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,is paper presents an in-depth study and analysis of large datasets of mixed and attribute features under Spark using a large
dataset clustering algorithm. ,e classical algorithm K-means based on division and the density-based clustering algorithm DPC,
which has become more popular in recent years, are selected as the research objects of this paper. Secondly, the original K-means
algorithm is improved by combining holdout validation and K-means++ method to address the shortcomings of the K-means
algorithm that the number of class clusters K needs to be set in advance and the initial class cluster centers are chosen randomly,
which leads to unstable iterations and slow convergence of clustering results. ,e similarity matrix will be continuously updated
during the iterative process. It mainly refers to the process of dividing objects into multiple classes according to the degree of
similarity between objects. After the division, the objects within the class are like each other, while the objects between the classes
are different from each other. ,e comparison experiments of the improved algorithm before and after the MovieLens dataset are
conducted to verify that the new algorithm has better performance in terms of clustering accuracy and efficiency. Again, to address
the drawback that the clustering results in the DPC algorithm rely heavily on the subjective selection of the truncation distance
parameter cd, and it is difficult to handle datasets with complex distribution and large density variation, the algorithm can
generate the optimal cd adaptively by combining K-nearest neighbors and introducing the distance comparison quantity, which
has a better performance by considering the overall and local distribution of the data. ,e feasibility of the improved method is
verified by validating the algorithm with artificial datasets and UCI datasets as well as separation tests. Finally, the parallelized
design and implementation of the improved K-means algorithm and CDPC-KNN algorithm are completed by building a Spark
clustering environment, and the parallelized algorithm is verified to have much better data processing capability and be more
adaptable to the clustering analysis of large-scale data by comparing algorithm string parallelism experiments.

1. Introduction

With the rapid development of the Internet, the data gen-
erated by various industries is exploding, and the situation of
“data explosion and knowledge scarcity” has gradually
emerged. How to extract useful information from the huge
amount of data and understand the knowledge contained in
the data has become an urgent problem. Data mining is the
process of extracting hidden, unknown, and useful infor-
mation from the huge amount of data stored in databases or
data warehouses, which can help people better analyze data,
utilize data, and use it to analyze future trends. Cluster
analysis is a key topic in data mining, which mainly refers to
the process of dividing objects into multiple classes based on

their similarity to each other, after which the objects within
the classes are like each other, while the objects between the
classes and the classes are different from each other [1]. ,e
parallelization of data mining algorithms under the
framework of distributed computing has also become a hot
spot in the field of data mining research. Currently, clus-
tering analysis has become a very active topic in the field, but
due to the complexity of data, the diversity of data structures,
and the dramatic increase in the amount of data, traditional
clustering methods have many shortcomings and defi-
ciencies in dealing with the problem. To further optimize the
clustering process, we can introduce some bioinspired al-
gorithms to optimize the clustering process, in addition to
improving the algorithm itself.
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Data mining can uncover hidden and valuable infor-
mation from massive amounts of data. By analyzing con-
sumer spending records, it was concluded that male
consumers tend to buy several bottles of beer when they buy
baby diapers [2]. Google built a predictive model in the US
by analyzing the words people repeatedly search for and
correlating that data with the Centers for Disease Control’s
data on seasonal flu transmission in previous years, which
successfully predicted the spread of the flu and was specific
to a particular location; Twitter A series of customized
customer data streams were built by clustering the user’s
address, as well as the location of tweets and the content of
tweets [3]. For example, by clusteringmovie names, tweeting
locations, and movie reviews, you can know which movies
are the most popular in Tokyo, Shanghai, and London. ,e
collection of diverse data may be the real value of social
networking sites now, and they may be able to squeeze out
advertising as a major source of revenue for social net-
working sites [4]. However, the new generation of big data
computing method framework and programming model is
running in parallel, and the traditional data mining algo-
rithm based on the serial mode of a single machine is difficult
to apply directly to the distributed framework; therefore, the
parallelization research of data mining algorithm in the
distributed computing framework has also become a major
hot spot in the field of data mining research.

Spark cluster is very suitable for processing massive data
because of its distributed characteristics with powerful
arithmetic [5]. Combining data mining technology with the
Spark platform to realize the parallelization of these tradi-
tional data mining algorithms can well meet the demand for
informationmining of big data, which is of great significance
for processing big data with large scale and variety. Due to
the simplicity and efficiency of Spark, it will be very likely to
replace Hadoop as the new generation of the data mining
platform. ,e existing clustering algorithm is improved and
integrated into the Spark platform, and this clustering al-
gorithm can overcome the defect of the K-means algorithm
which can only be used for the spherical dataset and make
this algorithm more stable, and this algorithm makes the
library richer for MLlib, the machine learning algorithm
library, and enriches the computing power of Spark com-
puting platform. It is also valuable for the continued de-
velopment of the Spark computing platform to enrich the
computational power of the platform and improve the
clustering effect of the clustering algorithm of the platform,
therefore, improving the existing machine learning algo-
rithms and embedding them in theMLlib library, and finally,
the distributed deployment of such algorithms on the Spark
platform is of great importance for the development of the
current Spark platform.

2. Related Works

,e study of the clustering problem is one of the quite active
areas in data mining. Clustering is a basic method for data
analysis, and the main purpose is to divide a set of objects
(usually data points in space) into several classes according
to different attribute values and to require that objects within

the same class be as similar as possible, and objects in
different classes are as different from each other as possible
[6]. In real life, the relationship betweenmany things is fuzzy
and unclear. In this fuzzy situation, K-means and another
hard clustering algorithm are no longer applicable, and then
a fuzzy clustering algorithm is needed. ,e fuzzy C-means
clustering algorithm is studied in terms of the weight as-
signment and the number of clusters [7]. It is very likely that
it will replace Hadoop as a new generation of data mining
platform, improve the existing clustering algorithm, and
integrate it on the Spark platform, so that this clustering
algorithm can overcome the defect that the K-means algo-
rithm can only be used for spherical datasets, making this
algorithmmore stable.,e number of clusters is determined
automatically according to the characteristics of the data,
especially the nonlinear relationship between clusters, and
the fuzzy clustering rules are weighted to improve the
clustering accuracy. ,e processing of boundary points,
outlier points, and noise points has also been studied suc-
cessively [8]. For example, considering that the current
methods can obtain more information about the earth
surface in a short time, but the objects on the images are
usually unclear and the boundaries are not obvious due to
various factors, a hybrid optimization method based on the
semisupervised probabilistic fuzzy C-mean clustering al-
gorithm and particle swarm algorithm with interval type 2 is
proposed to deal with this kind of image problem [9]. Ex-
periments prove that the algorithm proposed in this paper is
more accurate and better in dealing with outliers and noise.

It needs to determine k clusters before the algorithm
runs, is sensitive to the initial centroid selection, and is
highly influenced by outlier points. However, due to the
obvious advantages of the K-means algorithm, it has also
attracted many scholars to improve it by plotting the
number of different clusters k against the sum of squared
errors to derive the value of k at the elbow point as the
most clustered number of a dataset. ,e clustering effect
is improved by calculating the density of each data in the
dataset and selecting the initial centroid from the highest
to the lowest density [10]. A detailed review of the K-
means clustering algorithm is given, and the future of the
K-means algorithm is summarized and investigated in
two aspects. ,e problem of privacy security in statistical
databases is proposed, and the differential privacy model
is a privacy-preserving model for this problem [11]. In the
differential privacy model, whether a piece of data is in
the database or not does significantly change the query
result of the database. ,e differential privacy model
ensures that, in querying a statistical database, even if an
attacker has all the information except the target infor-
mation, he cannot accurately obtain the target infor-
mation by querying the database [12]. Differential privacy
achieves privacy protection by adding random noise that
matches certain characteristics to sensitive information
in the data but does not affect certain statistical properties
of the data.

Regardless of the size and structure of the database, if it
contains valuable information, you can rely on data mining
techniques to complete the discovery and analysis of useful
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information. ,e basic principle of such algorithms is to
divide the data object space into several small cells, which is
done by using a multiresolution grid data structure [13].
Choose an appropriate cluster analysis algorithm. Finally,
compare the difference between the large clustering results
under standard clustering and the clustering results obtained
by this clustering. And through the trained test classification,
the effectiveness of the algorithm is analyzed and the result is
calculated. Because of this feature, the processing speed of
this class of algorithms is faster, but the quality of clustering
is very dependent on the grid division of data objects; if the
granularity of the bottom layer of the grid is divided too fine,
it leads to high time overhead of the algorithm, reducing the
efficiency of the algorithm; but if the granularity of the
bottom layer of the grid structure is too coarse, it will affect
the final quality of the grid algorithm clustering. Model-
based clustering methods include neural networks and
statistical methods.

3. Analysis of Clustering Algorithms for Big
Datasets with Mixed Attribute
Features under Spark

3.1. Design of the Hybrid Attribute Feature Clustering Algo-
rithm under Spark. ,e original dataset required for clus-
tering analysis is preprocessed, and then the feature
attributes to be analyzed in the implementation of clustering
are extracted from the complex dataset [14]. Next, the
preprocessed dataset needs to be partitioned, and the par-
titioning process is to select the applicable similarity mea-
sure formula for the dataset based on the feature attributes
obtained in the step and use this formula to partition the
dataset. ,en, to obtain a faster and more accurate classi-
fication of the data objects, a suitable clustering analysis
algorithm is selected by combining the feature attributes and
similarity measure formulas obtained in the step.,e similar
data objects are divided into the same cluster, and the data
objects with small similarity are divided into different
clusters. Clustering algorithms can be described symboli-
cally using the concept of sets in mathematics. Finally, the
differences between the large clustering results under
standard clustering and the clustering results obtained by
this clustering are compared. And the validity of the algo-
rithm is analyzed and the final results are calculated by the
trained test classification.

,e essence of cluster analysis is an unsupervised clas-
sification process, which is the same as classification algo-
rithms in that they both result in dividing data objects into
several categories, with the difference that the data objects of
cluster analysis are unlabeled and the category information
is unknown [15]. ,e clustering analysis algorithm is based
on the data characteristics of the objects and calculates the
similarity between the objects by a specific similarity mea-
sure so that similar data objects are grouped into the same
cluster and data objects with less similarity are grouped into
different clusters. ,e clustering algorithm can be described
symbolically using the concept of sets in mathematics.
Suppose the set of data objects is C.

C � X
2
1, X

2
2, X

2
3, . . . , X

2
n􏽮 􏽯. (1)

,e clustering algorithm divides the dataset into m
disjoint subsets C1, . . . , Cm, which can also be called data
clusters, and all the clusters constitute the whole dataset.
Each data object in the dataset is finally classified into a class
cluster and will be classified into only one class cluster.

C �
Ci ∩Cj � O

Ci ∪Cj � C
.

⎧⎨

⎩ (2)

,e similarity measure is the basis for the execution of
clustering algorithms. All clustering algorithms are based on
the similarity between data points for data relationship
discrimination, and then the specific clustering algorithm
division strategy is to achieve the clustering requirements of
high intracluster similarity and low intercluster similarity,
and the choice of the similarity measure directly affects the
clustering results of the data. ,e most commonly used
similarity measure for clustering is to calculate the distance
between data objects, and the object distance is inversely
proportional to the similarity; the smaller the distance value,
the higher the similarity between data objects, and the larger
the distance value, the lower the similarity.

Sim oi, oj􏼐 􏼑 �
1

1 − dist oi, oj􏼐 􏼑
. (3)

Hierarchical-based clustering algorithms need to cal-
culate the distance between data objects, then synthesize the
closest data points into a cluster, and then calculate the
distance between each cluster and keep clustering. Hierar-
chical clustering algorithms can be divided into two types:
top-down and bottom-up. Top-down is a split hierarchical
clustering algorithm, which treats all data objects as one class
and continuously splits them by calculating distances;
bottom-up is the opposite, which is a cohesive hierarchical
clustering algorithm, which starts by treating all data objects
as a single class and then finds similar classes by calculating
distances. To achieve the clustering requirements of high
similarity within clusters and low similarity between clus-
ters, the choice of similarity measure directly affects the
clustering results of data. ,e commonly used hierarchical
clustering algorithms are the BIRCH algorithm, CURE al-
gorithm, and ROCK algorithm. Hierarchical clustering al-
gorithm does not need to set the number of clusters and can
reveal the relationship of different hierarchical classes and
can define the distance and rule similarity well, but it is
relatively sensitive to outliers and the algorithm is com-
putationally expensive.
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If the absolute value of the correlation coefficient is closer
to 1, the data objects are more similar, and if the absolute
value is closer to 0, the data objects are less similar [16]. ,e
K-means algorithm is to randomly select k initial centroids
from the dataset, traverse the distance between each point in
the dataset and the k centroids, divide the data points into
clusters with the closest centroids, and then each cluster
updates. ,e center of mass of the data points in each cluster
is used as the centroid of the next iteration until the loss
function no longer changes or the number of iterations
reaches the upper limit.

,erefore, Hadoop and Spark-based frameworks are
widely used in the field of itemset mining due to their easy
data management and excellent fault tolerance. According to
the design principle of the FPG algorithm, it can be effec-
tively combined with a distributed platform to extend the
itemset mining, and the easiest way is to port the algorithm
directly to the platform for implementation. In the previous
chapter, a detailed overview of the two platform technologies
has been given, and this chapter will compare the item set
mining based on the two platforms and analyze the dif-
ferences between them by combining theory with practice.
,e parallelism principle based on data slicing decomposes
the solution problem into multiple similar subproblems and
performs the same function on different data blocks (Fig-
ure 1).,e execution requires the set of candidate itemsets to
be small enough to satisfy the idea that all subproblems can
be stored in the main memory.

First of all, for Spark’s data cache, the RDD structure
used can load the dataset directly in memory and perform
multiple reads to help achieve faster and more efficient
mapping and computation operations. For datasets with
complex data forming extremely large data volumes, more
complex algorithms are usually used to analyze such data.
According to the design principle of the FPG algorithm, it
can effectively combine the distributed platform to expand
the itemset mining. ,e simplest method is to directly
transplant the algorithm to the platform for implementation.
For iterative algorithms, more complex logical calculations
and repeated operations are often required. Based on the
shortcomings derived from the MapReduce framework, it
does not effectively solve the two problems of data caching
and algorithm iteration. When using this simple framework
to process more complex data, it is necessary to repeatedly
overlay Map and Reduce operations to complete. ,e overall
overhead of the algorithm increases with each new Map and
Reduce [17]. As a result, MapReduce-based programs
implemented onHadoop are not well adapted to the iterative
process. When dealing with large datasets, it puts a huge
burden on the network and disks. ,e above analysis shows
that the MapReduce-based framework has major short-
comings when combined with algorithms that require
multiple iterations.

dis xm, ck( 􏼁 � 􏽘
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,is is caused by the system architecture of Hadoop
itself, which cannot be circumvented by any algorithmic

optimization. For the Spark platform, which has the core
design structure of RDD, based on the advantage of RDD,
after the first iteration is loaded, the subsequent iterations
can use the intermediate results without additional com-
putation time. ,erefore, it is necessary to study a parallel
itemset mining algorithm based on the Spark platform.
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Spark is a fast data processing framework and its system
architecture is shown in Figure 2. Spark uses a cluster re-
source management platform to share and allocate resources
in a clustered environment; i.e., datasets are allocated or
partitioned to multiple nodes in the same cluster to be
processed in batches simultaneously. In addition, Spark
reads and writes data objects through memory, which is very
fast.

With the continuous development of parallelism, many
distributed file systems such as HDFS, Amazon, HBase, etc.
have been developed for Spark’s underlying use. In addition
to Spark Core, Spark’s other libraries are built on top of the
RDD programming model. In particular, the data stream
input and output are controlled through Spark Streaming,
which allows programs to process large volumes of real-time
data in a way that is as superior as normal RDDs. For it-
erative algorithms, more complicated logical calculations
and repeated operations are often required. Based on the
shortcomings derived from the MapReduce framework, it
cannot effectively solve the two problems of data caching
and algorithm iteration. Like other IDEs that have their
database interaction platforms, Spark interacts with Apache
Hive’s SQL query language through the Spark SQL API.,is
API enables the conversion of Spark SQL queries to Spark
operations. Each RDD is a table created by the database.

Spark programming can be implemented in Scala, Py-
thon, or Java. Compared to other programming environ-
ments, programs written in Python are less code-intensive,
faster and more explanatory and have the same
functionality.
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Spark’s fault tolerance mechanism relies heavily on the
dependency relationships between RDDs, which form a
directed acyclic graph (DAG) that records the parent RDDs
on which the child RDDs depend. ,e DAG diagram plays a
key role; by traversing the dependencies of the lost partition
and tracing back along with the dependencies, we can find
the parent RDD information of the lost partition and the
source of the partition data. In this case, if the lost partition
has a narrow dependency, the data recovery efficiency is
higher because the partition is fully corresponded by one or
more parent partitions, and it only needs to be recalculated
according to the parent RDD, which is less overhead, but for
the lost partition with wide dependency, although the parent
RDD can be found through the DAG graph, the parent RDD
corresponds to more than one child RDD, which involves
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more than one parent partition, so it cannot be calculated
directly and is difficult to trace. Both checkpoint and logging
are important means of RDD persistence, and Spark can
compare the overhead of different methods to automatically
choose the optimal data recovery method.

,ere are two mechanisms for implementing differential
privacy, a Laplace mechanism that provides privacy pro-
tection for numerical results and an exponential mechanism
that provides privacy protection for nonnumerical results
[18]. In the interactive data publishing environment, when a
user initiates a query request to the database, the admin-
istrator initiates a query to the database based on the user
request and sends the results to the user with differential
privacy protection, thus protecting the privacy of the data
individuals in the database. In the noninteractive data
publishing environment, the administrator publishes a
“sanitized” version of the original dataset based on the
differential privacy conditions; i.e., the published dataset is a
dataset processed by differential privacy technology and
made available to users for statistical queries. ,e parent
RDD on which the child RDD depends is clearly docu-
mented in the DAG diagram. When a single point of failure
occurs and data is lost, the partition data needs to be re-
stored, and the DAG graph plays a key role by traversing the
dependencies of the lost partition. In differential privacy-
preserving data mining, we want to improve the perfor-
mance of data mining while protecting data security. Dif-
ferential privacy provides two implementation models for
data mining: the interface model and the full access model.

In the interface model, the manager only provides an
access interface that implements differential privacy pro-
tection and does not publish the original dataset. ,e data
miner can only get the needed information for data mining
through the access interface, and the access interface stops
the data miner’s query requests after the privacy budget is
exhausted. In this environment, the data miner is not
trusted. In contrast, in the full access model, the data miner
is trusted, so the data miner can access the original dataset
and perform data mining but must adopt a differential
privacy algorithm to protect the privacy of the data during
the mining process.

3.2. Experimental Analysis of the Feature Large Dataset.
First, we experimented with three experimental algorithms
with the same privacy budget, and the maximum number of
iterations of the algorithms was set to 10. Ten experiments
were conducted for each algorithm and the actual number of
iterations after their algorithms was recorded. In the DPK-
means algorithm, blindly selecting the centroids and un-
reasonable privacy budget allocation will cause the DPK-
means clustering algorithm to converge slower and the
number of iterations to increase. ,erefore, reasonable
initial centroids and privacy allocation can reduce the
number of iterations of the algorithm, and we observe the
average number of iterations of the three clustering algo-
rithms in datasets D1, D2, and D3 with increasing ε. ,e
average number of iterations of the three algorithms in
different datasets was shown in Figure 3.

,en, the privacy budget allocation AST method in the
DTDPK-means algorithm is validated by first selecting the
initial centroids using the DAS method and then comparing
the privacy budget allocation methods using the ASTmethod,
dichotomousmethod, and the equivariant series, respectively.
,e maximum number of iterations is also set to 10, and the
privacy budget ε is gradually increased from 0.5 using dataset
D1 to observe the F1 values of the three methods.

,e AST method can get a certain degree of improve-
ment in the clustering effect of the dataset compared to the
dichotomous and equivariant series methods. ,e reason is
that the dichotomous method may cause the deformation of
the center of mass when the noise is added in the later it-
erations, while the AST method allocates more privacy
budget to the earlier iterations compared with the equiv-
ariant method, and the noise added in the later iterations is
guaranteed not to cause the deformation of the center of
mass. In Figure 3, the F1 value of the dichotomous method is
the highest when the number of iterations is 4, which in-
dicates the best clustering effect, but the F1 value drops
sharply when the number of iterations is 6 and 8 because the
privacy budget allocated in the dichotomous method is
smaller than the minimum privacy budget required for each
iteration of the dataset when the number of iterations is
greater than 5, which causes the deformation of the center of
mass and makes the clustering effect decrease. ,erefore, it
cannot be calculated directly, and it is difficult to trace back.
Both checkpoint and logging are important means of RDD
persistence. Spark can compare the cost of different methods
and automatically select the optimal data recovery method.
Method and the equivariant method are relatively stable, and
the ASTmethod has a certain degree of improvement in F1
value compared with the equivariant method [19].

,e experimental dataset needs to be not too large
compared to the serial algorithm; otherwise it will cause the
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serial algorithm to fail in mining. ,erefore, the experi-
mental datasets in this section are downloaded from the UCI
website, using two datasets with different characteristics:
mushroom and accidents. ,e mushroom dataset contains
features of 23 mushroom species, specifically covering 119
attribute values and 8124 instances; the accidents dataset
outlines data related to traffic accidents in the United States,
with 307 attribute values and 2125 actual cases in the dataset.
,e accidents dataset summarizes data related to traffic
accidents in the US.,e dataset includes 307 attribute values
and 2125 actual cases. Since the dataset provider has pro-
cessed it beforehand, it can be directly used in this exper-
iment. ,e specific characteristics of the two datasets are
shown in Figure 4.

,e two datasets are mined using the serial FPG algo-
rithm and the parallel SFPG algorithm, and the time re-
quired to mine the two algorithms at different support levels
is compared by setting different support level thresholds
(min_Support). To reduce the influence of the hardware
environment or some eventualities on the result data, the
experiment is repeated 10 times in the same environment,
and the result is averaged from the 10 results. Figure 4 shows
the mining time results of the FPG and SFPG algorithms on
the mushroom dataset when the min_Support values are 0.4,
0.35, 0.3, 0.5, and 0.25, respectively; Figure 4 shows the
mining time results of the FPG and SFPG algorithms on the
accidents dataset when the min_Support values are 0.6, 0.55,
and 0.45, respectively. ,e parallel SFPG algorithm based on
Spark is significantly faster than the serial algorithm in terms
of mining time for both the mushroom and accidents
datasets, indicating that the parallel SFPG algorithm can
effectively improve the mining efficiency of the standalone
algorithm. Moreover, the mining time fluctuation of the
SFPG algorithm under the support variation is smaller than
that of the serial algorithm, which also indicates that the
SFPG algorithm has a better stability.

,e execution time of both the MRFPG algorithm and
SFPG algorithm decreases as the number of nodes increases.
From observing the comparison of the two algorithms
mining at the same number of nodes, the Spark-based SFPG
algorithm mines faster than the MapReduce-based MRFPG
algorithm at any number of nodes from 1 to 5. ,is is
consistent with the theoretical reasons analyzed in the
previous section because it can repeatedly use the inter-
mediate result RDDs, so it is not necessary to load the dataset
in each iteration, which can effectively reduce the network
and I/O consumption in the case of repeated iterations of the
algorithm. ,erefore, parallel mining of frequent itemset
using the Spark platform can help reduce the execution time
of mining algorithms to a certain extent [20]. Also set the
maximum number of iterations to 10, use the dataset D1 to
conduct experiments, the privacy budget ε is gradually in-
creased from 0.5, and observe the F1 value of the three
methods.,e experiments on the complete dataset web docs
also show that the traditional FPG algorithm causes memory
overflow and cannot be executed properly in a standalone
environment. ,is also shows that the parallelization-based
algorithm can effectively solve the memory overflow
problem of the traditional algorithm.

In the process of frequent itemset mining, each mining
task is computationally intensive, so the allocation of items
to groups and the choice of parallelism strategy directly
affect the memory usage, the load on each node, and the
communication overhead. A load of a node depends on the
number of recursions required for the item it is responsible
for. ,erefore, the lower the support of an item, the higher
the height of the conditional FP tree constructed from that
item, the more the iterations required, the higher the load,
and the more the time and the space required for mining.

4. Analysis of Results

4.1. Performance Results of the Hybrid Attribute Feature
Clustering Algorithm under Spark. ,e experiments are re-
peated 10 times on D2_1, D2_2, D2_3, D2_4 datasets
constructed by randomly extracting 20%, 40%, 60%, 80%
data from the D2 dataset, and the results are shown in
Figure 5.

From the figure, the mining time required by the im-
proved Opt-SFPG algorithm decreases gradually with the
increase in the number of computational nodes for pro-
cessing the same size of data, which is following the expected
results. Further, from the analysis of different data sizes, the
vertical execution time difference on the four datasets be-
comes smaller and smaller as the number of computational
nodes increases. From this analysis, the improved algorithm
can show better mining performance when mining large-
scale datasets.

From the results in the figure, first the speedup ratios of
the six algorithms, along with the increase in the number of
experimental computational nodes, basically increase line-
arly.,is is because the more computational nodes there are,
the fewer tasks will be divided equally among individual
nodes for the same number of tasks, the more memory will
be available to store data, and the faster processing of each
task will be. ,is also reflects the effectiveness of the above
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six parallel algorithms. Secondly, from another point of view,
the increase in the number of nodes leads to a trend of
increasing vertical distance between the algorithms, which is
evident in the figure between the optimized algorithm Opt-
SFPG and the traditional algorithm SFPG.

It can be analyzed that the Opt-SFPG algorithm based on
the dual optimization of item header table and item set
grouping is more effective in mining than other algorithms.
When the number of nodes is increased from 1 to 5, the
average acceleration ratio of the Opt-SFPG algorithm based on
the smaller dataset D1 is 0.216 and that of the SFPG algorithm
is 0.102, while the average acceleration ratio of the Opt-SFPG
algorithmbased on the larger datasetD2 is 1.282 and that of the
SFPG algorithm is 0.644. ,e parallel performance of the
optimization algorithm is better when the dataset is larger.,e
parallel performance of the optimization algorithm is better.
When the values are 0.4, 0.35, 0.3, and 0.25, respectively, the
mining time results of the FPG algorithm and the SFPG al-
gorithm are on the mushroom dataset; Figure 5 shows that
when the min_Support value is 0.6, 0.55, 0.5, and 0.45, re-
spectively, the FPG algorithm and the SFPG algorithm are in
the accidents mining time results on the dataset.

In the case of changing from only 1 compute node to 2
compute nodes, the mining time required by the Opt-SFPG
algorithm is directly reduced by about a factor of 1, and the
rate of reduction is significantly higher than that of the other
five algorithms. Moreover, the mining time of the Opt-SFPG
algorithm is the least in all node cases. In terms of themining
time required and the decrease rate of mining time with
increasing nodes, the Eq-SFPG algorithm and the Ht-SFPG
algorithm are almost equal in theD1 dataset; however, in the
larger dataset D2, especially when the number of nodes
increases from 2 to 4, the mining time of the Eq-SFPG
algorithm is significantly less than that of the Ht-SFPG
algorithm, which indicates that in the case of mining large
datasets, the improved node balancing load scheme plays a
more important role in the optimization algorithm at the
node count level.

,e accuracy of the experimental results and the squared
K-means cost of the algorithm is shown in Figure 6. ,e
clustering accuracy of the improved algorithm is signifi-
cantly higher than that of the original K-means algorithm
while the squared K-means cost is lower than that of the
improved algorithm, which is analyzed because the K-
means++ method based on holdout validation can yield the
K-value that best matches the true distribution of the data,
which can effectively improve the accuracy of the clustering
results, and because the determination of the optimal value
reduces the number of iterations of the algorithm, thus
reducing the squared K-mean cost.,e average speedup rate
of the Opt-SFPG algorithm is 0.216, and that of the SFPG
algorithm is 0.102, while the average speedup rate of the Opt-
SFPG algorithm based on the large-scale dataset D2 mining
is 1.282; the SFPG algorithm is 0.644.

,e original DPC algorithm does not divide the sample
set into 3 equal parts well, while the CDPC-KNN algorithm
gives more satisfactory results for the dataset, and the
DBSCAN algorithm divides the dataset into 4 class clusters
that do not match the real number of class clusters. ,e
Abalone dataset contains 4177 datasets and 3 class clusters,
and for such a dataset with many samples and a complex
distribution, the DPC algorithm has more deviations from
the real number of class clusters. ,e clustering effect of the
DBSCAN algorithm deviates from the actual one and divides
the dataset into more class clusters. DPC algorithm can
correctly identify the number of class clusters, but the ac-
curacy is poor, and the clustering result of the CDPC-KNN
algorithm on the Abalone dataset is significantly better than
the previous two algorithms.

As shown in Figure 6, all three algorithms can correctly
classify the dataset. ,e R15 dataset has more sample points
and class clusters than the Spiral dataset, and the CDPC-
KNN algorithm and the DPC algorithm both have better
clustering results with 99.7% accuracy, while the DBSCAN
algorithm has 77.5% accuracy. ,e D31 dataset has the most
31 class clusters, and the CDPC-KNN algorithm has 94.3%
accuracy, which is slightly higher than the 93% accuracy of
the DPC algorithm and the 82.6% accuracy of the DBSCAN
algorithm. ,e accuracy of the CDPC-KNN algorithm is
94.3%, which is slightly higher than that of the DPC algo-
rithm (93%) and that of the DBSCAN algorithm (82.6%).
,e accuracy of the DBSCAN algorithm is 67%.

4.2. Experimental Analysis Results of the Feature Large
Dataset. To make the CDPC-KNN clustering algorithm in
the local clustering stage each computational node can be
clustered independently on the corresponding data parti-
tion, the data partitioning stage divides the dataset into
several groups of overlapping data partitions, as shown in
Figure 7, each partition contains internal points and
boundary points, the internal points are the high-density
data in the middle space of the partition, and the boundary
points are the points distributed on the edges of the par-
tition. ,e boundary points are points distributed on the
edges of the partition, and the boundary points may also be
extension points of adjacent partitions; i.e., the boundary
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points of two adjacent partitions belong to a global class
cluster. ,ese overlapping partitions contain some common
data objects within each other. In the local clustering
merging phase, the algorithm can identify all the local
clusters to be merged by evaluating the characteristics of
these common data objects (i.e., boundary points and ex-
tension points).

Let point q be the sample point where two slices overlap;
this point must be the boundary point of the slice where it is
located, and the local class cluster belonging to slice 1 is C1
and the class cluster belonging to slice 2 is C2, and in both C1
and C2 are core points, i.e., points with large local density;
then in the merging process, it is necessary to merge local
class clusters C1 and C2 into global class clusters. Because
the merging of class clusters is performed by boundary
points, the boundary points of one slice are the extension
points of the adjacent slice, as shown in Figure 7.

,e Broadcast global broadcast provided by Spark shares
the external variables among all nodes’ memory, making it
possible to keep one copy of the global variables in each
Executor, avoiding the need to store a copy of the external
variables at each task execution, thus reducing the number of
variable copies in the cluster and reducing the memory
overhead of the Executor. ,e average speedup rate of the

Opt-SFPG algorithm is 0.216, and that of the SFPG algo-
rithm is 0.102, while the average speedup rate of the Opt-
SFPG algorithm based on the large-scale dataset D2 mining
is 1.282; the SFPG algorithm is 0.644. In the clustering and
merging phase of this parallelization experiment, a dictio-
nary of labels is used as a read-only broadcast variable to be
used in the relabeling process.

,e parallelized execution of the Spark-based DBSCAN
algorithm involves many RDD objects conversion and
storage, node communication, and data transmission, which
increases the cost of running the algorithm to a certain
extent compared with the standalone serialization scheme.
In the experiments, the parallelization algorithm under the
Spark platform is tuned according to the above optimization
ideas by combining the characteristics of the Spark platform
and practical experience, to further improve the parallel
efficiency of the algorithm by taking advantage of the
platform.

When the data volume is small, the advantage of cluster
computing is small, and the acceleration ratio always rises
slowly around 1 for different worker numbers, because the
current data volume is much smaller than the data size that
the cluster is suitable to process, and coupled with the cluster
scheduling and data communication consumption between
cluster nodes, the advantage of parallelized cluster operation
compared to the standalone case cannot be observed, and the
parallel efficiency improvement is not satisfactory. However,
as the data volume increases, the speedup ratio exhibits a
linear increase with the number of nodes. ,e maximum
speedup ratio reaches 3.3 times that of the standalone op-
eration when the cluster nodes are fully opened, which fully
demonstrates that the parallelized LAPO-DBSCAN algo-
rithm proposed in this paper greatly improves the operation
efficiency of the algorithm under large-scale datasets.

5. Conclusion

,is paper implements the parallelization operation of the
LAPO-DBSCAN algorithm under the Spark platform. A
Spark on Yarn distributed cluster experimental environment
is built, and then a parallelized clustering study is conducted
in this distributed environment to realize the parallelization
of the LAPO-DBSCAN algorithm, and the parallel algorithm
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optimization ideas in the Spark environment are summa-
rized with practical experience. Finally, experiments are
designed, and the results show that the algorithm has the
same clustering effect in standalone and distributed envi-
ronments, and the execution efficiency of the parallelized
LAPO-DBSCAN algorithm in the cluster environment is
greatly improved than that in the standalone environment
when the data scale is larger. By analyzing the dichotomous
method, we find that the privacy budget is consumed too fast
and propose the privacy budget allocation ASTscheme using
the trichotomous method combined with the differential
privacy K-means algorithm with equal difference series. ,is
method provides a larger privacy budget in the early iterative
stage to facilitate faster convergence of the algorithm and
ensures that the center of mass is not distorted by the in-
troduced random noise in the later stage. We build a Spark
cluster environment and complete the parallelization im-
provement of the improved K-means algorithm and CDPC-
KNN algorithm on the Spark platform and conduct the
comparison experiments of the improved K-means algo-
rithm and CDPC-KNN algorithm in the serial-parallel en-
vironment with network data, respectively. ,e
experimental results show that the parallelized algorithms
have more powerful data processing ability than the serial
algorithm and can better meet the needs of current large data
clustering analysis. Multiview mapping clustering algorithm
is based on coupled DNA-GA population P-system. A new
multiview consistent clustering algorithm based on KNN
and graph ideas is proposed. ,is multiview mapping
clustering process is done in the coupled DNA-GA pop-
ulation P-system according to specific rule requirements,
and the great parallelism of the system can further improve
the operational efficiency of the algorithm.
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