ∈ V, (14)


p∈ITi

spk � mi 
j∈N


t∈T

z
kt
ij , i ∈ N\ 0{ }, k ∈ V, (15)

xp, yp ∈ R, p ∈ I, (16)

spk ∈ 0, 1{ }, p ∈ I, k ∈ V, (17)

αpq, βpq, cpq, δpq ∈ 0, 1{ }, p, q ∈ I, p< q. (18)

Constraints (8)–(11) ensure that the items do not overlap
with each other. +is check for overlap is necessary only if a
pair of items is placed in the same vehicle, and this is ensured
by constraints (12). Constraints (13) and (14) ensure that all
the items loaded in a vehicle fit within the physical di-
mensions of the vehicle. Constraints (15) ensure the cou-
pling of routing and loading structures; that is, all items
required by customer i must be loaded on the same vehicle k

that visits this customer. Finally, constraints (16)–(18) are
the (loading) decision variable domain constraints.

4.4. Sequential Loading Constraints. In sequential loading
problems, vehicle loading must take into account the de-
livery route of the vehicle and the sequence in which items
are unloaded. In other words, items must be loaded in the
reverse order in which respective customers are visited. +is
rule prevents unnecessary additional handling when each

delivery point of the route is reached and, consequently,
additional time spent unloading and reloading items of the
remaining customers.

To address the sequential loading constraints and ensure
that the items of a customer do not block the items of
customers that will be served before them, we develop the
following constraints:

xq + lq ≤xp + 2 + cpq + δpq  − 
g∈N

z
kt2
gj + 

g∈N
z

kt1
gi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠M,

i, j ∈ N\ 0{ }, i< j, p ∈ ITi, q ∈ ITj, k ∈ V, t1, t2 ∈ T, t1 < t2,

(19)

xp + lp ≤xq + 2 + cpq + δpq  − 
g∈N

z
kt2
gi + 

g∈N
z

kt1
gj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠M,

i, j ∈ N\ 0{ }, i< j, p ∈ ITi, q ∈ ITj, k ∈ V, t1, t2 ∈ T, t1 < t2.

(20)

If customer i is served before customer j, constraints (19)
prevent the items of customer j from blocking the
unloading of the items of customer i. +ese constraints
verify whether customer i is served in stage t1 preceding
stage t2 in which customer j is served. A particular case is
illustrated in Figure 4 that shows an item p of customer i

and an item q of customer j. If customer i is not visited
before customer j, item p of customer i and item q of
customer j have unrestricted x coordinates. However,
if customer i is served before customer j, there are two
possibilities: if item p of customer i is completely on the
left or on the right side of item q of customer j, we have
cpq + δpq � 1, and there is no intersection of their pro-
jections on the y-axis, so the item does not block the other
one. On the other hand, if item p is not completely on the
left or right side of item q, an item is behind or in front of
the other, and the constraints impose the condition that
item p must be in front of item q. A similar explanation is
valid for constraints (20) in the case that customer i is
served after customer j.

+e complete formulation for the 2L-HFFVRP with se-
quential loading constraints is given by the objective function
(1) with the constraints (2)–(20). +e four-index formulation is
essential to properly model the 2L-HFFVRP when sequential
loading constraints are present. Both indices k and t are fun-
damental to the modeling of the problem: index k is necessary
to determine inwhich vehicle a given item is placed, and index t,
in turn, makes it possible to indicate the position of a customer
in the route and set the sequential loading constraints. +e way
these constraints are established allows us to obtain the optimal
usage of vehicle loading surfaces, even for strongly heteroge-
neous items, once the position of a customer is analyzed in
relation to the position of all other customers, not only those
that immediately precede or follow the respective customer. If
these constraints considered only the pairs of customers that are
served in sequence in the route, there would be no guarantee
that loading constraints would be satisfied.

+is formulation can be used to optimally solve small-
scale 2L-HFFVRP cases. A metaheuristic algorithm for
handling large-scale problems is presented in the next
section.
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5. Hybrid SA Algorithm

Most approaches for solving problems that integrate vehicle
routing and loading separate the problems into the following
two stages: (1) a main algorithm for routing and (2) a tool for
the loading per vehicle. In this paper, we present a hybrid
algorithm based on SA and local search for the routing
problem that uses heuristic methods to determine the
geometric loading of items into vehicles. +ese heuristics are
described, and the proposed algorithm is explained.

5.1. Heuristics for Two-Dimensional Loading. Given a route,
it is necessary to determine whether it is feasible, that is,
whether customer demand does not exceed vehicle capacity
and whether all the items ordered by customers can be
loaded onto the vehicle without overlap. In addition, in
sequential loading, the item loading order must respect the
order of customers served. To verify the feasibility of a route,
we first examine whether the vehicle capacity is exceeded
and whether all the items exceed the loading area and surface
dimensions. If all conditions are satisfied, then heuristic
methods are subsequently applied to determine whether
feasible loading exists and, if it does, to determine its
configuration.

Eight heuristics Heuri (i � 1, . . . , 8) are used to solve the
two-dimensional loading problem; one item at a time is
inserted in the most appropriate position in a list of available
loading positions according to certain criteria to be de-
scribed later in this section. Initially, only the left front
corner of the vehicle loading surface, corresponding to the
coordinate point (0,0), is available for loading an item.When
an item is inserted, the position it occupies is excluded from
the list of available loading positions, while at most two new
positions are generated and added to this list. Figure 5 shows

the mechanism of item insertion: item D is inserted in the
highlighted position in the figure on the left, and the set of
available positions after its insertion are shown in the figure
on the right.

In sequential loading, when all items of a customer are
loaded, positions that cannot be occupied by items that have
not yet been loaded are excluded from the list of available
loading positions Suppose that the route is
0 − i1 − i2 − i3 − 0. +e partial loading for this route and the
available loading positions are shown in Figure 6. After the
loading of the items of customer i2 and before the loading of
the items of customer i1, the highlighted positions are ex-
cluded from the list of available loading positions, as they
would generate loadings that would contravene the se-
quential loading constraints.

Heuristics Heuri (i � 1, . . . , 5) are based on the study by
Zachariadis et al. [10] and adopt the following criteria to
determine an item loading position.

Heur1: Bottom-Left Fill (x-axis): the selected position is
that with the minimum x-axis coordinate, where ties
are broken by the minimum y-axis coordinate. With
this heuristic, packing tends to form strips parallel to
the x-axis.
Heur2: Bottom-Left Fill (y-axis): the selected position is
that with the minimum y-axis coordinate, where ties
are broken by the minimum x-axis coordinate. With
this heuristic, packing tends to form strips parallel to
the y-axis.
Heur3: Max Touching Perimeter: the selected position
is that with the maximum sum of the common edges
between the item to be inserted, the loaded items in the
vehicle, and the vehicle loading surface. +is heuristic
tends to spread items to the edges of the loading surface
and later fills the inner part of it.
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Figure 4: Relative positions of the items of two customers.
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Heur4: Max Touching Perimeter no Walls: the selected
position is that with the maximum sum of the common
edges between the item to be inserted and the loaded
items in the vehicle. +is heuristic tends to fill the inner
part of the loading surface before filling the edges.
Heur5: Min Area: the selected position is that with the
minimum rectangular surface, which is the rectangular
area available for loading an item into this position.

A detailed explanation of these five heuristics can be
found in [10]. As in the study by Zachariadis et al. [10],
we first use these five packing heuristics to derive the
loading strategy. +en, we introduce three new packing
heuristics, namely, the Min Occupied Rectangular Area
(Heur6), Max Touching Perimeter Select Item (Heur7),
and Max Relative Touching Perimeter Select Item
(Heur8). Heur6 selects an item loading position
according the following criteria.

Heur6: Min Occupied Rectangular Area: the selected
position yields the minimum occupied rectangular area
after item insertion. Figure 7 shows the occupied
rectangular area after inserting item C in the given
position. +is strategy makes the packing compact.

Heuristics Heuri (i � 1, . . . , 6) presented thus far em-
ploy individual criteria to select the position to insert a
predefined item; that is, the items are loaded one at a
time according to a given sequence. To increase the
probability of the heuristics obtaining a feasible solu-
tion, three orders are generated for sequential and
unrestricted cases. In a given route, each customer has a
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Figure 5: Process of loading items.
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Figure 6: Infeasible positions for sequential loading.
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unique visit order. If sequential loading is considered,
Ord Seq1, Ord Seq2, and Ord Seq3 are produced by
sorting all items by the reverse customer visit order,
breaking ties by decreasing length, width, and surface
area, respectively. For the unrestricted problem,
Ord Un1, Ord Un2, and Ord Un3 are produced simply
by sorting all items by decreasing length, width, and
surface area, respectively. Note that although Ord Seq1,
Ord Seq2, and Ord Seq3 are primarily designed to deal
with the sequential problem, they succeed in producing
feasible unrestricted loadings in numerous cases when
Ord Un1, Ord Un2, and Ord Un3 fail; therefore, they
are also considered for solving unrestricted problems.

Heuristics Heur7 and Heur8 do not order items for
loading, as they analyze the loading of all possible items
to be loaded in all available loading positions that are
feasible and select an item and a position that best meet
the stated criteria. In sequential loading, the analysis is
performed for all items of the current loading cus-
tomer, while in unrestricted loading, any item can be
inserted at any time. +e criteria employed by Heur7
and Heur8 are as follows.

Heur7: Max Touching Perimeter Select Item: for each
item that can be loaded and for all the respective
available loading positions that are feasible, the

touching perimeter is calculated, as in Heur3. +e
combination of an item and a position that matches the
largest perimeter is chosen, and the item is inserted.
Heur8: Max Relative Touching Perimeter Select Item:
for each item that can be loaded and for all the re-
spective available loading positions that are feasible, the
relative touching perimeter is calculated as the ratio
between the item perimeter and its touching perimeter.
+e combination of item and position that matches the
largest ratio is selected, and the item is inserted.

+e feasibility of a route is tested by heuristics Heur1 to
Heur8, in this sequence, such that heuristics Heuri

(i � 1, . . . , 6) are executed for the orders mentioned earlier
according to the sequential or unrestricted case. If any
heuristic (considering any suitable order) finds a feasible
loading for the route, the route is considered feasible, and the
subsequent heuristics are not attempted. Otherwise, if none
of the heuristics find a feasible loading for the route, the
route is considered unfeasible. For each loading route fea-
sibility check, the proposed packing heuristics are used. As
these heuristics are computationally intensive, we use a data
structure to avoid duplicate examinations.

5.2. Initial Solution. +e initial solution is the starting point
of the improvement metaheuristic proposed in the following
subsections. +e limited number of vehicles available in the
depot and their capacities make it relatively difficult to
determine an initial feasible solution. If at least one of the
following situations occurs, a vehicle cannot service a cus-
tomer: (1) the total weight of all customer items exceeds
vehicle capacity; (2) the total area of all customer items
exceeds the loading surface area; or (3) the length/width of
any customer item exceeds the length/width of the loading
surface. Owing to these limitations, the initial solution is
constructed by prioritizing customers that can be served
only by larger vehicles.

Given v vehicles available in the depot, it is assumed that
Q1 ≤Q2 ≤ · · · ≤Qv, F1 ≤F2 ≤ · · · ≤Fv, V1 ≤V2 ≤ · · · ≤Vv,
L1 ≤L2 ≤ · · · ≤ Lv, and W1 ≤W2 ≤ · · · ≤Wv. First, for each
vehicle k, a subset CustomersListk of customers that must be
served by vehicle k or a larger vehicle is defined. Subse-
quently, for each vehicle k � v, . . . , 1, the customers of set
CustomersListk are added to a vehicle route k, . . . , v

according to the minimum cost insertion so that the route is
feasible. +e cost of adding customer i to vehicle route k

depends on whether route k is empty. If route k is empty, the
cost is based on the fixed cost of vehicle k, plus the cost of
traveling from the depot to customer i and back. If the route
is not empty, the cost of adding customer i to all route
positions is analyzed, and the minimum cost insertion is
performed. If it is not possible to insert all the customers of
some set CustomersListk in a particular route k, . . . , v, the
sequence of customer insertion is perturbed by randomly
selecting a customer and a vehicle that can serve this cus-
tomer to initialize the first route, and the procedure is
restarted. Algorithm 1 provides a pseudocode for con-
structing the initial solution. ToInsertk is the set of
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Figure 7: Occupied rectangular area in the heuristic Min Occupied
Rectangular Area.
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customers of CustomersListk that have not yet been inserted
in any route. At the beginning of route construction,
ToInsertk � CustomersListk, and in the course of the al-
gorithm, this set is updated as customers are added to routes.

5.3. Neighborhood Structures. SA explores the search space
by performing moves to step from a current solution to a
subsequent solution. +e neighborhood structures are de-
termined such that each movement causes an interroute
disturbance in the solution. Intraroute improvement is
accomplished by a local search procedure introduced in the
next section.

+ree types of movements are employed to disturb a
solution, each of which defines a neighborhood structure,
NS1, NS2, or NS3, selected randomly in each loop with equal
probability. Move type 1-Inter (NS1) performs a customer
relocation move [25]. It reassigns a customer from their
current route to a position on another route (Figure 8). +is
move type can make some routes empty, reducing the
number of vehicles used.

Move type 2-inter (NS2) performs route exchange [25].
It swaps the positions of the two customers on different
routes (Figure 9).

Move type 3-inter (NS3) is a variant of route interchange
2-opt [26]. Two customers of different routes are selected; in
each route, a block is created from the selected customer to
the last customer, and these blocks are swapped between
routes (Figure 10). For this move type, a fictitious customer
can be selected in one of the two routes to shift a block of
customers from one route to another. In this case, this move
type can also empty some routes and reduce the number of
vehicles used.

5.4. Local Search Mechanism. +e neighborhood structures
presented in Section 5.3 are employed by the SA algorithm to
perform interroute improvements. In each new feasible
solution found, at least one route has its set of customers
modified; therefore, a local search method is used to opti-
mize each modified route.

Given a single route, the local search performs ex-
haustive moves in its neighborhood until no improvement
in solution can be achieved. +ree move types, similar to
those for interroute improvement, define neighborhood
structures as intraroute optimization. Move type 1-Intra
consists of the reallocation of a customer [25]; this move
transfers a customer from one position to another on the
same route (Figure 11). Move type 2-Intra swaps two
customers on the route [25] (Figure 12). Finally, move type
3-Intra is defined by a 2-opt edge exchange method [26]
that swaps the positions of two edges of the route
(Figure 13).

Move types 1-intra, 2-intra, and 3-intra are, one at a time
and in this order, applied to the route to perform all possible
moves until no further improvement in route cost is found.
+is procedure is applied to the routes of the initial solution
and every time interroute moves find a feasible solution
during SA to examine other configurations of the new route.

5.5. SAAlgorithm. SA is an algorithmic approach for solving
combinatorial optimization problems [27, 28] that has been
widely applied to vehicle routing problems.+e proposed SA
uses neighborhood structures NS1, NS2, and NS3 to gen-
erate a candidate solution S′ from a current solution S; this
solution is accepted as the new current solution if it is better
than S.

To avoid local optima, a worse solution may be accepted
subject to the acceptance probability function
p(T,Δ) � exp(− Δ/T), where Δ � cos t(S′) − cos t(S) and T

is a parameter of SA called temperature, which decreases
during the process according to Tk � 0.9 · Tk− 1 to enforce
the convergence of the search. At the beginning of the al-
gorithm, T is assigned an initial value T0. As suggested in
[29, 30], T0 � − Δmax/ln(p0) is defined to make any worst
solution that leads to a cost increase Δmax accepted with a
fixed probability p0. To estimate Δmax, move types 1-Inter, 2-
Inter, and 3-Inter are randomly applied to the initial so-
lution, and the value of Δmax is then estimated by the
maximum absolute difference observed in the costs of two
neighboring solutions.

For each temperature, a sequence of Len moves is carried
out to explore the search space. If Len is too small, the
solution space is not fully explored, whereas if Len is too
large, the computational time required is rather long. Only
feasible solutions are considered in our algorithm.+erefore,
owing to the difficulty in finding feasible solutions to some
instances of the problem, a maximum number of attempts
L � 10 · Len is established for each temperature. For each
feasible solution found, the local search procedure is
employed to improve the routes that have been changed. To
accelerate the speed of the algorithm, a condition is set such
that if it finds a solution that is better than the best solution,
that solution is replaced, and the current temperature is
updated. +e algorithm ends when the current temperature
is lower than 0.01. Algorithm 2 provides a framework for the
proposed SA methodology.

6. Computational Experiments

+is section reports the results of computational experi-
ments performed with the proposed mathematical formu-
lation and the SA algorithm. Since we did not find any
instances for the 2L-HFFVRP, we defined a set of instances
by extending to the 2L-HFFVRP some 2L-HFVRP instances
from the literature [18]. First, a detailed discussion of the
benchmark instances is provided. Subsequently, the simu-
lation results of benchmark instances are presented.

6.1. Benchmark Instances. To verify the effectiveness of the
mathematical model and of the SA algorithm, small-scale
and large-scale instances were used to estimate the results.
+ese instances are described in this section.

Iori et al. [8] and Gendreau et al. [9] proposed a dataset
including 36 2L-CVRP instances, in which the number of
customers varies from 15 to 255 and each instance has five
classes. In class 1, each customer demands one item with
unit width and length, so the problems of this class are
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similar to the pure CVRP. In classes 2–5, for each customer i,
a set of mi items with uniform distribution in the range (1,
class number) is created. Each of these items is randomly

classified, with an equal probability, into one of three
possible shapes, namely, vertical, homogeneous, and hori-
zontal, and the dimensions of the items are randomly
generated in a given range. Leung et al. [18] modified 2L-
CVRP instances to create 2L-HFVRP instances. +e data for
each benchmark were generated by eliminating the limit on
the number of vehicles and adding information about

for each customer i do
k � 1;
while customer i cannot be served by vehicle k do

k � k + 1;
end while
insert customer i into set CustomersListk;

end for
for k � 1 to v do

ToInsertk←CustomersListk;
end for
Route construction:
for k � v to 1 do
while ToInsertk is not empty do
if it is possible to insert some customer of set ToInsertk into any route Rj (j � k, . . . , v) then
Execute the feasible insertion of customer i into route Rj, which minimizes the insertion cost;
Delete customer i from the set ToInsertk;

else
for j � 1 to v do

ToInsertj←CustomersListj;
Empty route Rj;

end for
Randomly select a vehicle j � 1, . . . , v and a customer i ∈ ToInsertj;
Insert customer i into route Rj;
Delete customer i from the set ToInsertj;
go to Route construction;

end if
end while

end for
return generated solution

ALGORITHM 1: Pseudocode for constructing an initial solution.

Figure 8: Interroute relocation move.

Figure 9: Interroute exchange move.

Figure 10: Interroute interchange move.

Figure 11: Intraroute relocation move.
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Figure 12: Intraroute exchange.

Figure 13: Intraroute interchange move.

Input: problem data; SA parameters: p0; Len

Output: best solution S∗ found by the algorithm
Construct the initial solution S0;
Apply the local search mechanism to S0;
/∗ setting T0∗/
S←S0, Δmax � 0, i � 1, j � 1;
while i<Len and j<L do
Randomly select NS from NS1, NS2, NS3 , and obtain a solution S′ ∈ NS(S);
if S′ is feasible then
Apply the local search mechanism to S′;
if |cost(S′) − cost(S)|>Δmax then
Δmax � |cost(S′) − cost(S)|;

end if
i � i + 1;
S←S′;
if cost(S)< cost(S0) then

S0←S;
end if

end if
j � j + 1;

end while
T0 � − Δmax/ln(p0);
/∗ SA algorithm ∗/
S←S0, S∗←S0, T � T0, i � 1, j � 1;
while stop criteria are not met do
while i<Len and j<L do
Randomly select NS from NS1, NS2, NS3 , and obtain a solution S′ ∈ NS(S);
if S′ is feasible then
Apply the local search mechanism to S′;
if cost(S′)< cost(S) then

S←S′;
if cost(S)< cost(S∗) then

S∗←S;
end if

else
Set S←S′ with probability p � exp(− (cos t(S′) − cos t(S))/T)

end if
i � i + 1;

end if
j � j + 1

end while
T � 0.9 · T, i � 1, j � 1;

end while
return S∗

ALGORITHM 2: Pseudocode of the SA methodology for the 2L-HFFVRP.
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capacity, loading surface, and fixed and variable costs for
each of the four types of vehicles considered, namely, A, B, C,
and D. For the five classes of the same instance, the vehicle
types are the same.

For 2L-HFFVRP, we generate benchmark data by lim-
iting the number of vehicles of types A, B, C, and D. For the
five classes of the same instance, the number of vehicles of
each type was the same. Table 3 provides details on the
number of vehicles of each type considered for each instance.
Instances of class 1 correspond to the pure HFFVRP since
every route is feasible in terms of the loading constraints.

To validate the mathematical formulation, 8 small-scale
instances, namely, P3, P4, P5, P6, P7, P8, P9, and P10, are
generated based on instance 1 for the 2L-HFFVRP. For
classes 1–5, problems P3, P4, P5, P6, P7, P8, P9, and P10 take
into account the first 3, 4, 5, 6, 7, 8, and 9 customers of
instance 1 for the 2L-HFFVRP, respectively. Instances of
class 1 correspond to the pure HFFVRP since every route is
feasible in terms of the loading constraints.

6.2. SA Parameter Setting. +e proposed SA algorithm has
two parameters that need to be set by the user: the prob-
ability p0 of accepting any worst solution at the initial
temperature and the number Len of feasible moves to be
performed at each temperature. To yield experimental re-
sults with better convergence, the parameters of SA are
determined by conducting experiments on a set of large-
scale instances using various parameter values, involving
both unrestricted and sequential problem versions. +e
suggested parameter values, along with the tested ranges, are
reported in Table 4.

6.3. Results and Discussion. +e 2L-HFFVRP mathematical
formulation of Section 3 and the SA algorithm of Section 4
were implemented in the Visual Basic .NET programming
language. +e mathematical model was solved by CPLEX
12.6 with the default configuration parameters. All the
computational tests were executed in a machine with the
following specifications: a 1.4GHz Intel Core i5 processor
with 8GB RAM memory running a Windows 10 operating
system. +e pure HFFVRP was solved for problems of class
1. For problems of classes 2–5, the 2L-HFFVRP was solved
regarding both unrestricted and sequential loading.

Small-scale problems were solved using the mathe-
matical model and the SA algorithm, and the results are
summarized in Tables 5–7. To evaluate the model perfor-
mance, the time taken by CPLEX to solve each model was
limited to 3600 seconds. With respect to the quality of the
solution obtained by CPLEX, there were four possible cases:
(i) the optimal solution is obtained; (ii) a nonoptimal so-
lution is obtained, with CPLEX exceeding the time limit; (iii)
no solution is obtained, with CPLEX exceeding the time
limit; and (iv) there is insufficient computer memory to solve
the model. +e last two cases are represented in the tables by
the symbol “–.” Concerning SA, for each instance, five
replications of the algorithm were executed, and the best
results were obtained.

+e results for HFFVRP small-scale problems of class 1
are presented in Tables 5, which shows, for each instance, the
number of customers, the solution cost and the runtime (in
seconds) of CPLEX and SA for solving the problem, and the
percentual difference between the solution costs of CPLEX
and SA. Tables 6 and 7 show these results for the unrestricted
and sequential 2L-HFFVRP, respectively, for small-scale
problems of classes 2–5 and include the number of items to
be loaded for each instance.

According to the results, the problems become more
complex as the numbers of customers and items to be loaded
increase. By comparing the results for the HFFVRP (Table 5)
and for the unrestricted 2L-HFFVRP (Table 6), we notice that,
for the same routing problem configuration, some solution
costs deteriorate due to loading constraints. In fact, many
routes become infeasible as these constraints are considered. By
comparing the results for the unrestricted and sequential 2L-
HFFVRP (Tables 6 and 7), we find that a few solution costs
deteriorate when sequential loading constraints are embedded
into the problem, mainly for problems with more customers
and items.

Table 3: Dataset for the 2L-HFFVRP instances.

Inst.
Vehicle type

A B C D

1 0 2 3 2
2 0 0 3 3
3 0 3 5
4 1 3 4
5 0 2 2 2
6 0 4 5
7 0 3 3 2
8 0 3 1 3
9 0 1 8
10 0 5 4 2
11 0 1 5 3
12 0 6 14
13 0 1 6
14 1 3 3 4
15 0 5 5 4
16 0 10 7
17 1 3 13 5
18 0 5 7
19 1 4 8 8
20 1 7 14 6
21 2 6 12 11
22 1 6 8 12
23 0 8 10 11
24 0 4 9 13
25 0 10 12 15
26 1 14 8 15
27 1 6 18 14
28 2 9 17 16
29 0 17 24
30 3 9 17 22
31 1 17 36 26
32 3 28 20 26
33 1 19 24 29
34 1 33 29 33
35 6 22 46
36 7 33 46 9
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Table 4: +e parameter settings of SA.

Parameter Tested range Suggested value
Probability p0 of accepting any solution at the initial temperature 0.05–0.20 0.10
Number Len of feasible moves to be performed at each temperature 5000–20 000 10 000

Table 5: Comparison of results of CPLEX and SA on small-scale HFFVRP of class 1.

Instance Number of customers
CPLEX SA

% gap
Cost Time (s) Cost Time (s)

P3 3 130.25 0.27 130.25 29.65 0.00
P4 4 188.10 0.27 188.10 37.23 0.00
P5 5 222.35 0.50 222.35 33.55 0.00
P6 6 255.96 0.89 255.96 24.46 0.00
P7 7 308.36 2.75 317.51 26.97 2.97
P8 8 345.48 4.36 345.48 29.19 0.00
P9 9 394.97 16.70 394.97 31.03 0.00
P10 10 416.61 587.25 417.40 13.90 0.19
Average 76.62 28.25 0.39

Table 6: Comparison of results of CPLEX and SA on small-scale unrestricted 2L-HFFVRP of classes 2–5.

Instance Class Number of customers Number of items
CPLEX SA

% gap
Cost Time (s) Cost Time (s)

P3

2 3 6 130.25 0.43 130.25 17.42 0.00
3 3 6 130.25 0.32 130.25 32.17 0.00
4 3 7 130.25 0.34 130.25 30.95 0.00
5 3 12 130.25 0.55 130.25 38.95 0.00

P4

2 4 8 201.55 0.67 201.55 20.56 0.00
3 4 7 188.10 0.54 188.10 27.06 0.00
4 4 11 201.55 0.52 201.55 34.36 0.00
5 4 13 201.55 0.46 201.55 39.67 0.00

P5

2 5 10 222.35 0.49 222.35 21.37 0.00
3 5 9 237.52 0.54 237.52 12.98 0.00
4 5 12 222.35 0.66 222.35 28.92 0.00
5 5 17 222.35 1.71 222.35 32.52 0.00

P6

2 6 11 257.31 0.93 257.31 12.53 0.00
3 6 11 257.31 1.17 257.31 24.44 0.00
4 6 16 257.31 2.17 257.31 23.63 0.00
5 6 18 257.31 3.37 257.31 16.13 0.00

P7

2 7 12 308.36 2.84 317.51 27.03 2.97
3 7 12 308.36 3.69 318.81 12.44 3.39
4 7 19 308.36 8.65 318.81 19.92 3.39
5 7 23 308.36 13.38 317.51 22.64 2.97

P8

2 8 13 345.48 2.86 345.48 11.63 0.00
3 8 15 371.76 8.27 371.76 13.86 0.00
4 8 22 345.48 15.68 345.48 31.64 0.00
5 8 26 345.48 46.06 345.48 17.40 0.00

P9

2 9 15 406.73 6.54 406.73 9.28 0.00
3 9 17 397.47 64.76 397.47 26.43 0.00
4 9 24 394.97 75.75 394.97 11.27 0.00
5 9 30 394.97 996.45 397.46 6.98 0.63

P10

2 10 17 446.91 223.98 446.91 11.13 0.00
3 10 29 442.88 3600.04 453.13 11.74 2.31
4 10 25 422.04 2444.98 430.86 15.11 2.09
5 10 33 430.86 3600.09 439.00 12.25 1.89

Average 347.78 21.08 0.61
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Tables 5–7 reveal that when the numbers of customers
and items to be loaded are small, CPLEX can quickly find an
optimal solution. However, as the numbers of customers and
items increase, the solution time of CPLEX increasingly
lengthens. Note that CPLEX does not find the optimal so-
lutions in the stated time for the unrestricted problem P10 of
classes 3 and 5, for the sequential problem P9 of classes 4-5,
or for any class of sequential problem P10.

+e results provided by SA are very close to optimality.
According to Table 5, the SA algorithm finds the optimal
solution for 8 of the 10 HFFVRP instances of class 1, and the
average gap is 0.39%. Table 6 shows that SA finds the optimal
solution for 24 of the 32 unrestricted 2L-HFFVRP instances
of classes 2–5 and that the average gap is 0.61%. Table 7
shows that for 24 out of the 32 sequential 2L-HFFVRP
instances of classes 2–5, the optimal solution is obtained by
SA. For instances P9 of class 4 and P10 of class 2 (marked
with an “∗ ” in Table 7), the CPLEX results are not proven to
be optimal by the software. Nevertheless, solutions obtained
by SA for these instances of the sequential 2L-HFFVRP are
equal to the proven optimal solutions obtained by CPLEX
for the unrestricted 2L-HFFVRP. +erefore, we can say that

the SA solutions for sequential instances P9 of class 4 and
P10 of class 2 are optimal. In addition, for sequential
problem P10 of class 5, CPLEX does not manage finding a
solution in the stated time, but the solution obtained by SA is
equal to the CPLEX solution for the unrestricted corre-
spondent problem; thus, for this instance, we consider the
SA solution to be very good, if not optimal. For three in-
stances (P9 of class 5 and P10 of classes 2 and 3), the so-
lutions obtained by SA are better than solutions found by
CPLEX. +e average gap between the SA algorithm and
CPLEX is 0.004%.+e SA computational time is shorter than
the CPLEX computational time only for instances with more
customers and items—namely, instance P10 of class 1; in-
stances P9 and P10 for unrestricted problems; and instances
P7, P8, P9, and P10 for sequential problems. Nevertheless,
the average computational times of SA are 28.25 seconds for
the HFFVRP, 21.08 seconds for the unrestricted 2L-
HFFVRP, and 17.23 seconds for the sequential 2L-HFFVRP,
against the 76.62 seconds, 347.78 seconds, and
655.53 seconds of CPLEX, respectively. +erefore, the SA
algorithm is effective in solving problems with larger
numbers of customers and items.

Table 7: Occupied rectangular area in the heuristic Min Occupied Rectangular area.

Instance Class Number of customers Number of items
CPLEX SA

% gap
Cost Time (s) Cost Time (s)

P3

2 3 6 130.25 0.31 130.25 9.46 0.00
3 3 6 130.25 0.38 130.25 15.96 0.00
4 3 7 130.25 0.44 130.25 21.46 0.00
5 3 12 130.25 0.84 130.25 34.86 0.00

P4

2 4 8 201.55 0.54 201.55 9.28 0.00
3 4 7 188.10 0.58 188.10 15.07 0.00
4 4 11 201.55 1.81 201.55 20.67 0.00
5 4 13 201.55 2.21 201.55 39.76 0.00

P5

2 5 10 222.35 2.34 222.35 9.56 0.00
3 5 9 237.52 1.97 237.52 22.05 0.00
4 5 12 222.35 5.53 222.35 22.77 0.00
5 5 17 222.35 15.08 222.35 44.13 0.00

P6

2 6 11 257.31 9.99 257.31 10.08 0.00
3 6 11 257.31 8.60 257.31 18.83 0.00
4 6 16 257.31 28.48 257.31 21.25 0.00
5 6 18 257.31 34.61 257.31 25.92 0.00

P7

2 7 12 308.36 20.75 317.51 14.33 2.97
3 7 12 308.36 39.11 318.81 12.73 3.39
4 7 19 308.36 137.70 326.82 17.81 5.99
5 7 23 308.36 440.71 317.51 12.84 2.97

P8

2 8 13 345.48 44.89 345.48 11.40 0.00
3 8 15 371.76 146.19 371.76 12.43 0.00
4 8 22 345.48 653.90 345.48 15.17 0.00
5 8 26 345.48 2207.99 345.48 20.63 0.00

P9

2 9 15 406.73 473.62 406.73 8.42 0.00
3 9 17 397.47 986.25 397.47 9.44 0.00
4 9 24 394.97 3600.24 ∗394.9 11.43 0.00
5 9 30 429.88 3600.26 406.73 11.30 − 5.39

P10

2 10 17 – – ∗446.9 10.46 –
3 10 29 453.43 3600.20 453.13 9.81 − 0.07
4 10 25 477.25 3600.33 430.86 14.39 − 9.72
5 10 33 – – 430.86 17.55 –

Average 655.53 17.23 0.004
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+e large-scale problems described in Section 5.2 are
solved by the SA algorithm. Table 8 presents the results for
the HFFVRP instances of class 1 and the average results for
the unrestricted and sequential 2L-HFFVRP instances of
classes 2–5. +e results of Table 8 reinforce the idea that
loading constraints worsen the solution costs of the
HFFVRP and that sequential loading produces slightly
higher solution costs than the related unrestricted problem.
+e computational times are longer for sequential problems.
On average, the time spent by SA to solve the sequential 2L-
HFFVRPs is 4 times longer than the time spent solving the
unrestricted 2L-HFFVRPs. In fact, computational experi-
ments reveal that the major difficulty in solving the 2L-
HFFVRP concerns finding feasible loadings. As the number
of vehicles is limited, a reasonable part of the computational
time is spent finding an initial feasible solution for some
instances.

In this sense, the impact of the three new packing
heuristics, Heur6, Heur7, and Heur8, proposed in this study
is analyzed. During the tests, the packing heuristic that
produces each feasible loading is recorded. +e ratios be-
tween feasible loadings found by heuristics Heur 6, Heur7,
and Heur8 and all found feasible loadings for unrestricted
and sequential problems are presented in Table 9. For in-
stance, 3.11% of all the feasible loadings found during the
tests is obtained by heuristic Heur7.+is means that no other
previous heuristic can find these feasible loadings.+erefore,
all three new heuristics are able to find new feasible loadings
that cannot be obtained by the other previous heuristics.
Heuristic Heur7 stands out regarding managing more
complex loadings in both unrestricted and sequential
problems. For sequential problems, heuristic Heur6 manages
to obtain new feasible loadings. In fact, heuristic Heur6 tends
to form rectangular blocks of items, which favors sequential

Table 8: Results of SA on large-scale instances.

Class 1 Classes 2-5
HFFVRP Unrestricted 2L-HFFVRP Sequential 2L-HFFVRP

Instance Cost Time (s) Cost Time (s) Cost Time (s)
1 683.78 10.43 715.77 10.48 719.50 22.27
2 716.75 13.47 758.24 11.28 760.17 21.61
3 800.24 15.83 877.29 12.02 881.60 26.54
4 728.59 13.10 791.68 10.01 797.62 24.14
5 782.52 14.39 931.02 11.76 1009.91 24.32
6 890.97 20.78 968.17 13.65 968.23 29.87
7 4012.22 27.66 6109.17 21.02 6233.76 57.40
8 4105.17 26.72 7267.27 23.01 7269.30 51.19
9 1130.41 14.43 1198.13 11.95 1206.95 24.24
10 5824.73 56.61 8454.78 24.58 8456.40 54.55
11 6168.48 56.19 9530.84 29.81 9591.70 61.07
12 1806.82 13.98 1822.95 10.96 1824.97 22.29
13 21 551.38 75.02 30 529.26 46.29 31 009.94 116.03
14 10 804.36 19.81 11 529.68 13.09 11 544.31 29.05
15 10 529.44 26.94 12 541.39 17.87 12 816.66 39.12
16 1454.31 12.41 1486.74 10.35 1506.31 22.80
17 2166.90 11.99 2232.44 9.92 2234.98 21.06
18 3464.58 60.79 6350.55 29.78 6652.65 82.37
19 2275.39 32.50 4735.34 24.37 4905.96 60.60
20 2387.60 47.24 6578.13 22.65 6793.63 50.48
21 4462.11 37.23 10 038.31 26.09 10 549.43 75.65
22 5678.09 29.66 10 997.60 25.58 11 487.42 68.85
23 5166.67 35.08 10 549.34 24.82 10 968.85 50.65
24 3803.35 23.25 5422.38 19.92 5769.50 54.52
25 5509.09 43.11 14162.47 28.21 14 683.91 91.52
26 7658.30 55.08 15 482.92 20.98 16 300.15 61.13
27 3745.45 26.71 6799.65 21.61 6999.79 53.24
28 5053.22 74.74 25 484.50 29.33 27 079.76 121.11
29 11 004.28 113.23 27 967.09 46.65 28 522.72 202.55
30 8688.92 44.01 19 487.93 29.11 20 362.33 116.05
31 9799.88 33.43 23 957.03 32.68 24 363.94 293.83
32 11 043.77 22.61 24 775.07 27.17 25 988.46 157.52
33 11 065.01 44.18 25 983.19 35.33 26 493.88 118.10
34 7258.49 19.33 16 023.98 31.72 16 455.94 143.01
35 5367.14 68.90 11 148.20 54.88 11 596.82 598.67
36 3557.03 26.26 6226.45 43.11 6366.40 316.60
Average 5309.60 35.20 10 275.41 23.95 10 588.16 93.45
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loading of blocks of items of the same customer. Although
heuristic Heur8 is the last to be executed, the results in
Table 9 indicate that this heuristic is able to find feasible
solutions not found by any of the previous heuristics.

7. Managerial Insights

Based on our results, several managerial implications can be
used to help logistic providers and managers in optimizing
the routes and loading configurations of a heterogeneous
fleet of vehicles.+e results presented in the previous section
have shown the efficiency and robustness of the SA algo-
rithm in solving unrestricted and sequential 2L-HFFVRP.
+e results of this method can be effectively used in decision-
making at the strategic and tactical levels, leading to better
use of the fleet of vehicles and cost reduction.

+ere is a trade-off between solution cost and compu-
tational time. Better solutions can be obtained by increasing
the values of parameters p0 and Len, but the computational
time of the algorithm will also increase. According to the
period of time the company usually has to plan routes, it is
possible to set the algorithm parameters to obtain better
solutions within this time.

We compared sequential loading to unrestricted loading
and observed that, on average, for classes 2–5 in 36 instances,
the total transportation cost increased by around 3% when
sequential loading is considered. +erefore, if rearranging
other customers’ items at each customer site is not a problem
for the company, especially regarding the time these op-
erations will take, unrestricted loading should be considered,
as it implies lower cost solutions compared to sequential
loading. Nevertheless, it is worth noticing that, in some
cases, unloading and reloading operations are very time-
consuming. For cases with up to 40 customers, we observed
that the percentual difference between solution costs in
unrestricted and sequential problems is, on average, smaller
than that for cases with more customers. In these cases, the
time saving of considering sequential loading is worth
analyzing.

8. Conclusions

In this paper, the 2L-HFFVRP, a new variant of the VRP, is
presented. In this problem, each customer demands a set of
rectangular two-dimensional items, and the objective is to
find the minimum cost delivery routes for a limited set of
vehicles with different capacities, fixed and variable oper-
ating costs, and a rectangular two-dimensional loading
surface. Both the unrestricted and the sequential versions of
the problem are handled. +is problem is interesting in
terms of both theoretical complexity and real-world appli-
cations. To the best of our knowledge, the 2L-HFFVRP has

not been previously addressed in the literature, and nor have
the sequential loading constraints.

To solve this problem, a mixed integer linear pro-
gramming model was formulated. Computational tests were
performed with 10 small-scale instances regarding five
classes of problems. +e results show that the model is
consistent and properly represents the problem treated and
that this approach is able to solve problems where the
numbers of customers and items are relatively small.
+erefore, with the developed model and for small cases, it is
possible to determine the optimal solutions, or in some cases
a good lower bound, in order to be able to compare the
results achieved with nonexact methods or have a base of
comparison of their performances. Moreover, the proposed
model can be useful for motivating future research exploring
exact methods for solving 2L-HFFVRP.

Owing to the complexity of the problem model, a hybrid
algorithm that involves SA and packing heuristics was
proposed, and three new packing heuristics were developed.
By testing the proposed framework on 36 large-scale in-
stances, each within five classes, we verified that the pro-
posed methodology can solve this difficult problem in an
acceptable computational time; hence, the proposed SA
algorithm can further be assessed to solve different variants
of 2L-HFFVRP. +e three new packing heuristics were also
proven to be effective in finding feasible loadings not found
by the other heuristics, thus increasing the probability of
obtaining a feasible loading.

Our study has some limitations and can be extended in
several aspects in future research. It would be reasonable to
examine the more realistic scenarios that sometimes arise
in practical applications. First, concerning the routing
problem, future work can integrate practical constraints
such as split delivery and time windows. Second, in terms of
two-dimensional loading configuration, we examined only
oriented problems. +us, future research can consider
items rotation as it could substantially improve vehicle
occupation. +ird, although the proposed SA algorithm for
solving 2L-HFFVRP has obtained good solutions, there is
still room for improvement, which may be achieved by
proposing more sophisticated and superior routing and
packing strategies.
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Table 9: Percentage of the feasible loadings obtained by heuristics Heur6, Heur7, and Heur8

Heuristic Heur6 Heur7 Heur8
Unrestricted 2L-HFFVRP 0.05 3.11 0.33
Sequential 2L-HFFVRP 1.28 1.96 0.45
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