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In this research work, the velocity of Jeffrey fluid flow which is unsteady in nature, over an infinite horizontal porous plate, is
considered, and also, the influence of MHD and porosity on the velocity of the fluid is investigated. -e major objective of this
research paper is to achieve the analytical solution for the incompressible transient flow of MHD (magneto hydrodynamic) Jeffrey
fluid above an accelerating porous plate. -e fluid flows above the plate at y> 0, and the plate is infinite in the x-direction (y � 0)

and gives an oscillatory motion. For the occurrence of both injection and suction phenomena, porous plate is used.-e governing
equation of the model becomes dimensionless by using the appropriate set of nondimensional variables. With the help of Laplace
transformation and perturbation methods, these nondimensional differential equations of Jeffrey fluid are solved. -e effects of
different parameters on velocity are studied. -ese parameters include ω (oscillating frequency), λ1 (ratio of relaxation and
retardation time), β (Jeffrey fluid parameter), γ (wall transpiration parameter), t (time), k (porosity parameter), and Ha (magnetic
parameter). We found that velocity declines as we increase the values of ratio of relaxation and retardation times, Jeffrey fluid
parameter, wall transpiration parameter, and magnetic parameter. -e effect of time, oscillation frequency, and porosity on
velocity profile is opposite as that of other parameters. We take β< 1, as β represents perturbed parameter. Graphs are plotted for
various values of these parameters with the help of Mathcad software and talk over these graphs in detail.

1. Introduction

It is scrutinized since the past limited eras that several
scholars are far fascinated in non-Newtonian fluids. -e
clarification behind such curiosity in non-Newtonian fluid is
because of its wide-ranging scope in many fields of life. Non-
Newtonian fluids have numerous uses and applications in
many fields, for example, chemical industries, biological
sciences, geophysics, and petroleum. As we are aware all
non-Newtonian fluids have attained the properties of
elasticity along with viscosity. -e countless models of non-
Newtonian fluids are present in our daily life activities, such
as oils, ketchup, honey, paints, and toothpaste, and asphalt,
and liquid polymers are characterized by some noteworthy

phenomena. -ese fluids are a number of thought-pro-
voking applications and are moreover used in our daily life.
-e nonlinear relationship between shear stress and shear
rate in such types of fluids is verified by many researchers
that is not only significant from an academic point of view
but also beneficial for production industries like paper
construction, polymer, and food processing. It is perceived
that a single differential equation is described in the models
of Newtonian fluid flows, but in the case of non-Newtonian
fluid models, it is not so easy to describe the flow of the
model with one and only constitutive differential equation.
Usually, the rheological properties of fluids are specified with
the help of their hypothetical constitutive conditions.
Moreover, it is observed that the Newtonian fluids fulfilled
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Newton’s internal friction law that is “shear stress is pro-
portional to the viscosity of the fluid gradient” and non-
Newtonian fluids dissatisfy the Newtonian law of internal
friction.-e leading flow equations of non-Newtonian fluids
are more difficult than the Navier–Stokes equations [1–3].
Generally, non-Newtonian fluids are categorized into three
dissimilar categories, namely, first is differential type, second
is the integral type, and the third one is rate type. In the
current research work, we observed the model of Jeffrey fluid
flow, and this sort of fluid flow model indicates the property
of the ratio of relaxation and retardation time. It is verified
that the non-Newtonianmodels of fluid flows, with as well as
without the magnetic-hydrodynamic field, have countless
uses among the different fields of life, for example, biological
fluids management, dental amalgam, plasmas, alloys, and
metals that are in liquid form, electromagnetic propulsion,
and blood [4, 5].

It is observed that the Jeffrey fluid is an extraordinary type
of non-Newtonian fluid. Among many other types of non-
Newtonian fluidmodels, it is revealed that themodel of Jeffrey
fluid flow is one of the substantial models which clearly
precise the finest description of properties of the viscoelastic
fluids [6–11]. It is presented that, in nature, Jeffrey fluid
models are well-defined in linear viscoelastic fluids. As we are
familiar with this, Jeffrey fluids have several types of appli-
cations in polymer industries and one of them is dilute
polymer which is explained by the researchers Farooq et al.
and Ara et al. [12, 13]. Due to the viscoelastic behavior of
Jeffrey fluid models, the vital and applicable role of such
models is found in fluid mechanics and biological aspects. It
has been magnificently used in the model of blood flow. As a
special case, Jeffrey fluid is interconnected with Maxwell fluid
and Newtonian fluid [14].

It is originated in physiology that the magnetohydro-
dynamic fields have countless applications, for example,
magnetic devices and magnetic particles are used in the form
of drug transferors, magnetic resonance imaging, and blood
(biomagnetic fluid) is generated in the occurrence of he-
moglobinmolecules [15]. In 2011, Tripathi et al. observed the
Jeffrey fluid peristaltic flow over a cylindrical tube that has
finite length.-ey observe that fluid is electrically conducted
in the occurrence of an applied magnetic field. -e inves-
tigation takes place in the hypothesis of calculations of long
wavelength and low Reynolds number [16]. Das [17] ob-
served the behavior of different parameters during the study
of the peristaltic flow of an electrically conducting incom-
pressible viscous fluid through an inclined plan with the
asymmetric channel. Raju C.S.K. et al. studied the impact of
thermal radiation and chemical reaction on the boundary
layer of a magnetohydrodynamic Jeffrey nanofluid flow
above a permeable cone in the existence of Brownianmotion
and thermophoresis effects [18]. -e mutual result of mass
and heat transfer in Jeffrey fluid flow by a porous medium
through a stretching sheet bound by transverse magnetic
field in the existence of heat source/sink has been considered
by Jena et al. [19]. Ellahi et al. [20] academically observe the
model of Jeffrey fluid peristaltic flow through a rectangular
duct which is nonuniform under the effects of ion and Hall
slip. -e obtained results for the Jeffrey fluid peristaltic flow

disclose many remarkable behaviors that permit advanced
research regarding non-Newtonian fluids, exclusively the
shear-thinning phenomena. -e influence of silver nano-
particles (AgNPs) and copper nanoparticles (CuNPs) on the
MHD unsteady free convection Jeffrey fluid flow above a
vertical oscillating plate fixed with a porous medium which
is saturated is studied by Zin et al. [21], and they perceived
that an increment in volume fraction causes the boost of
temperature distribution and velocity profile. In contrast,
the Hartmann number decreases the flow of the fluid due to
the effect of Lorentz forces. Hayat et al. [22–24] studied the
flow of MHD Jeffrey fluid under different circumstances and
observed the behavior of velocity under the effect of em-
bedded parameters. Sharma and Gupta [25] investigated in
their paper the steady 2D flow of an incompressible MHD
boundary layer flow and heat transfer of nanofluid above an
impermeable surface in the occurrence of viscous dissipation
and thermal radiation. Sana et al. investigate the Jeffrey flow
over a permeable wall [26]. Furthermore, Jeffrey fluid flow,
MHD and porosity, porous medium, and permeable wall
have been discussed by various authors in [27–41].

In this research work, we study the MHD Jeffrey fluid
model along with the porosity parameter because it is
verified that, for practical determination, it is very beneficial
in sciences and engineering fields. It is presented in countless
fields such as electrochemistry finance, electromagnetism,
biochemistry, and signal process, and the electrical con-
ducting fluid flow is the vital application of magnetic field;
MHD effect is used to deal with the dynamics of fluids which
are electrically conducted. Furthermore, the MHD stream
problem has amplified a noteworthy role in the aspects of its
wide-ranging applications in medical and engineering fields.

-e principles of MHD are applied in the strategy, design
and scheme of pumps, heat exchangers, radar systems,
power generators, flowmeters, andmanymore. In this work,
we consider the MHD effect with porous medium not rigid.

-e main objective of this research work is to observe
the behavior of velocity of Jeffrey fluid’s transient flow
under the influence of different embedded parameters
along with MHD and porosity effects. For this purpose,
Jeffrey fluid flow is observed over an infinite accelerated
plate which is taken to be porous. -e governing equations
with initial and boundary conditions of the model are
transformed to a nondimensional form by using an ap-
propriate set of dimensionless variables. With the help of
Laplace Transformation and perturbation methods, we
attain analytical solutions for the velocity distribution of
the Jeffrey fluid. In the end, to check the effect of different
parameters on velocity we plot graphs by using Mathcad
software, and it is observed how velocity distribution in-
creases or decreases by increasing or decreasing the values
of these parameters.

2. Governing Equations of Jeffrey Fluid Model

We take the velocity field for the current problem as [40]

V � u(y, t), V0, 0( , (1)
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where u(y, t) is the velocity distribution in x-direction and
V0 is the velocity of fluid in y-direction.

-e constitutive equations for a Jeffrey fluid are [41]

τ � −pI + S,

S �
μ

1 + λ1
R1 + λ2

zR1

zt
+ V.∇ R1 ,

(2)

where τ implies Cauchy stress tensor, S represents extra
stress tensor, μ is the dynamic viscosity of the fluid, λ1 is the
ratio of relaxation and retardation times, λ2 is the retardation
time, and R1 is the Rivlin–Ericksen tensor which is well-
defined as follows:

R1 � (∇V) +(∇V)
t
. (3)

3. Mathematical Modeling

Let us examine the incompressible transient flow of the
MHD Jeffrey fluid model covering the space lying above an
accelerating plate, the plate is taken to be porous. It is
presented that the velocity field of the fluid is consider of the
form (1).

A uniform transverse magnetic field of strength B0 is
applied parallel to the y-axis. In beginning, at t � 0, the
velocity profile of Jeffrey fluid flow will be zero. At time t �

0+, the velocity of the porous plate is U0e
ιωt. Figure 1 is

shown as follows.
In the light of above observations for the given Jeffrey

fluid model, the governing equation for the flow of unsteady
incompressible MHD Jeffrey fluid over a porous plate has
the resulting form [26, 29]:
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(4)

where u � u(y, t), v(y, t) � V0 are the components of ve-
locity in the x- and y-direction, respectively. V0 indicates
the uniform transpiration (blowing or suction) velocity at
the surface of the permeable wall. λ1 is the ratio of re-
laxation to retardation times, and λ2 is the retardation time.
It is notable that, by placing λ1 � λ2 � 0, in the above listed
equation, we attain the governing equation of Newtonian
fluid, and if λ1 � 0, λ2 ≠ 0, then it is second grade fluid. μ
shows the coefficient of fluid viscosity, ρ represents the
density of the fluid, κ and ϕ denote the permeability and
porosity of the porous plate, respectively, σ is the fluid’s
electrical conductivity, and B0 is the magnitude of applied
magnetic field.

-e appropriate initial and boundary conditions are [26]

u(y, 0) � 0, y> 0,

u(0, t) � u0(t) � U0e
ιωt aty � 0, t> 0,

u(∞, t) � 0, asy⟶∞, t> 0,

(5)

where ω is the oscillating frequency.
Now, to obtain the dimensionless form of the above

mention equations, we use the following set of dimensionless
variables as [39]
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(6)

-e nondimensional form of the initial-boundary value
problem (for simplicity, dropping (∗) notation) as

Y- axis

Z- axis

X- axisTransient flow of
MHD Jeffrey fluid
over a porous plate

Magnetic field B0

u (0,t) = U0eiωt, y = 0, t > 0.

Figure 1: MHD Jeffrey fluid flow above an accelerated porous
plate.
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(7)

u(y, 0) � 0, y> 0, (8)

u(0, t) � u0(t) � e
ιωt aty � 0, t> 0, (9)

u(∞, t) � 0, as y⟶∞, t> 0, (10)

where β shows Jaffrey fluid parameter and c is the wall
transpiration parameter (c> 0 for suction and c< 0 for
injection). k and Ha are the porosity and magnetic
parameters.

4. Investigate the Solution of the Velocity Field

With the usage of the Laplace transformation method and a
regular perturbation method, we get the solution of non-
dimensional initial boundary value problem (7)–(10). By
applying the Laplace transformation method with respect to
t (time) on the above equations, we obtain the resulting
equations as
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(11)

u(0, s) �
1

s − ιω
, u(∞, s)

� 0 asy⟶∞, t> 0,

(12)

where u(y, s) is named as preimage of u(y, t) and s is
identified as transform parameter.

To find the solution of (11) by employing boundary
conditions (12), we use regular perturbation technique and
expand u(y, s) in terms of the parameter β(β≪ 1):

u(y, s) � u0(y, s) + βu1(y, s) + o β2 . (13)

Now, by substituting (13) into (11) and (12), and then
equating the powers of β, we have
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-e solutions of the above equations are as follows:
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Perturbation solution of the given problem is
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1
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Applying inverse Laplace transform to (15) and (16),
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Now, from (19) and (20), we obtain velocity field as
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d1(t) � e1(t).e2(t) + e3(t),

d2(t) � yδ1
e

− y2δ21/4t

2t
��
πt

√ .e
− yδ0− δ2t

,

e1(t) �
δ20e

− δ2t

��
πt

√ − δ21
e

− δ2t

2t
��
πt

√ + 2δ0δ1δ(t),

e2(t) � −δ(t) + 2cδ0 − ιω( e
ιωt

+ 2cδ1e
ιωt

−
e

− δ2t

2t
��
ιt

√ ,

e3(t) �
e

− δ2t

k
��
πt

√ +
ιω
k

e
ιωt e

− δ2t

��
πt

√ .

(22)

Here, δ(t) is a Dirac delta function.

4.1. Limiting Case. -e following figure shows a comparison
of the present work in the absence and presence ofMHD and
porosity effects. It is clear from this figure that, in the
presence of MHD and porosity effects, the velocity decays
early when compared with the present solutions in the
absence of MHD and porosity effects (Figure 2).

5. Discussion of Numerical Results and Graphs

With the purpose of arguing certain physical characteristics
of the calculated solution, graphs have been prepared for the
velocity profile of the fluid.

-e influence of time is important to explain here.
Figure 3 reveals the behavior of velocity field of fluid with
altered values of t, and it is prominent from this diagram
that the velocity field boosts by increasing the values of time
t. Figure 4 is drawn to observe the flow of velocity field under
the impact of parameter, the ratio of relaxation and retar-
dation time, λ1. It is revealed that the velocity profile is
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declined with increased parameter λ1 because higher values
of λ1 lead to growth in relaxation time (or decay in retar-
dation time), it means that the particles of the fluid require
much more time to come back in equilibrium system from a
perturbed system. Consequently, velocity of the fluid de-
creases. -e variation in velocity distribution of the fluid by
changing the values of Jeffrey fluid parameter β is observed
in Figure 5. It is perceived that the velocity profile declines as
the values of Jeffrey fluid parameter increases. -e reason
behind the decrease in velocity profile is that, as we increase
the values of Jaffrey fluid parameter, the boundary layer
momentum thickness will rise. Hence, the velocity distri-
bution declines as the values of β rises up. By observing
Figure 6, we notice the behavior of velocity distribution
under the effect of wall transpiration parameter c. It is
noticed that the velocity of Jeffrey fluid flow decreases along
with increasing wall transpiration (injection/suction pa-
rameter) parameter. In actual fact, with the porous
boundaries, the fluid experiences greater viscosity and
therefore offers resistance to flow, and this leads to reduce in

the velocity. For the large values of parameter, the decay is
more. With the help of Figure 7, we examine the influence of
oscillation frequency ω. It is noticed that the Jeffrey fluid’s
velocity is a strong function ofω, and its effect on the velocity
profile is opposite as that of the ratio of relaxation and
retardation time λ1. With the help of Figure 8, we under-
stand that how velocity distribution reacts against magnetic
parameter Ha. We perceived that velocity profile diminishes
upon increasing the values of magnetic parameter. It hap-
pens because of the Lorentz force, which appears when a
magnetic field imposes to an electrically conducting fluid
and a drag force is produced. Because of this force, fluid
motion slows down near the plate and away from the plate;
all other forces including Lorentz force weaken as a result
when the fluid comes to rest. -e behavior of porosity
parameter κ is demonstrated by Figure 9. It is realized that
the velocity field accelerates due to the porosity parameter κ.
We observed that, with the growth in permeability of porous
medium, the drag force decreases; for this reason, velocity
profile of the fluid accelerates. Figure 10 plots suctions and
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injection velocities, whereas Figure 11 shows the comparison
of the present work with the published work, and an ex-
cellent agreement is found.

6. Conclusion

-is research work presents approximate analytical solu-
tions for the unsteady flows of Jeffrey fluids over a porous,
oscillating plate with MHD and porosity effect.

Approximate analytical solutions for the nondimen-
sional velocity field in the transformed domain have been
obtained using the Laplace transform and perturbation
method.

Graphs have been plotted to examine the effect of em-
bedded parameters on the velocity profile of the fluid. -e
following observation is perceived by these graphs:

(i) -e velocity distribution increases with the in-
creasing values of the time.

(ii) By increasing the parameter ratio of relaxation and
retardation time, it leads to decay in retardation
time in result the velocity profile is decreasing.

(iii) As the values of Jaffrey fluid parameter increased,
the velocity distribution is declined due to the rise
in boundary layer momentum thickness.

(iv) -e velocity of Jeffrey fluid flow is decreased upon
increasing the wall transpiration parameter be-
cause the fluid experience greater viscosity and
resist to flow.

(v) Effect of oscillation frequency parameter on ve-
locity profile is opposite as that of parameter ratio
of relaxation and retardation time.

(vi) Velocity profile diminishes upon increasing
magnetic parameter because of Lorentz forces
which appear under the MHD effect.

(vii) By increasing the values of porosity parameter,
drag forces decreases; hence, the velocity distri-
bution also increased.

(viii) In future, this work will be extended for other non-
Newtonian fluids, nanofluids or by changing the
physical frame work. We will also consider skin
friction and temperature field in our extended
work.

Nomenclature

u(y, t): Velocity distribution in x-direction
V0: Velocity distribution in y-direction
μ: Dynamic viscosity
ρ: Constant fluid’s density
λ1: Ratio of relaxation time to the retardation time
λ2: Retardation time
β: Jeffrey fluid parameter
c: Wall transpiration
ω: Oscillations frequency
s: Laplace transform parameter
δ(t): Dirac distribution
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τ: Cauchy stress tensor
S: Extrastress tensor
p: Pressure of the fluid
I: Identity tensor
R1: Rivlin–Ericksen tensor
∇V: Gradient of the vector field V

V∇: Divergence of vector field V

t: Time
B0: Magnetic field strength
κ: Permeability of the medium
ϕ: Porosity parameter
k � ϕ/κ: Porosity constant
σ: Electrical conductivity
]: Kinematic viscosity
Ha: Hartmann number (magnetic parameter).
MHD: Magneto hydrodynamic.
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