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)is paper investigates the mean-square exponential input-to-state stability (MEISS) of stochastic mixed time-delayed neural
networks with hybrid impulses. A generalized comparison principle is introduced and a new inequality about the solution of an
impulsive differential equation is established. Moreover, by utilizing the proposed inequality and average impulsive interval
approach based on different kinds of impulsive sequences, some novel criteria on MEISS are established. When the external input
is removed, several conclusions on mean-square exponential stability (MES) are also derived. Unusually, the hybrid impulses
including destabilizing and stabilizing impulses have been taken into account in the presented system. Finally, two simulation
examples are provided to demonstrate the validity of our theoretical results.

1. Introduction

Recently, neural networks have absorbed plenty of re-
searchers’ interests owing to their extensive applications in a
variety of areas including system pattern identification,
wireless communications, optimization problems, and
machine learning [1, 2]. Actually, the majority of the ap-
plications are related to the stability of equilibrium points.
Hence, it is of great significance to analyze the stability of
network systems. Moreover, stochastic disturbances exist
inevitably, which affect the dynamic properties of systems.
Meanwhile, in view of the limited switching velocity of the
amplifier in the hardware implementation, it is often en-
countered with time delay, which leads to the instability and
oscillations of associated systems. Subsequently, abundant
results about stability analysis of stochastic network systems
are attained by utilizing various methods [3–7].

Since instantaneous perturbations or abrupt changes at
certain moments appear unpredictably in the real envi-
ronment, impulsive effects are incorporated to depict the
phenomenon in neural networks. Generally, impulsive se-
quences can be classified into stabilizing impulses and

destabilizing impulses. Impulsive sequences are called to be
stabilizing impulses if they can promote the stability of
differential systems, while destabilizing impulses can sup-
press the stability of differential systems. Stability and
synchronization problems of a dynamical system with dif-
ferent categories of impulses have become an interesting
research topic, and some results with respect to the problems
have been reported in [8–16]. For instance, in [8], the as-
ymptotic stability of impulsive recurrent neural networks
with stochastic disturbances and time delays was discussed
by virtue of the Lyapunov functional approach and LMI
technique. In [9], the synchronization problem of stochastic
memristor-based recurrent neural networks with impulsive
effects was explored by utilizing the impulsive differential
inequality. In the real world, some phenomena about hybrid
impulses comprising stabilizing and destabilizing impulses
simultaneously often occur. )ey can be observed in fishing
management with impulsive harvesting and releasing, goods
selling involving impulsive stocking and transferring, and
ball motion process with impulsive accelerating and de-
celerating. Moreover, some stability results of neural net-
work systems with hybrid impulses have been attained by
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employing comparison theory in [10, 11]. Subsequently,
instead of general impulses, the exponential synchronization
issue of complex networks with hybrid impulses was also
tackled in [12, 13], where the approach of average impulsive
gain was introduced based on the average impulsive interval
method in [14].

Additionally, the external inputs have great influences on
the dynamic systems. To describe accurately how external
perturbations impact the asymptotical properties of the
control systems, the definition of input-to-state stability
(ISS) was incorporated in [17]. Noting that the external
disturbances or inputs also appear in the network systems, it
is significant and meaningful to investigate the ISS of neural
networks. Recently, many researchers paid considerable
attention to the field, and plenty of achievements on ISS have
emerged [18–26]. For instance, in [18], the ISS property for
dynamical neural networks was analyzed by using the
Lyapunov stability theory. In [19], a nice passive weight
learning rule was designed for switched Hopfield neural
networks, and some asymptotic stability and ISS results were
proposed. Furthermore, some results about ISS analysis were
extended to stochastic neural networks. Particularly, in
[21, 22], MEISS of stochastic recurrent neural networks was
discussed through the Lyapunov functional method. In [23],
some algebraic conditions were derived to guarantee the
mean-square stability ISS of stochastic network systems with
Markovian switching on the basis of vector inequality
methods and stochastic analysis techniques. Furthermore,
robust input-to-state stability of stochastic neural networks
with Markovian switching was examined in [24] under two
circumstances by means of M-matrix theory. In [25], a novel
criterion about MEISS of stochastic neural networks with
multiproportional delays were established applying the
variable transformations approach. More recently, the ISS of
delay systems with hybrid impulses was studied in light of
the Razumikhin method in [26]. As far as we know, up until
now, although stability and synchronization problems of
neural networks with multiple impulses have been resolved,
the ISS properties of stochastic network systems with hybrid
impulses have not been explored. )erefore, the analysis of
influence for hybrid impulses and external input on system
states becomes a significant topic.

Motivated by the previous considerations, this paper
focuses on the MEISS of stochastic neural networks with
hybrid impulses. )e essential innovations are summarized
as below. First of all, a generalized comparison principle is
introduced and a new inequality about the solution of the
impulsive differential equation is achieved. Secondly, dif-
ferent from the existing works, hybrid impulses including
destabilizing impulses, stabilizing impulses, and external
input are taken into account simultaneously, which reflected
reality more accurately and makes the addressed system
more complex. Finally, some new criteria on MEISS and
MES of stochastic neural networks with hybrid impulses are
established by the average impulsive interval approach based
on different kinds of impulsive sequences. )e structure of
our paper is arranged appropriately. Section 2 proposes
some preliminaries including mathematical models, as-
sumptions, definitions, and lemmas. In Section 3, based on
two proposed lemmas, several criteria onMEISS andMES of
neural networks with hybrid impulses are established. Some
simulation examples are provided in Section 4, and con-
clusions are drawn in the last section.

Notations 1. Let (Ω,F,Ft,P) be a complete probability
space with a filtration Ft􏼈 􏼉t≥ t0

satisfying the usual condi-
tions, we set R+ � (0, +∞), N+ � 1, 2, . . .{ }. PC([a, b];Rn)

represents the family of all piecewise continuous functions
from [a, b] to Rn. L2

Ft0
([t0 − τ0, t0];R

n) denotes the family
of allFt0

− measurable PC([t0 − τ0, t0];R
n) -valued random

processes φ � φ(s) | t0 − τ0 ≤ s≤ t0􏼈 􏼉 such that
supt0− τ0 ≤ s≤ t0

E |φ(s) |2 <∞. λmax(·) stands for the largest
eigenvalue of a matrix. ‖u‖∞ � sup

t≥t0
|u(t)| denotes the infinite

norm of the input function u(t). Dini-derivative D+(·) is
defined by D+v(t) � limε⟶0+ v(t + ε) − v(t)/t.

2. Preliminaries

Consider the following class of neural networks with sto-
chastic disturbances and mixed delays:

dx(t) � − Ax(t) + Bf(x(t)) + Cg(x(t − τ(t))) + D􏽚
t

t− τ0
h(x(s))ds􏼢 􏼣dt

+ ϱ(t, x(t), x(t − τ(t))dw(t),

x(s) � φ(s), t0 − τ0 ≤ s≤ t0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (1)

where x(t) � (x1, x2, . . . , xn)T ∈ Rn denotes the state
vector of the neurons. A � diag a1, a2, . . . , an􏼈 􏼉> 0 is the
self-feedback matrix. B � (bij)n×n, C � (cij)n×n, and D �

(dij)n×n represent the connection weight strength ma-
trices. f(x(t)) � (f1(x(t)), f2(x(t)), . . . , f(xn(t)))T,
g(x(t)) � (g1(x(t)), g2(x(t)), . . . , g(xn(t)))T, and
h(x(t)) � (h1 (x(t)), h2(x(t)), . . . , h(xn(t)))T are the

activation vector functions. Additionally, w(t) denotes
an n-dimensional independent standard Wiener process,
and function ϱ(t, x(t), x(t − τ(t)) ∈ Rn×n stands for the
noise intensity. We suppose that τ(t) satisfies that
0≤ τ(t)≤ τ0. Moreover, some assumptions are imposed
on the neuron activation functions and noise intensity
functions.

2 Mathematical Problems in Engineering



Assumption 1. Suppose that activation functions
fi(x), gi(x), and hi(x) with fi(0) � 0, gi(0) � 0, hi(0) � 0
satisfy the globally Lipschitz continuous condition, i.e., there
exist some positive constants li, pi, qi, and i � 1, 2, . . . , n such
that

fi ι1( 􏼁 − fi ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ li ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, gi ι1( 􏼁 − gi ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤pi ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

hi ι1( 􏼁 − hi ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ qi ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(2)

hold for any ι1, ι2 ∈ Rn, which indicate that

diag f1 ι1( 􏼁 − f1 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f2 ι1( 􏼁 − f2 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, . . . , fn ι1( 􏼁 − fn ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯≤L ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

diag g1 ι1( 􏼁 − g1 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, g2 ι1( 􏼁 − g2 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, . . . , gn ι1( 􏼁 − gn ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯≤P ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

diag h1 ι1( 􏼁 − h1 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, h2 ι1( 􏼁 − h2 ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, . . . , hn ι1( 􏼁 − hn ι2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯≤Q ι1 − ι2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(3)

where L � diag l1, l2, . . . , ln􏼈 􏼉, P � diag p1, p2, . . . , pn􏼈 􏼉, and
Q � diag q1, q2, . . . , qn􏼈 􏼉 are the diagonal matrices.

Assumption 2. Suppose that the noise intensity function
ϱ(t, x(t), x(t − τ(t)) satisfies the globally Lipschitz condi-
tion ϱ(t, 0, 0) � 0. Furthermore, there exist two symmetric
real matrices M1, M2 such that

trac ϱT(t, x(t), x(t − τ(t)))ϱ(t, x(t), x(t − τ(t))􏽨 􏽩

≤x
T
(t)M1x(t) + x

T
(t − τ(t))M2x(t − τ(t)).

(4)

By incorporating impulsive jumps and external input
function u(t) � (u1(t), u2(t), . . . , un(t))T ∈ PC([t0, +

∞);Rn), system (1) is rewritten as follows:

dx(t) � − Ax(t) + Bf(x(t)) + Cg(x(t − τ(t))) + D􏽚
t

t− τ0
h(x(s))ds􏼢

+ u(t)]dt + ϱ(t, x(t), x(t − τ(t))dw(t), t≠ tk,

x tk( 􏼁 � c1kx t
−
k( 􏼁 + c2ku t

−
k( 􏼁, t � tk,

x(s) � φ(s), t0 − τ0 ≤ s≤ t0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where c1k, c2k are bounded constants. Moreover, we assume
that there exists a positive constant c0 satisfies |c2k|≤ c0.

Definition 1. )e trivial solutions of system (1) are said to be
MEISS, if for arbitrary φ ∈ L2

F0
([t0 − τ0, t0];R

n) and
u(t) ∈ PC([t0 − τ0,∞);Rn), there exist positive constants
α0, β0, ε0 such that

E |x(t,φ)|
2

􏽨 􏽩≤ α0e
− β0 t− t0( )E ‖φ‖

2
􏽨 􏽩 + ε0‖u‖

2
∞. (6)

Lemma 1. Assume ϑ(t), z(t), ζ1(t), and ζ2(t) are piecewise
continuous functions. :e time-varying delay τ(t) and im-
pulsive sequences tk􏼈 􏼉 satisfy that 0≤ τ(t)≤ τ0 and
tk+1 − tk ≥ τ0. If there exist some constants αj, βk, and
j � 1, 2, 3{ }, k ∈ N+ satisfying the following inequalities:

D
+
(ϑ(t))≤ α1ϑ(t) + α2ϑ(t − τ(t))

+ α3 􏽚
t

t− τ0
ϑ(s)ds + ζ1(t), t≠ tk;

ϑ tk( 􏼁≤ βkϑ t
−
k( 􏼁 + ζ2 t

−
k( 􏼁, t � tk,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (7)

and

D
+
(z(t))> α1z(t) + α2z(t − τ(t))

+ α3 􏽚
t

t− τ0
z(s)ds + ζ1(t), t≠ tk;

z tk( 􏼁≥ βkz t
−
k( 􏼁 + ζ2 t

−
k( 􏼁, t � tk,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

then ϑ(t)≤ z(t) for t0 − τ0 ≤ t≤ t0 implies that
ϑ(t)≤ z(t), t> t0.

Proof. )is proof procedure is completely parallel to
Lemma 1 in [15], so the process is omitted here. □

Lemma 2. Let α1, α2 ≥ 0, α3 ≥ 0, βk ≥ 0, and τ0 ≥ 0 be some
constants. 􏽥ζ1(t) and 􏽥ζ2(t) are nonnegative bounded func-
tions. Delay τ(t) and impulsive sequences tk􏼈 􏼉 satisfy that
0≤ τ(t)≤ τ0, tk+1 − tk ≥ τ0. If the following impulsive differ-
ential equation with initial value x(s) � ϕ(s)≥
0, t0 − τ0 ≤ s≤ t0 holds

z′(t) � α1z(t) + α2z(t − τ(t))

+ α3 􏽚
t

t− τ0
z(s)ds + 􏽥ζ1(t), t≠ tk,

z tk( 􏼁 � βkz t
−
k( 􏼁 + 􏽥ζ2 t

−
k( 􏼁, t � tk, k ∈ N+

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (9)

then one can derive that
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z(t)≤ 􏽙
t0 < tk ≤ t

βk
⎛⎝ ⎞⎠z t0( 􏼁e

α1 t− t0( ) + 􏽘
t0 < tk ≤ t

􏽙
tk < tm ≤ t

βm
⎛⎝ ⎞⎠􏽥ζ2 tk( 􏼁e

α1 t− tk( )

+ 􏽚
t

t0

􏽙
s< tk ≤ t

βk
⎛⎝ ⎞⎠e

α1(t− s) α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds.

(10)

Proof. When t ∈ [t0, t1), by (9), one gets that

e
− α1 t− t0( )z(t)􏼔 􏼕

′ � e
− α1 t− t0( )⎡⎣α2z(t − τ(t))

+ α3 􏽚
t

t− τ0
z(s)ds + 􏽥ζ1(t)􏼣.

(11)

By integrating the above equation, it yields that

z(t)≤ z t0( 􏼁e
α1 t− t0( ) + 􏽚

t

t0

e
α1(t− s)

· α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds,

(12)

which implies that (10) holds in the time interval [t0, t1).
Moreover, we assume that for t ∈ [t0, tk), the assertion (10)
holds. )erefore, for t ∈ [tk, tk+1), we derive that

z(t) � z tk( 􏼁e
α1 t− tk( ) + 􏽚

t

tk

α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds

≤ βkz t
−
k( 􏼁e

α1 t− tk( ) + e
α1 t− tk( )􏽥ζ2 t

−
k( 􏼁 + 􏽚

t

tk

α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds

≤ βke
α1 t− tk( ) 􏽙

t0 < tm < tk

βm
⎛⎝ ⎞⎠z t0( 􏼁e

α1 tk− t0( ) + 􏽘
t0 < tm < tk

􏽙
tm < ti < tk

βi
⎛⎝ ⎞⎠􏽥ζ2 tm( 􏼁e

α1 tk− tm( )
⎧⎪⎨

⎪⎩

+ 􏽚
tk

t0

􏽙
s< tm < tk

βm
⎛⎝ ⎞⎠ × e

α1 tk− s( ) α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds

⎫⎪⎬

⎪⎭

+ e
α1 t− tk( )􏽥ζ2 t

−
k( 􏼁 + 􏽚

t

tk

α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds

≤ 􏽙
t0 < tk ≤ t

βk
⎛⎝ ⎞⎠z t0( 􏼁e

α1 t− t0( ) + 􏽘
t0 < tk ≤ t

􏽙
tk < tm ≤ t

βm
⎛⎝ ⎞⎠􏽥ζ2 tk( 􏼁e

α1 t− tk( )

+ 􏽚
t

t0

􏽙
s< tk ≤ t

βk
⎛⎝ ⎞⎠e

α1(t− s) α2z(s − τ(s)) + α3 􏽚
s

s− τ0
z(ϑ)dϑ + 􏽥ζ1(s)􏼢 􏼣ds.

(13)

We can get the assertion (10).

Remark 1. In Lemma 2, when βk < 1, the impulses are called
to be stabilizing impulses since the absolute value of the state
is reduced, and it convergences to the equilibrium point.
When βk > 1, the impulses are called to be destabilizing
impulses since the absolute value of the state is enlarged and
it is away from the equilibrium point. Hybrid impulses
include stabilizing impulses and destabilizing impulses si-
multaneously. Recently, the stability and synchronization
problems of neural networks or complex networks with
mixed impulses have been discussed [11–14]. Furthermore,
the ISS property of nonlinear delay systems with multiple
impulses was examined by the Razumikhin method in the
article [26]. Based on the existing results [26], this paper
aims to investigate the MEISS of stochastic neural networks
with hybrid impulses.

Taking the stabilizing and destabilizing impulses into
account, we suppose that the values of stabilizing impulsive
strengths βk􏼈 􏼉 belong to one finite set
δi | δi < 1, i � 1, 2, . . . , l1􏽮 􏽯 while the values of destabilizing
impulsive strengths βk􏼈 􏼉 belong to the other finite set
ηj | ηj > 1, j � 1, 2, . . . , l2􏽮 􏽯. )e following assumption is
further introduced.

Assumption 3. Suppose that there exist positive constants
N0 ≥ 0, λi > 0, and μj > 0(i � 1, 2, . . . , l1, j � 1, 2, . . . , l2) such
that χ1i(T, t)≥T − t/λi − N0, χ2j(T, t)≤T − t/μj + N0,
where χ1i(T, t) and χ2j(T, t) respectively denote the amount
of the stable impulsive sequence with strength δi and
destabilizing impulsive sequence with impulsive strength ηj

on the time interval (t, T). Besides, the impulsive activation
times tk satisfy that inf tk − tk− 1􏼈 􏼉 � κ≥ τ0 > 0.
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Remark 2. From the above assumption, we can find that λi

and μj stand for the average dwell-time of stabilizing and
destabilizing impulsive sequences, respectively. δi and ηj

represent the impulsive strength of stabilizing and desta-
bilizing impulsive sequences, respectively. Let 􏽢tik and �tjk
denote the activation moments of the stabilizing impulses
and the destabilizing impulses. If max 􏽢tik − 􏽢tik− 1􏼈 􏼉 � λi and
inf �tjk − �tjk− 1􏽮 􏽯 � μj(i � 1, 2, . . . , l1, j � 1, 2, . . . , l2), where l1
and l2 represent the finite positive integers, then we have that
χ1i(T, t)≥T − t/λi − 1, χ2j(T, t)≤T − t/μj + 1.

3. Main Results

In this section, according to the proposed lemmas, several
criteria on MEISS and MES of stochastic delay hybrid im-
pulses neural networks are established by utilizing the
comparison principle and stochastic Lyapunov function
approach.

Theorem 1. Let βk � 2c21k represent the impulsive strengths,
which take values from two finite sets δi | 0< δi <􏼈

1, i � 1, 2, . . . , l1} and ηj | ηj > 1, j � 1, 2, . . . , l2􏽮 􏽯. Under
Assumptions 1, 2, and 3, if there are some parameters
ϵi > 0, i ∈ 1, 2, 3, 4{ } satisfying the following inequality,

α0 − q0α2 − q0α3τ0 > 0, (14)

then system (1) is MEISS, where α0 � − [􏽐
l1
i�1 ln δi/λi+

􏽐
l2
j�1 ln ηj/μj + α1], α1 � λmax[− (A + AT)+ ϵ1BBT + 1/ϵ1

LTL + ϵ2CCT + ϵ3DDT + ϵ4I + M1], α2 � λmax[1/ϵ2PT

P + M2], α3 � λmax[τ0/ε3QTQ], and q0 � (􏽑
l1
i�1 1/δi

􏽑
l2
j�1 ηj)

N0 .

Proof. )e following Lyapunov function is chosen:

V(t) � x
T
(t)x(t). (15)

By the It 􏽢o formula, one can derive that

LV(t) � 2x
T
(t) − Ax(t) + Bf(x(t)) + Cg(x(t − τ(t))) + D􏽚

t

t− τ0
h(x(s))ds􏼢

+ u(t)] + trac ϱT(t, x(t), x(t − τ(t)))ϱ(t, x(t), x(t − τ(t)))􏼐 􏽩

≤ − x
T
(t) A + A

T
􏼐 􏼑x(t) + 2x

T
(t)Bf(x(t)) + 2x

T
(t)Cg(x(t − τ(t)))

+ 2x
T
(t)D􏽚

t

t− τ0
h(x(s))ds + 2x

T
(t)u(t)

+ x
T
(t)M

T
1 M1x(t) + x

T
(t − τ(t))M

T
2 M2x(t − τ(t)).

(16)

By making use of the inequality
2xTy≤ ϵxTx + 1/ϵyTy, x, y ∈ Rn, ϵ> 0, we can obtain that

2x
T
(t)Bf(x(t)) ≤ 2 B

T
x(t)􏽨 􏽩

T
f(x(t))

≤ ϵ1x
T
(t)BB

T
x(t) +

1
ϵ1

x
T
(t)L

TLx(t).

(17)

Similarly, one has that

2x
T
(t)Cg(x(t − τ(t)))≤ ϵ2x

T
(t)CC

T
x(t) +

1
ϵ2

x
T
(t − τ(t))P

T
Px(t − τ(t))

2x
T
(t)D􏽚

t

t− τ0
h(x(s))ds ≤ ϵ3x

T
(t)DD

T
x(t) +

1
ϵ3

􏽚
t

t− τ0
h(x(s))ds􏼠 􏼡

T

􏽚
t

t− τ0
h(x(s))ds

≤ ϵ3x
T
(t)DD

T
x(t) +

τ0
ϵ3

􏽚
t

t− τ0
x

T
(s)Q

T
Qx(s)ds

2x
T
(t)u(t) ≤ ϵ4x

T
(t)x(t) +

1
ϵ4

u
T

(t)u(t).

.(18)
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)en, we derive that

LV(t)≤ x
T
(t) − A + A

T
􏼐 􏼑 + ϵ1BB

T
+
1
ϵ1

L
T

L + ϵ2CC
T

+ ϵ3DD
T

+ ϵ4I􏼢

+ M
T
1 M1􏽩x(t) + x

T
(t − τ(t))

1
ϵ2

P
T
P + M

T
2 M2􏼢 􏼣x(t − τ(t))

+
τ0
ϵ3

􏽚
t

t− τ0
x

T
(s)Q

T
Qx(s)ds +

1
ϵ4

u
T
(t)u(t)

≤ α1V(t) + α2V(t − τ(t)) + α3 􏽚
t

t− τ0
V(s)ds + ζ1(t),

(19)

where α1 � λmax[− (A + AT) + ε1BBT + 1/ε1LTL + ε2C
CT+ ε3DDT + ε4I+ M1], α2 � λmax[1/ϵ2PTP + M2], and
α3 � λmaxτ0/ϵ3QTQ, ζ1(t) � 1/ϵ4uT(t)u(t). Moreover, for
t≠ tk, one can see that

D
+
EV(t)≤ELV(t)

≤ α1EV(t) + α2EV(t − τ(t))

+ α3 􏽚
t

t− τ0
EV(s)ds + ζ1(t).

(20)

In addition, we have that

EV tk( 􏼁􏼁≤ 2c
2
1kEV t

−
k( 􏼁 + 2c

2
2k u t

−
k( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ βkEV t

−
k( 􏼁 + ζ2 t

−
k( 􏼁, (21)

where βk � 2c21k, ζ2(t) � 2c2
2k|u(t)|2. Together with (20) and

(21), we construct the following comparison system:

z′(t) � α1z(t) + α2z(t − τ(t))

+α3 􏽚
t

t− τ0
z(s)ds + ζ1(t) + θ, t≠ tk,

z tk( 􏼁 � βkz t
−
k( 􏼁 + ζ2 t

−
k( 􏼁, t � tk,

z(s) � |φ(s)|
2
, t0 − τ0 ≤ s≤ t0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where θ is a sufficiently small positive constant. By virtue of
Lemma 1, it can be concluded that EV(t)≤ z(t), t≥ 0.
Furthermore, applying Lemma 2 to the system (22), we can
derive that

EV(t)≤ z(t)≤ 􏽙
t0 < tk ≤ t

βk
⎛⎝ ⎞⎠H0e

α1 t− t0( ) + 􏽘
t0 < tk ≤ t

􏽙
tk < tm ≤ t

βmζ2 t
−
k( 􏼁e

α1 t− tk( ))⎛⎝ ⎞⎠

+ 􏽚
t

t0

􏽙
s< tk ≤ t

βk
⎛⎝ ⎞⎠e

α1(t− s) α2EV s − τ1(s)( 􏼁 + α3 􏽚
s

s− τ0
EV(u)du + ζ1(s) + θ􏼢 􏼣ds,

(23)

where H0 � sup− τ0 ≤ s≤ 0E|x(s)|2. Let q0 � (􏽑
l1
i�1 1/δi

􏽑
l2
j�1 ηj)

N0 , α0 � − [􏽐
l1
i�1 ln δi/λi + 􏽐

l2
j�1 ln ηj/μj + α1]. From

Assumption 3, it easily follows that t − t0/λi − N0 ≤ χ1i and

t − t0/μj + N0 ≥ χ2j, where χ1i and χ2j represent the jump
times of stabilizing impulses and destabilizing impulses. We
have that

􏽙
t0<tk≤ t

βk
⎛⎝ ⎞⎠e

α1 t− t0( ) ≤ 􏽙

l1

i�1
δχ1i

i 􏽙

l2

j�1
η
χ2j

j
⎛⎜⎝ ⎞⎟⎠e

α1 t− t0( )

≤ 􏽙

l1

i�1
δt− t0/λi− N0

i 􏽙

l2

j�1
η

t− t0/μj+N0
j

⎛⎜⎝ ⎞⎟⎠e
α1 t− t0( )

≤ q0e
􏽘

l1

i�1
ln δi/λi+􏽘

l1

j�1
ln ηj/μj+α1􏼔 􏼕 t− t0( )

≤ q0e
− α0 t− t0( ).

(24)
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Accordingly, we acquire that

􏽙
tk<tm≤ t

βm
⎛⎝ ⎞⎠ζ2 t

−
k( 􏼁e

α1 t− tk( ) ≤ q0ζ2 t
−
k( 􏼁e

− α0 t− tk( ),

􏽙
s<tk≤t

βk
⎛⎝ ⎞⎠e

α1(t− s) ≤ q0e
− α0(t− s)

.

(25)

Hence, it follows that

EV(t)≤ z(t)≤ q0H0e
− α0 t− t0( )

+ q0 􏽘
t0<tk≤t

ζ2 t
−
k( 􏼁e

− α0 t− tk( )

+ 􏽚
t

t0

q0e
− α0(t− s)⎡⎣α2EV s − τ1(s)( 􏼁

+ α3 􏽚
s

s− τ0
EV(v)dv + ζ1(s) + θ􏼣ds.

(26)

Considering the following equation:

ξ − α0 + α2q0e
ξτ0 + α3q0

e
ξτ0 − 1
ξ

� 0. (27)

Let Φ(ξ) � ξ − α0 + α2q0eξτ0 + α3q0eξτ0 − 1/ξ. Since Φ
(0+) � − (α0 − q0α2 − q0α3τ0)< 0, Φ(+∞)> 0, and Φ(ξ) is a

continuous function in the time interval (0, +∞), there is a
root satisfying (27). Besides, it is obvious that Φ′(ξ)> 0.
)us, there exists a unique positive root σ such that the
above equation holds. Subsequently, we will claim that

EV(t)≤ q0H0e
− σ t− t0( ) +

q0 ζ1(t)
����

����∞ + θ􏼐 􏼑

α0 − q0α2 − q0α3τ0

+
α0q0 ζ2(t)

����
����∞

1 − e
− κα0􏼁 α0 − q0α2 − q0α3τ0(( 􏼁

, t ∈ − τ0,∞􏼂 􏼁.

(28)

When t ∈ [t0 − τ0, t0], it can be easily verified that what
assertion (28) holds. Let H1 � q0(‖ζ1(t)‖∞+ θ)/α0 − q0α2 −

q0α3τ0 + α0q0‖ζ2(t)‖∞/(1 − e− κα0) (α0 − q0α2 − q0α3τ0). For
t> t0, if inequality (3.6) is not true, on the contrary, then
there exists a t such that

EV(t)≥ q0H0e
− σ t− t0( ) + H1, (29)

and for t ∈ [− τ0, t)

EV(t)≤ q0H0e
− σ t− t0( ) + H1. (30)

)en, we obtain that

EV(�t)≤ q0H0e
− α0 t− t0( ) + q0 􏽘

t0 < tk ≤ t

ζ2 t
−
k( 􏼁e

− α0 t− tk( )

+ 􏽚
t0

�t
q0e

− α0(t− s) α2EV s − τ1(s)( 􏼁 + α3 􏽚
s

s− τ0
EV(u)du + ζ1(s) + θ􏼢 􏼣ds

≤ q0H0e
− α0 t− t0( ) +

q0 ζ2(t)
����

����∞
1 − e

− κα0 + 􏽚
t0

t
q0e

− α0(t− s) α2EV s − τ1(s)( 􏼁􏼂

+α3 􏽚
s

s− τ0
EV(u)du + ζ1(s) + θ􏼣ds.

(31)

By means of (30), it is noted that

􏽚
t

t0

q0e
− α0(t− s)α2EV s − τ1(s)( 􏼁ds≤ q0 􏽚

t

t0

α2e
− α0(t− s)

q0H0e
− σ s− τ1(s)− t0( ) + H1􏼔 􏼕ds

≤ q
2
0H0α2e

στ0e
σt0− α0t

􏽚
t

t0

e
α0− σ( )sds +

q0α2H1 1 − e
− α0 t− t0( )􏼔 􏼕

α0

≤
q
2
0H0α2e

στ0

α0 − σ
e

− σ t− t0( ) − e
− α0 t− t0( )􏼔 􏼕 +

q0α2H1 1 − e
− α0 t− t0( )􏼔 􏼕

α0
.

(32)

Similarly, we have that
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􏽚
t

t0

q0e
− α0(t− s)α3 􏽚

s

s− τ0
EV(u)duds

≤ q0 􏽚
t

t0

α3e
− α0(t− s)

􏽚
s

s− τ0
q0H0e

− σ v− t0( ) + H1􏼢 􏼣dvds

≤ q
2
0H0α3e

σt0− α0te
στ0 − 1
σ

􏽚
t

t0

e
α0− σ( )sds +

q0α3τ0H1 1 − e
− α0 t− t0( )􏼔 􏼕

α0

≤
q
2
0H0α3
α0 − σ

e
στ0 − 1
σ

e
− σ t− t0( ) − e

− α0 t− t0( )􏼔 􏼕 +
q0α3τ0H1 1 − e

− α0 t− t0( )􏼔 􏼕

α0
,

· 􏽚
t

t0

q0e
− α0(t− s) ζ1(s) + θ( 􏼁ds≤

q0 ζ1(s)
����

����∞ + θ􏼐 􏼑 1 − e
− α0 t− t0( )􏼔 􏼕

α0
.

(33)

)erefore, one gets that

EV(t)≤ q0H0e
− α0 t− t0( ) +

q0 ζ2(t)
����

����∞
1 − e

− κα0 + q0H0 α2q0e
στ0 + α3q0

e
στ0 − 1
σ

􏼢 􏼣
e

− σ0 t− t0( )

α0 − σ
⎡⎢⎣

−
e

− σ t− t0( )

α0 − σ
⎤⎥⎦ +

q0 α2 + α3τ0( 􏼁H1 + q0 ζ1(s)
����

����∞ + θ􏼐 􏼑􏽨 􏽩 1 − e
− α0 t− t0( )􏼔 􏼕

α0

< q0H0e
− α0 t− t0( ) +

q0 ζ2(t)
����

����∞
1 − e

− κα0 + q0H0 α2q0e
στ0 + α3q0

e
στ0 − 1
σ

􏼢 􏼣
e

− σ t− t0( )

α0 − σ
⎡⎢⎣

−
e

− α0 t− t0( )

α0 − σ
⎤⎥⎦ +

q0 α2 + α3τ0( 􏼁H1 + q0 ζ1(s)
����

����∞ + θ􏼐 􏼑

α0
.

(34)

Noting that σ − α0 + α2q0eστ0 + α3q0eστ0 − 1/σ � 0 and
H1 � q0(‖ζ1(t)‖∞+ θ)/α0 − q0α2 − q0α3τ0 + α0q0‖ζ2(t)‖∞/
(1 − e− κα0)(α0 − q0α2 − q0α3τ0), we have that

EV(t)< q0H0e
− σ t− tt0( ) +

q0 ζ2(t)
����

����∞
1 − e

− κα0

+
1
α0

α0H1 −
q0α0 ζ2(t)

����
����∞

1 − e
− κα0􏼢 􏼣,

(35)

which implies that

EV(t)< q0H0e
− σ t− t0( ) + H1. (36)

It yields a contradiction with (29). )en, we have that

EV(t)≤ q0H0e
− σ t− t0( ) +

q0 ζ1(t)
����

����∞ + θ􏼐 􏼑

α0 − q0α2 − q0α3τ0

+
α0q0 ζ2(t)

����
����∞

1 − e
− κα0( 􏼁 α0 − q0α2 − q0α3τ0( 􏼁

.

(37)

Let θ⟶ 0, it yields that

EV(t)≤ q0H0e
− σ t− t0( ) +

q0 ζ1(t)
����

����∞􏼐

α0 − q0α2 − q0α3τ0

+
α0q0 ζ2(t)

����
����∞

1 − e
− κα0( 􏼁 α0 − q0α2 − q0α3τ0( 􏼁

.

(38)

Since ‖ζ1(t)‖∞ � ‖1/ϵ4uT(t)u(t)‖∞≤ 1/ϵ4‖u(t)‖2∞,
‖ζ2(t)‖∞ � ‖2c2

2k|u(t)|2‖∞ ≤ 2c20‖u(t)‖2∞, EV(t) � E|x(t)|2,
one acquires that

E|x(t)|
2 ≤ q0H0e

− σ t− t0( ) +
q0 1 − e

− κα0( 􏼁 + 2c
2
0α0ϵ4􏽨 􏽩‖u(t)‖

2
∞

ϵ4 1 − e
− κα0( 􏼁 α0 − q0α2 − q0α3τ0( 􏼁

,

(39)

which implies that system (1) is MEISS. □

Remark 3. In [21, 22], the MEISS of stochastic recurrent
neural networks and Cohen-Grossberg neural networks
have been investigated. In this paper, impulsive sequences
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are composed of destabilizing impulses, stabilizing impulses,
and external input, which makes our model complicated.
Meanwhile, some novel ISS criteria are established by
employing impulsive differential inequality and average
impulsive interval approach based on different kinds of
impulsive sequences. On the other hand, the ISS property of
impulsive delay systems with multiple impulses was also
analyzed by means of the Razumikhin method in [26], and
some restrictive conditions are required such as βk � βN+k. It
implies that the impulsive sequences are periodic, which is
not necessary for our results. Besides, compared with the
existing results [26], our results are applied to stochastic
neural networks and the sufficient conditions are more easily
verified.

Remark 4. It is worth pointing out that the method applied in
[12, 13] is not suitable in this paper since the impulsive part
includes the external input. )erefore, this paper constructs the
new impulsive inequality to overcome the difficulties.

If the stochastic disturbances and distributed delays are
removed (1) immediately, it yields the following system:

dx(t) � [− Ax(t) + Bf(x(t)) + Cg(x(t − τ(t)))

+ u(t)]dt, t≠ tk,

x tk( 􏼁 � c1kx t
−
k( 􏼁 + c2ku t

−
( ), t � tk,

x(s) � φ(s), t − τ0 ≤ s≤ t0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

Accordingly, we have the following result.

Corollary 1. Let βk � 2c21k represent the impulsive strengths,
which take values from two finite sets δi|0<􏼈

δi < 1, i � 1, 2, . . . , l1} and ηj | ηj > 1, j � 1, 2, . . . , l2􏽮 􏽯. Under
Assumptions 1 and 3, if there exist positive constants
ϵi, i ∈ 1, 2, 3{ }1, 2, 3 such that

α0 − q0α2 > 0, (41)

where α0 � − [􏽐
N1
i�1 ln δi/λi + 􏽐

N2
j�1 ln ηj/μj + α1], α1 � λmax

[− (A + AT) + ϵ1BBT + 1/ϵ1LTL + ϵ2CCT + ϵ3I], α2 �

λmax[1/ϵ2PTP], and q0 � (􏽑
l1
i�1 1/δi 􏽑

l2
j�1 ηj)

N0 , then system
(40) is exponentially ISS.

In particular, when l1 � l2 � 1, the stabilizing impulsive
strength and destabilizing impulse strength are reduced to be
δ1 and η1, respectively. Moreover, similar to Remark 2, let
max 􏽢t1k − 􏽢t1k− 1􏼈 􏼉 � λ1 and inf �t1k − �t1k− 1􏼈 􏼉 � μ1. It is equiva-
lent to χ11(T, t)≥T − t/λ1 − 1, χ21(T, t)≤T − t/μ1 + 1,
which leads to the following corollary.

Corollary 2. Suppose that two constants δ1 and η1 satisfy
0< δ1 < 1, η1 > 1. βk � 2c21k denotes the impulsive strengths,
which can be chosen by the set δ1, η1􏼈 􏼉. Under Assumptions 1,
2, and 3, if

α0 − q0α2 − q0α3τ0 > 0, (42)

where α0 � − [ln δ/λ + ln η/μ + α1], α1 � λmax[− (A + AT) +

BBT+ LTL + CCT + DDT + I + M1], α2 � λmax[PTP+

M2], α3 � λmax[τ0QTQ], and q0 � 􏽑
l1
i�1 1/δi 􏽑

l2
j�1 ηj, then

system (1) is MEISS.

When external input u(t) � 0, according to the above
results, the following assertions might be derived immediately.

Theorem 2. Let βk � c2
1k denote the impulsive strengths,

which take values from two finite sets δi | 0<􏼈

δi < 1, i � 1, 2, . . . , l1} and ηj | ηj > 1, j � 1, 2, . . . , l2􏽮 􏽯. Sup-
pose that all the other conditions in :eorem 1 are on hold. If
external input u(t) � 0, then system (1) is MES.

Corollary 3. Let βk � c2
1k represent the impulsive strengths,

which take values from two finite sets δi | 0< δi <􏼈

1, i � 1, 2, . . . , l1} and ηj|ηj > 1, j � 1, 2, . . . , l2􏽮 􏽯. Suppose
that all the other conditions in Corollary 1 are on hold. If
external input u(t) � 0, then system (40) is exponentially
stable.

Remark 5. In [11], the exponential stability of delayed neural
networks with hybrid impulses was discussed. )is paper
further explores the MEISS of mixed delayed neural net-
works with stochastic disturbances and hybrid impulses.
Particularly, when stochastic terms, distributed delays end
external input are removed, the addressed system is reduced
to the system in [11]. In light of Remark 2, when
max 􏽢tik − 􏽢ti(k− 1)􏽮 􏽯 � λi and inf �tjk − �tj(k− 1)􏽮 􏽯 � μj, we can
choose flexible constant N0 � 1 in Assumption 3. Let
ϵ1 � ϵ2 � 1. Applying Corollary 3 to this case, if α0 �

− [􏽐
N1
i�1 ln δi/λi + 􏽐

N2
j�1 ln ηj/μj + α1], α1 � λmax[− (A+

AT) + BBT + LTL + CCT], α2 � λmax[PTP], and

q0 � 􏽑
l1
i�1 1/δi 􏽑

l2
j�1 ηj, then the considered system is ex-

ponentially stable, which accords with the result in [11].

Remark 6. Recently, different control strategies have been
developed to deal with some nonlinear systems. For in-
stance, in [27], a stochastic integral sliding mode control
strategy for singularly perturbed Markov jump descriptor
systems subject to nonlinear perturbation was proposed and
a novel mode and switch-dependent integral switching
surface were introduced. In [28], the problem of path fol-
lowing for the underactuated unmanned surface vehicles
(USVs) subject to state constraints has been tackled, where
one control scheme was presented by combining the
backstepping technique, adaptive dynamic programming,
and the event-triggered mechanism. In [29], quantized
nonstationary filtering for networked Markov switching
repeated scalar nonlinear systems was investigated based on
a multiple hierarchical structure strategy. Moreover, these
control strategies can be applied to many applicable systems
in the real world. Actually, impulsive control is also one of
the significant control strategies. In this paper, we establish
some MEISS criteria about stochastic neural networks with
hybrid impulses. In the future, we could further explore the
control problems of some applicable systems combined with
input-to-state stability theory.
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4. Numerical Example

In this section, two examples have been provided to exhibit
the validity of the theoretical results in )eorem 1 and
)eorem 2, in which hybrid impulsive effects are introduced.

Example 1. Suppose that parameters of the neural network
(9) meet that

A �
2.7 0

0 3
􏼠 􏼡;B �

0.3 0.5

0.8 0.9
􏼠 􏼡;C �

0.4 0.2

0.1 0.3
􏼠 􏼡;

D �
0.7 0.8

0.9 0.5
􏼠 􏼡; ϱ(t, x(t), x(t − τ(t)) �

0.4x1(t) 0.3x1(t − τ(t))

0.5x2(t) 0.2x2(t − τ(t))
􏼠 􏼡,

f(x(t)) �
0.8tanh x1(t)( 􏼁

0.9tanh x2(t)( 􏼁
􏼠 􏼡; g(x(t)) �

0.24tanh x1(t)( 􏼁

0.2tanh x2(t)( 􏼁
􏼠 􏼡;

h(x(t)) �
0.9tanh x1(t)( 􏼁

0.85tanh x2(t)( 􏼁
􏼠 􏼡; u(t) �

1.8 sin t

1.8 cos t
􏼠 􏼡;

c1k �
0.5, k � 2j − 1,

0.8, k � 2j, j ∈ Z,
􏼨 c2k � 0.8, k ∈ Z.

(43)

Let λ1 � 0.5, μ1 � 0.5, and time-varying τ(t) �

0.2| cos t|. By choosing ϵi � 1, i � 1, 2, 3, 4, we derive α1 �

λmax[− (A + AT)+ ε1BBT + 1/ε1LTL + ε2CCT + ε3DDT+

ε4I + M1] � 0.2146, α2 � λmax[1/ϵ2PTP + M2] � 0.1476,
and α3 � λmax[τ0/ϵ3QTQ] � 0.162. Moreover, we calculate
that δ � 0.5, η � 1.28, α0 � 0.6780, q0 � 2.56, and it can be
easily verified that α0 − q0α2 − q0α3τ0 � 0.2172> 0.

)erefore, all the conditions are satisfied in)eorem 1, then
system (9) is MEISS (See Figure 1). While u(t) � 0,
according to )eorem 2, the system is MES (Figure 2).

Example 2. Assume that parameters of the neural network
(9) meet that

A �
2.1 0

0 2.4
⎛⎝ ⎞⎠;B �

0.2 − 0.15

0.32 0.1
⎛⎝ ⎞⎠;C �

0.65 0.25

− 0.18 0.4
⎛⎝ ⎞⎠;

D �
0.12 0.16

0.35 − 0.3
⎛⎝ ⎞⎠; ϱ t, x(t), x(t − τ(t)) �

0.4x1(t) 0.32x2(t − τ(t))

0.6x2(t) 0.3x1(t − τ(t))

⎛⎝ ⎞⎠⎛⎝

f(x(t)) �
0.36 sin x1(t)( 􏼁

0.24 sin x2(t)( 􏼁

⎛⎝ ⎞⎠; g(x(t)) �
0.12 sin x1(t)( 􏼁

0.15 sin x2(t)( 􏼁

⎛⎝ ⎞⎠;

h(x(t)) �
0.65 sin x1(t)( 􏼁

0.5 sin x2(t)( 􏼁

⎛⎝ ⎞⎠; u(t) �
5 sin t

2 cos t

⎛⎝ ⎞⎠; c1k �
0.9, k � 2j − 1,

0.6, k � 2j,

⎧⎨

⎩ ; c2k � 0.7.

(44)

Let λ1 � 0.4, μ1 � 0.4, and time-varying τ(t) �

0.1|cos t| + 0.15. By choosing εi � 1, i � 1, 2, 3, 4, we derive
α1 � λmax[− (A + AT) + ϵ1BBT + 1/ϵ1LTL + ϵ2CCT+ ϵ3
DDT + ϵ4I + M1] � − 2.3470, α2 � λmax[1/ϵ2PTP+ M2] �

0.1249, and α3 � λmax[τ0/ϵ3QTQ] � 0.1056. Moreover, we
calculate that δ � 0.72, η � 1.62, α0 � 1.9622, q0 � 2.25, and
it can be easily verified that α0 − q0α2 − q0α3τ0 � 1.6218 > 0.
)erefore, all the conditions hold in )eorem 1, then
system (9) is MEISS (shown in Figure 3). While u(t) � 0,
according to )eorem 2, the system is MES (shown in
Figure 4).

Remark 7. From the above two examples, it could be seen
that stabilizing impulses and destabilizing impulses coexist
simultaneously. In Example 1, the stabilizing impulses are
dominant, which plays an important role in stabilizing
systems. While in Example 2, the destabilizing impulses are
dominant, which could be seen as impulsive perturbations.
Under this circumstance, the original system can tolerate the
impulsive perturbations and maintain input-to-state sta-
bility. Different from the theoretical results in [26], the
sufficient conditions on MEISS criteria are more easily
verified by virtue of the average impulsive interval approach.
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Figure 1: 2nd moment of the system states x1(t), x2(t) in Example 1 with input u(t) � (1.8 sin t, 1.8 cos t)T, and initial value (− 40, 36)T.
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Figure 2: 2nd moment of the system states x1(t), x2(t) in Example 1 input u(t) � 0, and initial value (− 40, 36)T.
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Figure 3: 2nd moment of the system states x1(t), x2(t) in Example 2 with input u(t) � (5 sin t, 2 cos t)T and initial value (18, 26)T.
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5. Conclusions

)is article investigates the issues of MEISS for stochastic
neural networks with hybrid impulses. A generalized
comparison principle is introduced and a new inequality
about the solution of the impulsive differential equation is
derived. Moreover, combining the impulsive differential
inequality and average impulsive interval approach based on
different kinds of impulsive sequences, some novel criteria
are constructed to guarantee that the system isMEISS.When
external input u(t) � 0, the addressed system is MES. Since
hybrid impulses and external input at each impulsive mo-
ment are incorporated, our model becomes more general.
Consequently, our theoretical achievements also improve
the previous results. In the future, we will further explore
some control problems of applicable systems by virtue of ISS
theory.
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