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In this study, a new partial randomized response model (RRM) has been proposed for estimating the population mean of two
quantitative sensitive variables simultaneously. �e utility of proposed model under strati�cation is also explored. �e e�ciency
comparisons of the proposed model under simple and strati�ed random sampling are carried out numerically. A real data set was
collected through direct questioning, proposed partial RRM and competitor randomized device from the students of statistics and
animal sciences departments of Quaid-I-Azam University Islamabad, Pakistan. �e performance of the proposed partial RRM is
better than competitor RRM under simple and strati�ed random sampling.

1. Introduction

�e social survey is one of leading mechanisms to obtain
reliable data on attitudes, behaviors, and opinions of the
human population. Sometimes, the facts about the in-
dividuals are inaccessible to the investigators due to social
stigma, such facts are considered as sensitive information.
When asked directly, respondents may consciously or un-
consciously provide incorrect information on stigmatizing
characteristics. To reduce the bias and to procure reliable
data, Warner [1] developed a randomized response model
(RRM) to estimate the population proportion of a sensitive
attribute. In Warner [1]’s model, a randomly selected
proportion P of respondents are asked the sensitive ques-
tion, and the remaining proportion (1 − P) of respondents
are asked complement of the sensitive question. �e re-
searcher does not know whether the respondents answered
the sensitive or insensitive question. Greenberg et al. [2]
extended the Warner’s idea for mean estimation of quan-
titative sensitive variables. Some other developments for the
estimation of mean are due to Eichhorn and Hayre [3]; Bar-
Lev et al. [4]; Gupta et al. [5]; Gupta et al. [6] Hussain et al.

[7]; Singh et al. [8]; Singh and Suman [9]; Lee and Hong [10];
Narjis and Shabbir [11, 12]; and Muneer et al. [13].

Scrambled randomized response models are built on the
idea of obtaining masked rather than actual responses.
Masking can be achieved by adding to, subtracting from, or
multiplying a random component to actual responses.
Scrambled response models may be categorized as full,
partial, and optional models. In full RRM, all respondents
are requested to provide the scrambled response, whereas, in
partial RRM, a randomly selected group of respondents are
requested to provide the truthful response and remaining are
requested to provide the scrambled response. In optional
RRM, respondents are requested to provide the scrambled
response if he/she considers the question sensitive, and
truthful response if he/she considers the question to be non-
sensitive. Mangat and Singh [14] and Gupta et al. [15] in-
troduced the partial RRM and the optional RRM, re-
spectively. �e purpose of all RRMs are to protect privacy
and increase cooperation.

Researchers in the �eld of social, medical, and envi-
ronmental sciences have well documented the situations
where they may be interested to estimate the two dependent
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sensitive characters at the same time. For example, a re-
searcher may have interest in estimating the proportion of
population having income greater than a specific amount
weighted according to whether they are tax evaders or not.
Another example may be to estimate the proportion of
gamblers who are also involved in robbery. Or one may
estimate the proportion of induced abortion among females
who have pre-marriage sexual relations. Christofides [16]
introduced the RR model to estimate the proportions of two
dependent sensitive attributes at the same time. Studies on
estimation of two dependent sensitive attributes have been
reported by Lee et al. [17]; Batool and Shabbir [18]; Ewe-
mooje and Amahia [19]; Ewemooje [20]; and Ewemooje
et al. [21].

Similarly, the surveys related to household spending/
expenditures that present households income and expen-
diture on different commodities comprises sensitive ques-
tions. For example, an economist may have interest in
estimating the average difference between amount spent on
alcoholic beverages and tobacco items and on food and non-
food items. Or the interest may be in estimation of people’s
actual income and the income reported in their tax return.
However, the choice of RR models are very limited in
aforementioned situations where one may need to estimate
the mean or average of two quantitative sensitive variables at
the same time. Recently, Ahmed et al. [22] introduced full
scrambled RR model for simultaneous estimation of
means of two quantitative sensitive variables, Hussain and
Murtaza [23] had written corrigendum on Ahmed et al. [22]
and provides the correct expression of E(S31), E(S32), σ

2
ZA2

,
and σZA1ZA2

, respectively.
(e notions and terminology are given in Sections 1.1

and 1.2.

1.1. Notations and Terminology under Simple Random
Sampling. Suppose a sample s of size n is drawn under
simple random sampling with replacement (SRSWR) from
a finite population Ω � 1, 2, 3, . . . . . . ., N{ }. Let Y1i and Y2i

be two quantitative sensitive variables of interest with un-
known mean and variance, which we wish to estimate.
Assume S1 and S2 are two scrambling variables independent
of both quantitative sensitive variables and with each other,
the distribution of scrambling variables are known.

Let E(S1) � θ1 � e10, E(S2) � θ2 � e01, V(S1) � δ20,
V(S2) � δ02, Cov(S1, S2) � 0, δab � E[S1 − θ1]

a[S2 − θ2]
b,

E(Y1i) � μy1
, E(Y2i) � μy2

, V(Y1i) � σ2y1
, V(Y2i) � σ2y2

, and
σy1 y2

� E[Y1i − μy1
][Y2i − μy2

], where, a and b are non-
negative integers.

Lemma 1. 3e moments of order four or less of scrambling
variables S1 and S2, the expression of E(Sa

1Sb
2), a and b being

non-negative integers with (a + b)≤ 4, are given by

E S
2
1  � θ21 + δ20 � e20, (1)

E S
3
1  � δ30 + 3δ20θ1 + θ31 � e30, (2)

E S
4
1  � δ40 + 4δ30θ1 + 6δ20θ

2
1 + θ41 � e40, (3)

E S
2
2  � θ22 + δ02 � e02, (4)

E S
3
2  � δ03 + 3δ02θ2 + θ32 � e03, (5)

E S
4
2  � δ04 + 4δ03θ2 + 6δ02θ

2
2 + θ42 � e04, (6)

E S1S2(  � θ1θ2 � e11, (7)

E S
2
1S2  � θ21 + δ20 θ2 � e21, (8)

E S1S
2
2  � θ1 θ22 + δ02  � e12, (9)

E S
2
1S

2
2  � θ21 + δ20  θ22 + δ02  � e22, (10)

E S
3
1S2  � δ30 + 3δ20θ1 + θ31 θ2 � e31, (11)

E S1S
3
2  � θ1 δ03 + 3δ02θ2 + θ32  � e13. (12)

1.2. Notations and Terminology under Stratified Random
Sampling. Consider a finite population Ω � 1, 2, 3, . . . . . . ,{

N} which are partitioned into L homogeneous subgroups
called strata, such that the hth stratum consists of Nh units,
where h � 1, 2, . . . , L and 

L
h�1 Nh � N. A sample of size nh

from Nh stratum is drawn by using SRSWR such that


L
h�1 nh � n. Let Y1hi

and Y2hi
be the ith population values of

two quantitative sensitive variables in the hth stratum, i �

1, 2, . . . , Nh and Wh � Nh/N is the known proportion of
population units falling in the hth stratum. Similarly, S1h

and
S2h

are two independent scrambling variables with known
means and variances.

Let E(S1h
) � θ1h

� e10h
, E(S2h

) � θ2h
� e01h

, V(S1h
) � δ20h

,
V(S2h

) � δ02h
, Cov(S1h

, S2h
) � 0, δabh

� E[S1h
− θ1h

]a[S2h
−

θ2h
]b, E(Y1hi

) � μy1h

, E(Y2hi
) � μy2h

, V(Y1hi
) � σ2y1h

, V(Y2hi
) �

σ2y2h

and σy1h
y2h

� E[Y1hi
− μy1h

][Y2hi
− μy2h

], where, a and b

are non-negative integers.

Lemma 2. 3e moments of order four or less of scrambling
variables S1h

and S2h
, the expression of E(Sa

1h
Sb
2h

), a and b

being non-negative integers with (a + b)≤ 4, are given by

E S
2
1h

  � θ21h
+ δ20h

� e20h
, (13)

E S
3
1h

  � δ30h
+ 3δ20h

θ1h
+ θ31h

� e30h
, (14)

E S
4
1h

  � δ40h
+ 4δ30h

θ1h
+ 6δ20h

θ21h
+ θ41h

� e40h
, (15)

E S
2
2h

  � θ22h
+ δ02h

� e02h
, (16)

E S
3
2h

  � δ03h
+ 3δ02h

θ2h
+ θ32h

� e03h
, (17)
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E S
4
2h

  � δ04h
+ 4δ03h

θ2h
+ 6δ02h

θ22h
+ θ42h

� e04h
, (18)

E S1h
S2h

  � θ1h
θ2h

� e11h
, (19)

E S
2
1h

S2h
  � θ21h

+ δ20h
 θ2h

� e21h
, (20)

E S1h
S
2
2h

  � θ1h
θ22h

+ δ02h
  � e12h

, (21)

E S
2
1h

S
2
2h

  � θ21h
+ δ20h

  θ22h
+ δ02h

  � e22h
, (22)

E S
3
1h

S2h
  � δ30h

+ 3δ20h
θ1h

+ θ31h
 θ2h

� e31h
, (23)

E S1h
S
3
2h

  � θ1h
δ03h

+ 3δ02h
θ2h

+ θ32h
  � e13h

. (24)

(e interest of researchers is always to investigate the
true response from a population. To attain this desire,
Mangat and Singh [14] proposed an ingenious partial RRT
model by injecting an element of truthful responses into the
Warner [1]’s model. Gupta and(ornton [24] described the
partial RRT model for quantitative variables and many
others also give the improvement in this area. It is important
to note that almost all such types of RRT models can only
estimate one quantitative sensitive variable at a time. So, in
this article keeping in mind the desire of researchers, we
propose an additive partial RRT model to estimate two
quantitative sensitive variables simultaneously. (e pro-
posed model is an extension of Ahmed et al. [22]’s model
under simple and stratified random sampling. (e basic
purpose of this study is to obtain truthful responses from
some proportion of people and increase efficiency.

(is paper is organized as follows: In Section 2, we give
some existing RRT models. In Section 3, we introduce
a partial randomized response model under SRSWR and
numerically compare it with Ahmed et al. [22] model. In
Section 4, we present a partial randomized response model
under stratification and numerically compare it with
stratified model of Ahmed et al. [22]. In Section 5, an
application of real life data is given and comparison of
proposed partial RRM is made with Ahmed et al. [22]
model on basis of direct response technique. Finally,
Section 6 provides a conclusion.

2. RRM in Literature

In this section, we consider the following existing RRMs.

2.1. Model under Simple Random Sampling. Ahmed et al.
[22] proposed an additive and multiplicative model for
estimation of mean of two quantitative sensitive variables
simultaneously. Two responses are taken from each re-
spondent, a scrambled response and fake response. (e
scrambled response from the ith respondent is obtained as

ZA1i
� S1Y1i + S2Y2i. (25)

For the second response, each respondent is requested to
rotate a spinner and respond accordingly as: the respondent
is asked to report the value of scrambling variable S1 when
the pointer lands in a shaded area, otherwise report the value
of scrambling variable S2. Let P be the proportion of shaded
area and (1 − P) be the proportion of non-shaded area of the
spinner. (us, the second response from the ith respondent,
is given by

Zi �
S1 with probability P,

S2 with probability(1 − P).
 (26)

From equations (25) and (26), generate the response ZA2i

as follows:

ZA2i
� ZiZA1i

�
S
2
1Y1i + S1S2Y2i with robability P,

S1S2Y1i + S
2
2Y2i with probability(1 − P).

⎧⎨

⎩

(27)

(eunbiased estimators of the populationmeans μy1
and

μy2
, are given by

μyA1
�

Pe11 +(1 − P)e02 ZA1
− e01ZA2

(1 − P)δ02e10 − Pδ20e01
, (28)

and

μyA2
�

e10ZA2
− Pe20 +(1 − P)e11 ZA1

(1 − P)δ02e10 − Pδ20e01
. (29)

(e variance of the proposed estimators μyA1
and μyA2

,
are given by

V μyA1
  �

Pe11 +(1 − P)e02 
2σ2ZA1

+ e
2
01σ

2
ZA2

− 2 Pe11 +(1 − P)e02 e01σZA1ZA2

n (1 − P)δ02e10 − Pδ20e01 
2 , (30)

and

V μyA2
  �

e
2
10σ

2
ZA2

+ Pe20 +(1 − P)e11 
2σ2ZA1

− 2e10 Pe20 +(1 − P)e11 σZA1ZA2

n (1 − P)δ02e10 − Pδ20e01 
2 , (31)
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where

σ2ZA1
� μ2y1

+ σ2y1
 δ20 + μ2y2

+ σ2y2
 δ02 + σ2y1

e
2
10 + σ2y2

e
2
01 + 2σy1y2

e11, (32)

σ2ZA2
� μ2y1

+ σ2y1
  Pe40 +(1 − P)e22  + μ2y2

+ σ2y2
  Pe22 +(1 − P)e04 

+ 2 μy1
μy2

+ σy1y2
  Pe31 +(1 − P)e13  − Pe20 +(1 − P)e11 μy1

 + Pe11 +(1 − P)e02 μy2

2
,

(33)

and

σZA1ZA2
� μ2y1

+ σ2y1
  Pe30 +(1 − P)e21  + μ2y2

+ σ2y2
  Pe12 +(1 − P)e03 

+ 2 μy1
μy2

+ σy1y2
  Pe21 +(1 − P)e12  − μy1

e10 + μy2
e01  Pe20 +(1 − P)e11μy1

+ Pe11 +(1 − P)e02 μy2
.

(34)

2.2.Model under Stratified Random Sampling. From Ahmed
et al. [22], in stratified random sampling, the scrambled
response from the ith respondent of the hth stratum is ob-
tained as

ZA1hi

� S1h
Y1hi

+ S2h
Y2hi

. (35)

(e second response from the ith respondent of the hth

stratum is obtained as

Zhi �
S1h

with probability Ph,

S2h
with probability 1 − Ph( .

⎧⎨

⎩ (36)

(e unbiased estimators of the populationmeans μy1
and

μy2
are given by

μyA1(st)
� 

L

h�1
Wh

Phe11h
+ 1 − Ph( e02h

 ZA1h

− e01h
ZA2h

1 − Ph( δ02h
e10h

− Pδ20h
e01h

, (37)

and

μyA2(st)
� 

L

h�1
Wh

e10h
ZA2h

− Phe20h
+ 1 − Ph( e11h

 ZA1h

1 − Ph( δ02h
e10h

− Phδ20h
e01h

. (38)

(e variance of the proposed estimators μyA1(st)
and μyA2(st)

are given by

V μyA1(st)  � 
L

h�1
W

2
h

σ2A1h

nh

, (39)

and

V μyA2(st)  � 
L

h�1
W

2
h

σ2A2h

nh

, (40)

where

σ2A1h

�

Phe11h
+ 1 − Ph( e02h

 
2
σ2ZA1h

+ e
2
01h

σ2ZA2h

− 2 Phe11h
+ 1 − Ph( e02h

 e01h
σZA1h

ZA2h

1 − Ph( δ02h
e10h

− Pδ20h
e01h

 
2 , (41)

and

σ2A2h

�

e
2
10h

σ2ZA2h

+ Phe20h
+ 1 − Ph( e11h

 
2
σ2ZA1h

− 2e10h
Phe20h

+ 1 − Ph( e11h
 σZA1h

ZA2h

1 − Ph( δ02h
e10h

− Pδ20h
e01h

 
2 , (42)

σ2ZA1h

� μ2y1h

+ σ2y1h

 δ20h
+ μ2y2h

+ σ2y2h

 δ02h
+ σ2y1h

e
2
10h

+ σ2y2h

e
2
01h

+ 2σy1h
y2h

e11h
, (43)

σ2ZA2h

� μ2y1h

+ σ2y1h

  Phe40h
+ 1 − Ph( e22h

  + μ2y2h

+ σ2y2h

  Phe22h
+ 1 − Ph( e04h

 

+ 2 μy1h

μy2h

+ σy1h
y2h

  Phe31h
+ 1 − Ph( e13h

  − Phe20h
+ 1 − Ph( e11h

 μy1h

 + Phe11h
+ 1 − Ph( e02h

 μy2h


2
,

(44)

and

σZA1h
ZA2h

� μ2y1h

+ σ2y1h

  Phe30h
+ 1 − Ph( e21h

  + μ2y2h

+ σ2y2h

  Phe12h
+ 1 − Ph( e03h

  + 2 μy1h

μy2h

+ σy1h
y2h

 

· Phe21h
+ 1 − Ph( e12h

  − μy1h

e10h
+ μy2h

e01h
  Phe20h

 + 1 − Ph( e11h
μy1h

+ Phe11h
+ 1 − Ph( e02h

 μy2h

.

(45)
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3. Proposed Partial RRM under Simple
Random Sampling

In this section, we propose a partial randomized response
model for simultaneous estimation of means of two quan-
titative sensitive variables. In the proposed partial RRM, each
respondent selected in the ith sample is requested for two
responses by using two randomized response (RR) devices.
(e RR Device I provides the scramble and true response of
sensitive variables, whereas the RR Device II provides the fake
response, that is free from the sensitive variables.

(e RR Device I, bearing two types of statements:

(i) Report the additive true value of both sensitive
variables, say (Y1i + Y2i) with probability T and

(ii) Report the scrambled response as, (S1Y1i + S2Y2i)

with probability (1 − T). Mathematically, each re-
spondent is requested to report the response Z1i as

Z1i �
Y1i + Y2i with probabilityT,

S1Y1i + S2Y2i with probability(1 − T).
 (46)

(e partial randomized response Z1i in the ith sample is
given by

Z1i � βi Y1i + Y2i(  + 1 − βi(  S1Y1i + S2Y2i( . (47)

For the second response, each respondent is requested to
use RR Device 2 which is same as equation (26); thus, the fake
response Zi from equation (26) in the ith sample is given by

Zi � ciS1i + 1 − ci( S2i, (48)

where ci and βi are Bernoulli random variables with means P

and T, respectively, which are the known parameters.
From equations (47) and (48), we generate response Z2i

as follows:

Z2i � ZiZ1i

�

S1Y1i + S1Y2i with probabilityPT,

S
2
1Y1i + S1S2Y2i with probability(1 − T)P,

S2Y1i + S2Y2i with probabilityT(1 − P),

S1S2Y1i + S
2
2Y2i with probability(1 − P)(1 − T).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

(e generated response Z2i in the ith sample is given by

Z2i � ciβi S1Y1i + S1Y2 i(  + 1 − βi( ci S
2
1Y1i + S1S2Y2 i 

+ 1 − ci( βi S2Y1i + S2Y2i( 

+ 1 − ci(  1 − βi(  S1S2Y1i + S
2
2Y2 i .

(50)

Taking expected values on both sides of equations (47)
and (50), we have

E Z1i(  � T μy1
+ μy2

  +(1 − T) e10μy1
+ e01μy2

 , (51)

and

E Z2i(  � PT e10μy1
+ e10μy2

 

+(1 − T)P e20μy1
+ e11μy2

 

+(1 − P)T e01μy1
+ e01μy2

 

+(1 − P)(1 − T) e11μy1
+ e02μy2

 .

(52)

From equations (51) and (52), by the method of mo-
ments, we have

A11μy1
+ A12μy2

� Z1, (53)

and

A21μy1
+ A22μy2

� Z2, (54)

where

A11 � T + (1 − T)e10

A12 � T + (1 − T)e01

A21 � PTe10 + (1 − T)Pe20 + (1 − P)Te01 + (1 − P)(1 − T)e11

A22 � PTe10 + (1 − T)Pe11 + (1 − P)Te01 + (1 − P)(1 − T)e02.

Solving equations (53) and (54) by using Cramer’s rule,
we have unbiased estimators of μy1

and μy2
, respectively,

given by

μy1
�

A22Z1 − A12Z2

(1 − T) (1 − P)δ02A11 − Pδ20A12 
, (55)

and

μy2
�

A11Z2 − A21Z1

(1 − T) (1 − P)δ02A11 − Pδ20A12 
. (56)

Theorem 1. 3e variance of proposed estimators μy1
and μy2

is, respectively, given by

V μy1
  �

A
2
22σ

2
Z1

+ A
2
12σ

2
Z2

− 2A12A22σZ1Z2

n(1 − T)
2

(1 − P)δ02A11 − Pδ20A12 
2, (57)

and

V μy2
  �

A
2
11σ

2
Z2

+ A
2
21σ

2
Z1

− 2A11A21σZ1Z2

n(1 − T)
2

(1 − P)δ02A11 − Pδ20A12 
2, (58)
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where

σ2Z1
� μ2y1

+ σ2y1
  T +(1 − T)e20  + μ2y2

+ σ2y2
  T +(1 − T)e02 

+ 2 μy1
μy2

+ σy1y2
  T +(1 − T)e11  − A11μy1

+ A12μy2
 

2
,

(59)

σ2Z2
� μ2y1

+ σ2y1
  PTe20 +(1 − T)Pe40 +(1 − P)Te02 +(1 − P)(1 − T)e22 

+ μ2y2
+ σ2y2

  PTe20 +(1 − T)Pe22 +(1 − P)Te02 +(1 − P)(1 − T)e04 

+ 2 μy1
μy2

+ σy1y2
  PTe20 +(1 − T)Pe31 +(1 − P)Te02 +(1 − P)(1 − T)e13 

− A21μy1
+ A22μy2

 
2
,

(60)

and

σZ1Z2
� μ2y1

+ σ2y1
  PTe10 +(1 − P)Te01 +(1 − T)Pe30 +(1 − P)(1 − T)e21 

+ μ2y2
+ σ2y2

  PTe10 +(1 − P)Te01 +(1 − T)Pe12 +(1 − P)(1 − T)e03 

+ 2 μy1
μy2

+ σy1y2
  PTe10 +(1 − P)Te01 +(1 − T)Pe21 +(1 − P)(1 − T)e12 

− A11μy1
+ A12μy2

  A21μy1
+ A22μy2

 .

(61)

Proof. Note that the variance expressions for two estimators
μy1

and μy2
can be obtained through the formula

Var(A ± B) � Var(A) + Var(B) ± 2Cov(A, B).
Now, the variance σ2Z1

is given by

σ2Z1
� E Z

2
1i  − E Z1i(  

2

� TE Y1i + Y2 i( 
2

+(1 − T)E S1Y1 i + S2Y2i( 
2

− E βi Y1i + Y2i( ( 

+ 1 − βi(  S1Y1i + S2Y2i( 
2
,

(62)

or

σ2Z1
� μ2y1

+ σ2y1
  T +(1 − T)E S

2
1  

+ μ2y2
+ σ2y2

  T +(1 − T)E S
2
2  

+ 2 μy1
μy2

+ σy1y2
  T +(1 − T)E S1S2(  

− A11μy1
+ A12μy2

 
2
.

(63)

On substituting the values of E(S21), E(S22), and E(S1S2)

in equation (63), we have equation (59).
(e variance σ2Z2

is given by

σ2Z2
�E Z

2
2i  − E Z2i(  

2

�PTE S1Y1i + S1Y2i( 
2

+(1− T)PE S
2
1Y1i + S1S2Y2 i 

2
+(1− P)TE S2Y1i + S2Y2i( 

2
+(1− P)(1− T)E S1S2Y1i + S

2
2Y2i 

2

− E ciβi S1Y1i + S1Y2i(  + 1−βi( ci S
2
1Y1i + S1S2Y2i  + 1− ci( βi S2Y1i + S2Y2i(  + 1− ci(  1−βi(  S1S2Y1i + S

2
2Y2i 

2
,

(64)

or

σ2Z2
� μ2y1

+ σ2y1
  PTE S

2
1  +(1 − T)PE S

4
1  +(1 − P)TE S

2
2 

+(1 − P)(1 − T)E S
2
1S

2
2  + μ2y2

+ σ2y2
  PTE S

2
1  +(1 − T)PE S

2
1S

2
2 

+(1 − P)TE S
2
2  +(1 − P)(1 − T)E S

4
2  + 2 μy1

μy2
+ σy1y2

  PTE S
2
1 

+(1 − T)PE S
3
1S2  +(1 − P)TE S

2
2  +(1 − P)(1 − T)E S1S

3
2  − A21μy1

+ A22μy2
 

2
.

(65)

On substituting the values of E(S21), E(S22), E(S41), E(S42),
E(S1S2), E(S21S

2
2), E(S31S2), and E(S1S

3
2) in equation (65), we

have equation (60).
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(e covariance σZ1Z2
between Z1i and Z2i is given by

σZ1Z2
� Cov Z1i, Z2i(  � E Z1iZ2i(  − E Z1i( E Z2i( 

� E ciβi βi Y1i + Y2i(  S1Y1i + S1Y2i(   + 1 − βi(  S1Y1i + S2Y2i(  S1Y1i + S1Y2i(   (

+ 1 − βi( ci βi Y1i + Y2i(  S
2
1Y1i + S1S2Y2i   + 1 − βi(  S1Y1i + S2Y2i(  S

2
1Y1i + S1S2Y2i   

+ 1 − ci( βi βi Y1i + Y2i(  S2Y1i + S2Y2i(   + 1 − βi(  S1Y1i + S2Y2i(  S2Y1i + S2Y2i(   

+ 1 − ci(  1 − βi(  βi Y1i + Y2i(  S1S2Y1i + S
2
2Y2i   + 1 − βi(  S1Y1i + S2Y2i(  S1S2Y1i + S

2
2Y2i   

− E βi Y1i + Y2i(  + 1 − βi(  S1Y1 i + S2Y2i(    E ciβi S1Yi + S1Y2i(  + 1 − ci( βi S
2
1Yi + S1S2Y2 i 

+ 1 − ci( βi S2Yi + S2Y2i(  + 1 − ci(  1 − βi( E S1S2Yi + S
2
2Y2i ,

(66)

or

σZ1Z2
� μ2y1

+ σ2y1
  PTE S1(  +(1 − P)TE S2(  +(1 − T)PE S

3
1  +(1 − P)(1 − T)E S

2
1S2  

+ μ2y2
+ σ2y2

  PTE S1(  +(1 − P)TE S2(  +(1 − T)PE S1S
2
2  +(1 − P)(1 − T)E S

3
2  

+ 2 μy1
μy2

+ σy1y2
  PTE S1(  +(1 − P)TE S2(  +(1 − T)PE S

2
1S2  +(1 − P)(1 − T)E S1S

2
2  

− A11μy1
+ A12μy2

  A21μy1
A22μy2

 .

(67)

On substituting the values of E(S1), E(S2), E(S21), E(S22),
E(S31), E(S32), E(S1S2), E(S21S2), and E(S1S

2
2) in equation

(67), we have equation (61). □

Corollary 1. 3e unbiased estimators for V(μy1
) and V(μy2

)

are, respectively, given by

V μy1
  �

A
2
22s

2
Z1

+ A
2
12s

2
Z2

− 2A12A22sZ1Z2

n(1 − T)
2

(1 − P)δ02A11 − Pδ20A12 
2, (68)

and

V μy2
  �

A
2
11s

2
Z2

+ A
2
21s

2
Z1

− 2A11A21sZ1Z2

n(1 − T)
2

(1 − P)δ02A11 − Pδ20A12 
2, (69)

where s2Z1
� (n − 1)− 1 

n
i�1 (Z1i − Z1)

2, s2Z2
� (n − 1)− 1


n
i�1 (Z2i − Z2)

2 and
sZ1Z2

� (n − 1)− 1 
n
i�1(Z1i − Z1)(Z2i − Z2) are unbiased

estimator of σ2Z1
, σ2Z2

, and σZ1Z2
, respectively.

Remark 1. When T � 0, the proposed partial RRM reduces
to Ahmed et al. [22] model.

3.1. Percent Relative Efficiency under SRSWR. In this section,
we compute the percent relative efficiency (PRE) of pro-
posed estimators μy1

and μy2
over the estimators μyA1

and
μyA2

, respectively, as

PRE(1) �
V μyA1

 

V μy1
 

× 100, (70)

and

PRE(2) �
V μyA2

 

V μy2
 

× 100. (71)

We performed a simulation study to verify the superi-
ority of the proposed partial RRM through FORTRAN
program and showed the situation where the proposed
methods might be more efficient than the method of Ahmed
et al. [22]. (e simulation results give large number of
situations where PRE(i), i � 1, 2 values of proposed partial
RRM are more than 100. However, we presented only few
values of PRE(1) and PRE(2) in Table 1, for different pa-
rameter values, P � 0.5, various values of T, μy1

� 20,
μy2

� 30, two values of σy1
and σy2

, θ1 � 4, θ2 � 7.2, δ20 � 2,
δ02 � 4, δ30 � −0.17, δ03 � −1.65, δ40 � 12.13, and
δ04 � 52.29. (e efficiency comparison on the values of
scrambling variables that were earlier used in Ahmed et al.
[22] model is also carried out, but our proposed model is less
efficient on those values. (us, we conclude that the effi-
ciency of proposed partial RRM model can be increased or
decreased by using different scrambling variables.

4. Proposed Partial RRM under Stratified
Random Sampling

In this section, we present a partial randomized response
model under stratification; a subsample in each stratum is
drawn using a SRSWR sampling. Each sampled respondent
in the hth stratum is requested for two responses by using
two randomized response (RR) devices. (e RRh Device I
provides the scramble and true response of sensitive vari-
ables, whereas the RRh Device II provides the fake response,
that is free from the sensitive variables.

(e RRh Device I, bearing two types of statements: (i)
Report the additive true value of both sensitive variables, say

Mathematical Problems in Engineering 7



(Y1hi
+ Y2hi

) with probability Th, and (ii) Report the
scrambled response as, (S1h

Y1hi
+ S2h

Y2hi
) with probability

(1 − Th). Mathematically, each ith respondent of the hth

stratum is requested to report the response Z1hi
as:

Z1hi
�

Y1hi
+ Y2hi

with probabilityTh,

S1h
Y1hi

+ S2h
Y2hi

with probability 1 − Th( .

⎧⎨

⎩ (72)

(e partial randomized response Z1hi
in the ith sample of

the hth stratum is given by

Z1hi
� βhi Y1hi

+ Y2hi
  + 1 − βhi(  S1h

Y1hi
+ S2h

Y2hi
 , (73)

and for the second response, each respondent is requested to use
RRh Device II which is same as equation (36); thus, the fake
responseZhi from in the ith sample of the hth stratum is given by

Zhi � chiS1h
+ 1 − chi( S2h

, (74)

where chi and βhi are Bernoulli random variables with mean
Ph and Th, respectively, which are the known parameters.

From equations (73) and (74), we generate response Z2hi

as follows:
Z2hi

� ZhiZ1hi

�

S1h
Y1hi

+ S1h
Y2hi

withprobabilityPhTh,

S
2
1h

Y1hi
+ S1h

S2h
Y2hi

withprobability 1− Th( Ph,

S2h
Y1hi

+ S2h
Y2hi

withprobabilityTh 1− Ph( ,

S1h
S2h

Y1hi
+ S

2
2h

Y2hi
withprobability 1− Ph(  1− Th( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(75)

Table 1: PRE of proposed partial RRM over Ahmed et al. [22] model.

ρy1y2
σy1

σy2

T � 0.1 T � 0.3 T � 0.5 T � 0.7 T � 0.9
PRE(1) PRE(2) PRE(1) PRE(2) PRE(1) PRE(2) PRE(1) PRE(2) PRE(1) PRE(2)

−0.9

2 2 112.87 110.15 145.35 133.00 189.95 157.43 246.90 172.20 239.90 114.70
2 6 112.87 110.15 145.37 133.02 190.01 157.47 247.05 172.31 240.38 114.93
6 2 112.87 110.15 145.34 133.00 189.92 157.40 246.81 172.14 239.61 114.56
6 6 112.87 110.15 145.36 133.02 190.00 157.46 247.02 172.29 240.27 114.88

−0.7

2 2 112.87 110.15 145.35 133.00 189.95 157.43 246.90 172.20 239.89 114.69
2 6 112.87 110.15 145.36 133.02 190.00 157.47 247.04 172.30 240.36 114.92
6 2 112.87 110.15 145.34 132.99 189.92 157.40 246.80 172.13 239.58 114.55
6 6 112.87 110.15 145.36 133.02 189.99 157.46 246.99 172.27 240.19 114.84

−0.5

2 2 112.87 110.15 145.35 133.00 189.95 157.43 246.89 172.20 239.88 114.69
2 6 112.87 110.15 145.36 133.02 190.00 157.47 247.03 172.30 240.33 114.90
6 2 112.87 110.15 145.34 132.99 189.92 157.40 246.79 172.13 239.56 114.54
6 6 112.87 110.15 145.36 133.01 189.98 157.45 246.97 172.25 240.10 114.80

−0.3

2 2 112.87 110.15 145.35 133.00 189.95 157.43 246.89 172.19 239.87 114.68
2 6 112.87 110.15 145.36 133.02 190.00 157.46 247.03 172.29 240.30 114.89
6 2 112.87 110.15 145.34 132.99 189.91 157.40 246.78 172.12 239.53 114.52
6 6 112.87 110.15 145.35 133.01 189.97 157.44 246.94 172.23 240.02 114.76

−0.1

2 2 112.87 110.15 145.35 133.00 189.95 157.42 246.89 172.19 239.86 114.68
2 6 112.87 110.15 145.36 133.02 189.99 157.46 247.02 172.28 240.27 114.88
6 2 112.87 110.15 145.33 132.99 189.91 157.39 246.78 172.11 239.50 114.51
6 6 112.87 110.15 145.35 133.01 189.96 157.43 246.91 172.21 239.94 114.72

0.1

2 2 112.87 110.15 145.35 133.00 189.95 157.42 246.88 172.19 239.85 114.67
2 6 112.87 110.15 145.36 133.02 189.99 157.46 247.01 172.28 240.24 114.86
6 2 112.87 110.15 145.33 132.99 189.91 157.39 246.77 172.11 239.48 114.50
6 6 112.87 110.15 145.35 133.00 189.95 157.42 246.89 172.19 239.86 114.68

0.3

2 2 112.87 110.15 145.35 133.00 189.95 157.42 246.88 172.19 239.84 114.67
2 6 112.87 110.15 145.36 133.02 189.99 157.46 247.00 172.27 240.22 114.85
6 2 112.87 110.15 145.33 132.99 189.91 157.39 246.76 172.10 239.45 114.48
6 6 112.87 110.15 145.34 133.00 189.94 157.42 246.86 172.17 239.78 114.64

0.5

2 2 112.87 110.15 145.35 133.00 189.95 157.42 246.88 172.19 239.83 114.67
2 6 112.87 110.15 145.36 133.01 189.99 157.45 246.99 172.26 240.19 114.84
6 2 112.87 110.14 145.33 132.99 189.90 157.39 246.75 172.10 239.42 114.47
6 6 112.87 110.15 145.34 133.00 189.93 157.41 246.84 172.16 239.69 114.60

0.7

2 2 112.87 110.15 145.35 133.00 189.95 157.42 246.88 172.18 239.82 114.66
2 6 112.87 110.15 145.36 133.01 189.98 157.45 246.98 172.26 240.16 114.82
6 2 112.87 110.14 145.33 132.99 189.90 157.38 246.74 172.09 239.39 114.46
6 6 112.87 110.15 145.34 133.00 189.92 157.40 246.81 172.14 239.61 114.56

0.9

2 2 112.87 110.15 145.35 133.00 189.94 157.42 246.87 172.18 239.81 114.66
2 6 112.87 110.15 145.36 133.01 189.98 157.45 246.97 172.25 240.13 114.81
6 2 112.87 110.14 145.33 132.99 189.90 157.38 246.73 172.08 239.37 114.44
6 6 112.87 110.15 145.34 132.99 189.92 157.39 246.79 172.12 239.54 114.52
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(e generated response Z2hi
in the ith sample of the hth

stratum is given by

Z2hi
� chiβhi S1h

Y1hi
+ S1h

Y2hi
  + 1 − βhi( chi S

2
1h

Y1hi
+ S1h

S2h
Y2hi

 

+ 1 − chi( βhi S2h
Y1hi

+ S2h
Y2h

  + 1 − chi(  1 − βhi(  S1h
S2h

Y1hi
+ S

2
2hi

Y2hi
 .

(76)

Taking expected values on both sides of equations (73)
and (76), we have

E Z1hi
  � Th μy1h

+ μy2h

  + 1 − Th(  e10h
μy1h

+ e01h
μy2h

 ,

(77)

and

E Z2h
  � PhTh e10h

μy1h

+ e10h
μy2h

  + 1 − Th( Ph e20h
μy1h

+ e11h
μy2h

 

+ 1 − Ph( Th e01h
μy1h

+ e01h
μy2h

  + 1 − Ph(  1 − Th(  e11h
μy1h

+ e02h
μy2h

 .

(78)

From equations (77) and (78), by the method of mo-
ments, we have

A11h
μy1h

+ A12h
μy2h

� Z1h
, (79)

and

A21h
μy1h

+ A22h
μy2h

� Z2h
, (80)

where
A11h

� Th + (1 − Th)e10h

A12h
� Th + (1 − Th)e01h

A21h
� PhThe10h

+ (1 − Th)Phe20h
+ (1 − Ph)The01h

+ (1 − Ph)(1 − Th)e11h

A22h
� PhThe10h

+ (1 − Th)Phe11h
+ (1 − Ph)The01h

+ (1 − Ph)(1 − Th)e02h
.

Solving equations (79) and (80) by using Cramer’s rule,
we have unbiased estimators of μy1

and μy2
, respectively,

given by

μy1(st) � 
L

h�1
Wh

A22h
Z1h

− A12h
Z2h

1 − Th(  1 − Ph( δ02h
A11h

− Phδ20h
A12h

 
,

(81)

and

μy2(st) � 

L

h�1
Wh

A11h
Z2h

− A21h
Z1h

1 − Th(  1 − Ph( δ02h
A11h

− Phδ20h
A12h

 
.

(82)

Theorem 2. 3e variance of proposed estimators μy1(st) and
μy2(st) is, respectively, given by

V μy1(st)  � 
L

h�1
W

2
h

σ21h

nh

, (83)

and

V μy2(st)  � 
L

h�1
W

2
h

σ22h

nh

, (84)

where

σ21h
�

A
2
22h

σ2Z1h

+ A
2
12h

σ2Z2h

− 2A12h
A22h

σZ1h
Z2h

1 − Th( 
2 1 − Ph( δ02h

A11h
− Phδ20h

A12h
 

2, (85)

and

σ22h
�

A
2
11h

σ2Z2h

+ A
2
21h

σ2Z1h

− 2A11h
A21h

σZ1h
Z2h

1 − Th( 
2 1 − Ph( δ02h

A11h
− Phδ20h

A12h
 

2, (86)

σ2Z1h

� μ2y1h

+ σ2y1h

  Th + 1 − Th( e20h
  + μ2y2h

+ σ2y2h

  Th + 1 − Th( e02h
 

+ 2 μy1h

μy2h

+ σy1h
y2h

  Th + 1 − Th( e11h
  − A11h

μy1h

+ A12h
μy2h

 
2
,

(87)
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σ2Z2h

� μ2y1h

+ σ2y1h

  PhThe20h
+ 1 − Th( Phe40h

+ 1 − Ph( The02h
+ 1 − Ph(  1 − Th( e22h

 

+ μ2y2h

+ σ2y2h

  PhThe20h
+ 1 − Th( Phe22h

+ 1 − Ph( The02h
+ 1 − Ph(  1 − Th( e04h

 

+ 2 μy1h

μy2h

+ σy1h
y2h

  PhThe20h
+ 1 − Th( Phe31h

+ 1 − Ph( The02h
+ 1 − Ph(  1 − Th( e13h

  − A21h
μy1h

+ A22h
μy2h

 
2
,

(88)

and

σZ1h
Z2h

� μ2y1h

+ σ2y1h

  PhThe10h
+ 1 − Ph( The01h

+ 1 − Th( Phe30h
+ 1 − Ph(  1 − Th( e21h

 

+ μ2y2h

+ σ2y2h

  PhThe10h
+ 1 − Ph( The01h

+ 1 − Th( Phe12h
+ 1 − Ph(  1 − Th( e03h

 

+ 2 μy1h

μy2h

+ σy1h
y2h

  PhThe10h
+ 1 − Ph( The01h

+ 1 − Th( Phe21h
+ 1 − Ph(  1 − Th( e12h

 

− A11h
μy1h

+ A12h
μy2h

  A21h
μy1h

+ A22h
μy2h

 .

(89)

Proof is simple, so omitted.

Corollary 2. 3e variance of proposed estimators μy1(st) and
μy2(st) under different methods of sample allocation are as:

(i) Equal Allocation:

V μy1(st) 
EA

�
L

n


L

h�1
W

2
hσ

2
1h

, (90)

and

V μy2(st) 
EA

�
L

n


L

h�1
W

2
hσ

2
2h

. (91)

(ii) Proportional allocation:

V μy1(st) 
PA

�
1
n



L

h�1
Whσ

2
1h

, (92)

and

V μy2(st) 
PA

�
1
n



L

h�1
Whσ

2
2h

. (93)

(iii) Optimum Allocation:

V μy2(st) 
OA

�
1
n



L

h�1

Whσ
2
2h�����������������

ησ21h
+(1 − η)σ22h

/Ch


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭


L

h�1
Wh

��������������

ησ21h
+(1 − η)σ22h

Ch




⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (94)

and

V μy1(st) 
OA

�
1
n



L

h�1

Whσ
2
1h�����������������

ησ21h
+(1 − η)σ22h

/Ch


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭


L

h�1
Wh

��������������

ησ21h
+(1 − η)σ22h

Ch




⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (95)

wherenh � nWh

�����������������
ησ21h

+ (1 − η)σ22h
/Ch


/


L
h�1 Wh

�����������������
ησ21h

+ (1 − η)σ22h
/Ch


,

which are estimated by using linear cost function
such as C � C0 + 

L
h�1 nhCh (where C0 is fixed cost,

and Ch is the variable cost in each stratum) and the
compromised variance as:

Vcomp � 
L
h�1 W2

h(ησ21h
+ (1 − η)σ22h

)/nh, whereas η
is known constant.

Corollary 3. 3e unbiased estimators for V(μy1(st)) and
V(μy2(st)) are, respectively, given by

V μy1(st)  � 
L

h�1
W

2
h

s
2
1h

nh

, (96)

and

V μy2(st)  � 
L

h�1
W

2
h

s
2
2h

nh

, (97)
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where

s
2
1h

�
A
2
22h

s
2
Z1h

+ A
2
12h

s
2
Z2h

− 2A12h
A22h

sZ1h
Z2h

1 − Th( 
2 1 − Ph( δ02h

A11h
− Phδ20h

A12h
 

2, (98)

and

s
2
2h

�
A
2
11h

s
2
Z2h

+ A
2
21h

s
2
Z1h

− 2A11h
A21h

sZ1h
Z2h

1 − Th( 
2 1 − Ph( δ02h

A11h
− Phδ20h

A12h
 

2, (99)

s2Z1h

� (nh − 1)− 1 
nh

i�1 (Z1hi
− Z1h

)2,s2Z2h

� (nh − 1)− 1


nh

i�1 (Z2hi
− Z2h

)2and
sZ1h

Z2h

� (nh − 1)− 1 
nh

i�1(Z1hi
− Z1h

)(Z2hi
− Z2h

) are un-
biased estimator of σ2Z1h

, σ2Z2h

and σZ1h
Z2h

, respectively.

4.1. Percent Relative Efficiency under Stratification. In this
section, we compute the percent relative efficiency (PRE) of
proposed partial RRM over Ahmed et al. [22] model under
stratification using proportional allocation method. For
numerical comparison, we use real data set that is taken from
Rosner [25]; the childhood respiratory disease study of
Boston. We consider Y1 � AGE of a child and Y2 � FEV

(forced expiratory volume) both as sensitive variables as
earlier used by Ahmed et al. [22]. (e population is sub-
divided into two strata on the basis of gender. (e PREs of
proposed estimators μy1(st) and μy2(st) with respect to Ahmed
et al. [22] estimators μyS1(st) and μyS2(st), respectively, are
defined as:

PRE(1) �
V μyA1(st) 

PA

V μy1(st) 
PA

× 100

�


L
h�1 Whσ

2
A1h


L
h�1 Whσ

2
h1

× 100,

(100)

and

PRE(2) �
V μyA2(st) 

PA

V μy2(st) 
PA

× 100

�


L
h�1 Whσ

2
A2h


L
h�1 Whσ

2
h2

× 100.

(101)

(e results are presented in Table 2, the scrambling
variable are same as in Ahmed et al. [22] for both strata, that
is, θ1h

� 2.6, θ2h
� 4.5, δ20h

� 2.3, δ02h
� 1.2, δ30h

� 2.2,
δ03h

� 2.4, δ40h
� 3.2, and δ04h

� 3.2. (e PRE(1) and
PRE(2) are free from the sample size. (e numerical
comparison shows that the efficiency of proposed partial
RRM may be increased by choosing appropriate values of
design parameters (Ph, Th). We also observe that when
Th � 0, the proposed model reduces to Ahmed et al. [22]
model.

We also compute the PRE of proposed partial RRM
under SRSWR over proposed partial RRM under stratifi-
cation to observe the gain in efficiency due to stratification.
For both estimators, the PRE is almost 100 at different values
of design parameters. (is is because the variation between
strata is almost same, and the randomization devices are also
identical.

In the next section, we consider an application of a real
data set.

5. Application of Real Data Set

Hussain et al. [26] estimated the average total number of
classes that were missed by the students and Gjestvang and
Singh [27] considered the problem of estimating the average
GPA of students. In this study, we simultaneously estimate
the average total number of classes that were missed by the
students and average GPA of the students, by using the
proposed partial RRM under SRSWR.

We took a sample of 80 students from Stat 317, Stat 629,
and Zoo 203 classes to estimate the average GPA and average
total number of missed classes by the students, at Quaid-i-
Azam University, Islamabad. We generated 20 random
numbers of S1 and S2 separately from Poisson distribution
with means 5 and 2, respectively. To collect the data through
proposed RRM, two decks of cards were used: Deck I, a deck
of yellow cards and Deck II, a deck of blue cards. A deck of
yellow cards bearing two different types of statements by
setting T � 0.5 to get the scrambled and true responses,
whereas deck of blue cards bearing values of two scramble
variables by setting P � 0.7 to get fake responses.

In Deck I or deck of yellow cards, 20 cards, on 10 cards,
we wrote the statements:

PleaseReport:

GPA

scored in

last semester

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

Total classes

missed during

last semester

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(102)

and, on remaining 10 cards, we wrote the statements:

PleaseReport :

GPA

scored in

last semester

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1

random

number

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

Total classes

missed during

last semester

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

random

number

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(103)

In this process, 20 values of Si, i � 1, 2 were written on
each card.

(e Deck II or deck of blue cards, consists of 20 cards,
out of which 14 cards had the values of S1 and the remaining
six cards had values of S2, with statement “kindly report one
selected random number.”

Before starting the data collection process, we high-
lighted the importance of randomized response methods
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and explained the proposed partial RRM and Ahmed et al.
[22] model to the students. Each student was requested to
draw one card from the Deck I and report the response as
requested on the card, on yellow color paper. Similarly,
repeat the process for Deck II and report the response as
requested on the card, on blue color paper. (en, each
student was provided a pink color card written on Ahmed
et al. [22] model which was similar to equation (103) and
requested to provide the scramble response on pink color
paper. After marking the three responses on three different
color papers, the students were advised to staple these papers
together and put them into the box lying on the table. Fi-
nally, all students wrote the actual GPA and true total
number of classes which they had missed during last se-
mester on white color paper without disclosing their
identity. Table 3 presents the responses obtained from the
students.

Table 4 presents results of the survey. (e estimates of
the means μy1

and μy2
of proposed partial RRM are close to

the estimates based on true responses as compared to the
estimates obtained from Ahmed et al. [22] model. We noted
that the standard error values are large due to small sample

sizes; thus, we suggest that a large scale sample survey should
be conducted in future to reach more realistic outcomes.(e
estimates of randomized response models reflect that the
students are more reluctant to admit the total number of
missed classes to do something unrelated to university study
through direct questioning, whereas GPA is a less sensitive
question for students. In conclusion, one can see that the
proposed method of collecting scrambled data on sensitive
issues can be used safely and securely.

Table 2: PRE of proposed partial RRM with respect to Ahmed et al. [22] model under stratification.

(T1, T2)
(P1, P2) � 0.2 (P1, P2) � 0.4 (P1, P2) � 0.6 (P1, P2) � 0.8

PRE(1) PRE(2) PRE(1) PRE(2) PRE(1) PRE(2) PRE(1) PRE(2)

0.0 100 100 100 100 100 100 100 100
0.1 130 126 104 101 107 104 108 105
0.2 172 160 108 100 113 106 115 109
0.3 229 203 110 98 119 107 123 112
0.4 307 257 109 92 124 106 130 112
0.5 413 323 105 83 125 101 134 110
0.6 552 396 94 69 122 91 133 102
0.7 713 458 76 50 109 74 122 86
0.8 826 458 48 28 81 48 95 59
0.9 642 290 16 8 36 18 46 24

Table 3: Data obtained through Ahmed et al. [22]; proposed partial RRM and direct responses.

Data obtained through RR device I of Ahmed et al. [22] model
45, 38.5, 28.6, 7.2, 31.1, 51.2, 42.9, 30.6, 8.4, 38, 29.2, 21.5, 32.2, 15.6, 15, 18.9, 27.7, 32, 36.5, 16.5, 35.4, 28, 24.2, 5.6, 16.6, 24.5, 16.4, 39.3, 34.8,
13.8, 20.6, 25, 26.8, 38.7, 36.4, 10.2, 27, 21.5, 25, 28.2, 43, 28.8, 34.7, 32, 31.4, 8.8, 63.8, 9.2, 15.8, 61.5, 27.4, 30.5, 29.9, 22.5, 14.2, 25, 14.6, 28.1,
18.8, 28.4, 14.3, 27.5, 38.5, 30.6, 9, 34.7, 13.4, 19.5, 14.5, 33.6, 54, 25, 17.6, 6.3, 41, 28.4, 37, 10.4, 27.5, 22.6
Data obtained through RR device I of proposed partial RRM by setting T � 0.5
10.5, 38.5, 28.6, 7.2, 31.1, 9.8, 10.9, 30.6, 6.7, 38, 7.6, 8.3, 8.4, 11.8, 15, 10.3, 27.7, 7.2, 36.5, 16.5, 35.4, 6.4, 24.2, 5.6, 10.2, 24.5, 7.1, 39.3, 34.8,
13.8, 12.2, 25, 11.2, 38.7, 36.4, 7.6, 9, 21.5, 7, 6.7, 43, 28.8, 34.7, 32, 8.3, 8.8, 11.1, 9.2, 15.8, 61.5, 8.2, 6.7, 7.7, 10.1, 10.1, 8.6, 14.6, 28.1, 18.8,
28.4, 14.3, 27.5, 8.9, 9.1, 9, 34.7, 7.8, 19.5, 14.5, 7.6, 54, 7.5, 17.6, 6.3, 41, 28.4, 5.5, 7.2, 27.5, 22.6
Data obtained through RR device II for fake responses by setting P � 0.7
6, 5, 6, 1, 9, 4, 9, 4, 2, 5, 7, 1, 1, 2, 5, 3, 7, 4, 7, 5, 3, 5, 6, 1, 3, 2, 1, 3, 3, 1, 3, 2, 1, 9, 4, 1, 2, 3, 7, 6, 5, 6, 1, 4, 1, 2, 9, 4, 2, 5, 7, 5, 1, 5, 2, 5, 3, 7, 3, 7, 3, 5,
5, 6, 1, 9, 3, 5, 1, 6, 6, 8, 1, 1, 1, 6, 1, 2, 5, 4
GPA on last semester from direct response
3.4, 2.5, 3.2, 3.33, 3.4, 3.6, 3.05, 2.5, 3, 4.2, 4.1, 3.25, 3.3, 3, 3, 3.5, 2.9, 2.6, 3.1, 2.9, 3.9, 2.1, 3.5, 3.9, 3.4, 3, 2.5, 2.6, 3, 2.5, 2.6, 3, 3, 3, 3.7, 4, 4, 3.2,
3.5, 3.8, 4, 3, 3.8, 3.4, 2.8, 2.7, 3.5, 2.02, 3.6, 3.2, 3.2, 3.2, 1.9, 4, 3.5, 2.5, 3.65, 2.15, 3, 3.9, 4, 3.7, 3.3, 3.86, 3, 3.4, 2.9, 3.6, 3.63, 3.4, 2.8, 3, 2.94,
2.7, 2.6, 3.7, 3.5, 2.6, 2.3, 3
Total classes missed during last semester from direct response
6, 7, 2, 9, 4, 10, 5, 3, 6, 0, 0, 5, 12, 6, 0, 8, 4, 2, 5, 3, 3, 4, 3, 3, 2, 12, 12, 6, 6, 7, 2, 4, 5, 4, 0, 6, 10, 4, 3, 4, 3, 9, 4, 6, 5, 12, 2, 5, 5, 5, 6, 6, 3.3, 8, 5, 8, 4, 0,
6, 0, 0, 7, 3, 5, 10, 4, 7, 9, 5, 9, 6, 3, 10, 0, 5, 2, 6, 5, 6

Table 4: Results of the survey.

Model
Estimated
mean

Standard
error

95% confidence
interval

μy1
μy2

μy1
μy2

μy1
μy2

Proposed
partial RRM 3.18 6.17 0.57 1.12 [2.06,

4.30]
[3.97,
8.37]

Ahmed et al.
[22] 2.33 7.53 0.47 1.15 [1.41,

3.25]
[5.26,
9.80]

Direct
questioning 3.19 5.05 0.06 0.34 [3.07,

3.31]
[4.38,
5.72]
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6. Conclusion

In the present paper, we have suggested a partial randomized
response model for estimating two population means si-
multaneously. (rough simulation study and real life data
application, it is observed that the proposed partial RRM
performs better than the Ahmed et al. [22] model. (e
superiority of suggested partial RRM under stratification
revealed through numerical comparison and it is observed
that the proposed partial RRM under stratified random
sampling performs better as compared to stratified model of
Ahmed et al. [22]. Moreover, we also observed that design
parameters play an important role in increasing or de-
creasing the efficiency of suggested models. (e main ad-
vantage of proposed partial RRM is that it enables
researchers to collect truthful responses at least from some
proportion of people.(us, the proposed partial randomized
response model are therefore recommended for its use in
practice as an alternative to Ahmed et al. [22] randomized
response model.

Data Availability
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