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Ongoing developments of the measurement sciences say that measurements based on continuous phenomena are nomore precise
observations but more or less fuzzy. �erefore, it is necessary to utilize this imprecision of observations to obtain such estimators,
which are based on all the available information that is given in the form of randomness and fuzziness. Objective of this research
was to get such parameter estimation procedure that utilizes all the available information for some well-known two-parameter life
time distributions. �erefore, the estimators need to be generalized in such a way to cover both uncertainties. For this purpose,
based on δ-cuts of the life time observations, the generalized estimators are developed in suchmanner to cover stochastic variation
in addition to fuzziness. �e proposed generalized estimators are much preferred over classical estimators for life time analysis as
these are based on all the available information present in the form of fuzziness of single observations and random variation
among the observations to make suitable inferences.

1. Introduction

Statistics is the science to make inference about the pop-
ulation from the obtained data.�e obtained data are usually
presented in the form of numbers, vectors, or functions,
generally containing precise measurements of some phe-
nomena. Countless techniques (stochastic models) are
available to model or to draw inference from these obtained
measurements.

Survival analysis or reliability analysis can generally be
dened as the collection of techniques for analyzing so-
called life time data.

In broad sense, one can say life time is “the time to the
occurrence of a specied event.”

Life time is also called survival time, event time, or failure
time and is usually measured in hours, days, weeks, months,
or years.

�e prominence of survival analysis is to predict the
probability of response, average survival time, identifying
the important investigative factors associated to the life time

of units, and to compare the survival distributions. Models
used for survival times are usually termed as “time to event
models” [1].

�e analysis techniques of life time data can be traced
back centuries, but the rapid development started about few
decades ago, especially World War II stimulated interest in
the reliability of military equipment [2].

Nowadays, life time analysis is used in almost every of
eld of life like biomedical sciences, industrial reliability,
social sciences, and business. In the time to event modeling,
the event of interest may be failure, death, recovery time, or
change of address, in engineering, medical and social sci-
ences, etc. �erefore, there are a number of reasons to say
that specialized methods are required to model life time data
in the best possible way [1].

Exponential, Weibull, log-logistic, and Birnbaum–Sa-
unders distributions are considered in most applied dis-
tributions in life time analyses.

Exponential distribution has a vital role in life time
analysis analogous to normal distribution in other elds. It is
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purely based on random failure pattern because of its
“memoryless property.” A two-parameter function is a more
generalized form with probability density function of ex-
ponential distribution:

f
y

λ, θ
  �

λe
−λ(y−θ)

, y≥ θ,

1, y< θ.

⎧⎪⎨

⎪⎩
(1)

For n precise life time observations (y1, y2, . . . , yn), their
classical parameter estimates, i.e., maximum likelihood es-
timates, are given as

θ � min y1, y2, . . . , yn( , (2)

and

λ �
n


n
i�1 yi − θ 

. (3)

For details, see [1].
For the nonconstant hazard rate, Weibull distribution is

among the top most distributions for the life time analysis.
Its density is defined by

f(y|τ, η) �
η
τ

y

τ
 

η−1
exp −

y

τ
 

η
  ∀y> 0, τ > 0, η> 0,

τ: scale parameter (also called characteristic life time), η: shape parameter.

(4)

According to [3], let CV denote the coefficient of var-
iation for the data defined as the ratio of standard deviation
and mean, i.e., σ/y.

For the parameter estimation of Weibull distribution,
the moment method estimators are defined as

CV �

��������������������

Γ(1 + 2/η) − Γ2(1 + 1/η)



Γ(1 + 1/η)
. (5)

Solve the above equation for the value of η to get an
estimate.

τ �
y

Γ(1 + 1/η)
 

1
η

.
(6)

,e log-logistic distribution is the extension of logistic
distribution, for which it has been observed that it can be
decreasing, right-skewed, or unimodal. Because of its flex-
ibility in shapes, it is very useful to fit data from many
different fields, including engineering, economics, hydrol-
ogy, and survival analysis.

Its pdf is defined as

f(y|α, β) �
(βα)(yα)

β−1

1 +(yα)
β

 
2, y> 0. (7)

For the parameter estimation, maximum likelihood
estimators are obtained through the following equations:

n

β
− n log(α) + 

n

i�1
log yi(  − 2

n

i�1

yi

α
 

β
log

yi

α
  1 +

yi

α
 

β
 

−1

� 0,

−
nβ
α

+
2β
α



n

i�1

yi

α
 

β
1 +

yi

α
 

β
 

−1

� 0.

(8)

For details, see [4]. Birnbaum–Saunders life time distribution was first
proposed in [5], for fatigue failures caused under cyclic
loading, having the density function given below:

f(y|μ, c) �
1

2
���
2π

√
μc

c
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For n precise life time observations (y1, y2, . . . , yn), the
corresponding modified moment estimators are obtained as
follows.

Let A and H be arithmetic mean and harmonic mean of
the life times, respectively:

A �


n
i�1 yi

n
andH �

n


n
i�1 1/yi

. (10)

,en,

μ � 2
A

H
 

12
−1  

12

, (11)

c � (A · H)
12

. (12)

For the proof, see [6].
For a life time random variable, Gamma distribution is

defined by the density

f(y|ϕ, ]) �
1
Γ]ϕ

y
]−1

e

− y

ϕ withϕ> 0, ]> 0. (13)

Let y and s2 be mean and variance of the data
y1, y2, . . . , yn, respectively; then, the moment estimators of
the parameters are defined as

] �
y
2

s
2 , (14)

ϕ �
s
2

y
. (15)

For the proof, see [7].
,e emergence of technological advancement aug-

ments the increase in life time of units. ,erefore, the
researchers with only few observations draw inference
about the aggregate of units. Hence, it is pertinent to
utilize all the available information in the best possible
manner.

According to [8], in the modern science of measure-
ments, it is not possible to get exact measurement of a
continuous real variable, and stochastic models are used to
model variation among the precise observations.

In addition to that, in practical situations, especially
dealing with continuous variables, the measurements have
two kinds of uncertainties, the first is variation among the
observations and second is imprecision of single observa-
tions, called fuzziness [9].

Realizing the importance of fuzziness in the life time
observations, some work has been done like ([10–18]);
[19, 20]. Yet, most of the times, the information available in
the form of fuzziness is ignored in the publications, which
may cause misleading results.

,erefore, the very up-to-date fuzzy number approaches
are more realistic and suitable for the inferences of life time
observations [21].

In this research work, some the generalized estimators
for well-known distributions are presented to accommodate
fuzziness along with random variation.

2. Preliminary Concepts of Fuzzy Set Theory

2.1. Fuzzy Number. Let y∗ denote a fuzzy number and is a
special subsets of R; it is determined by a real-valued
function, so-called characterizing function (CF) χ(·), with
conditions:

(1) 0≤ χ ≤ 1
(2) Support of χ(·) is bounded:

supp[χ(·)] ≔ [y ∈ R: χ(y)> 0]⊆[Ra,Rb] with
−∞<Ra <Rb <∞.

(3) ,e so-called δ -cut, i.e.,
Cδ(y∗) ≔ y ∈ R: χ(y)≥ δ  ∀δ ∈ (0, 1], is a finite
union of nonempty compact intervals, i.e.,
Cδ(y∗) � ∪ Jδ

j�1[y
j,δ, yj,δ]≠∅.

In case of fuzzy number for which all the δ-cuts are
closed bounded intervals, is called a fuzzy interval.

2.2. Lemma. According to [9], for a set A⊆R, where 1A(·) is
denoting the indicator function for set A, then to obtain the
characterizing function for a generating fuzzy number, the
given lemma holds:

χ(y) � max δ · 1Cδ y∗( )(y): δ ∈ [0, 1]  ∀y ∈ R. (16)

2.3.Nested Interval. Let Iδ; δ ∈ (0, 1] be a family of intervals,
called nested if Iδ1 ⊆ Iδ2 for all δ1 > δ2.

2.4.Remark. If (Aδ; δ ∈ (0, 1]) is denoting a nested family of
finite unions of compact intervals, it is not necessary that all
nested families are the δ-cuts of a fuzzy number. ,en, the
characterizing function of the generated fuzzy number is
obtained by the given lemma.

2.5. Construction Lemma. According to [22], let
Aδ � ∪ Jδ

j�1[yδ,j
, yδ,j] ∀δ ∈ (0, 1] be a nested family; then,

the characterizing function (CF) of the generated fuzzy
number is obtained by χ(y) � sup δ · 1Aδ

(y): δ ∈ (0, 1]}

∀y ∈ R.

2.6. Extension Principle. Consider an arbitrary function H:
ℵ⟶ R, where ℵ and R are two spaces.

Let m∗ be a fuzzy element of ℵ, with corresponding
membership function ψ: ℵ⟶ [0, 1]; then, the fuzzy value
y∗ � H(m∗) is defined to be the corresponding fuzzy ele-
ment in R for which the membership function Ψ(·) is
defined by
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Ψ(y) ≔
sup ψ(m): m ∈ ℵ,H(ω) � y  if ∃m: H(m) � y

0 if ∄m: H(m) � y
  ∀y ∈ R. (17)

For details, see [23].

2.7.MinimumandMaximumof FuzzyNumbers. If there are
n fuzzy intervals, i.e., y∗1 , y∗2 , . . . , y∗n with corresponding
characterizing functions χ1(·), χ2(·), . . . , χn(·), respectively,
then its δ-cuts are denoted as
Cδ(y∗i ) � [y

i,δ, yi,δ]∀δ ∈ (0, 1]and i � 1(1)n. ,en, the
minimum ymin∗ of the fuzzy numbers is fuzzy interval, with
δ-cuts Cδ(ymin∗). ,ese are defined by

Cδ ymin∗(  ≔ min y
i,δ , min yi,δ   ∀δ ∈ (0, 1]. (18)

Furthermore, the maximum ymax∗ of the fuzzy numbers
is fuzzy interval, with δ-cuts Cδ(ymax∗) defined by

Cδ ymax∗(  ≔ max y
i,δ , max yi,δ   ∀δ ∈ (0, 1]. (19)

Figure 1 shows CF of minimum and maximum fuzzy
observations from the above sample of fuzzy observations
mentioned in Figure 2.

3. Generalized Estimation for Fuzzy Data

In Figure 3, the frame diagram explains the steps for
obtaining the generalized estimators for the two-parameter
life time distributions given below.

3.1. Exponential Distribution. Let (y∗1 , y∗2 , . . . , y∗n )1/2 rep-
resent fuzzy life time intervals having δ-cuts:

Cδ y
∗
i(  � y

i,δ, yi,δ , i � 1, 2, . . . , n, ∀δ ∈ (0, 1]. (20)

where y
i,δ � inf y ∈ R: χ (y)≥ δ  and

yi,δ � sup y ∈ R: χ (y)≥ δ  are lower and upper ends of the
corresponding δ-cuts.

Based on fuzzy life times, the fuzzy (generalized) esti-
mators of the two-parameter exponential distribution are
denoted by θ

∗
and λ

∗
.

Based on lower and upper ends of the δ-cuts of fuzzy life
times, the estimator presented in (2) can be generalized in
the following way:

θ∗ � min y
∗
1 , y
∗
2 , . . . , y

∗
n( . (21)

For the fuzzy parameter estimator θ∗, θδ and θδ are
denoting lower and upper ends of the corresponding gen-
erating family of intervals, and these are obtained in the
following way:

θδ � min y
i,δ, i � 1(1)n , ∀δ ∈ (0, 1], (22)

and

θδ � min yi,δ, i � 1(1)n , ∀δ ∈ (0, 1]. (23)

Let (Aδ(
θ
∗
) � [θδ, θδ]∀δ ∈ (0, 1]) be the generating

family of intervals; using construction lemma, the CF of the
fuzzy estimate θ

∗
is obtained.

Example 1. Let us consider 12 fuzzy life time observations
for two-parameter exponential distribution, i.e.,
(y∗1 , y∗2 , . . . , y∗12) � ([1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11],

[11, 12, 13, 14], [12, 13, 14, 15],

[14, 15, 16, 17], [17, 18, 19, 20], [19, 20, 21, 22], [21, 22, 23, 24].
(24)

[23, 24, 25, 26], [24, 25, 26, 27], [26, 27, 28, 29] whose char-
acterizing functions are given in Figure 4.

Based on the given fuzzy life time observations, the CF of
the fuzzy parameter estimate obtained through (22) and (23)
is depicted in Figure 5.

,is parameter estimate is more suitable for realistic life
time observations, as it covers both types of uncertainties.

In the same way, the fuzzy (generalized) estimator for the
parameter λ is denoted by λ∗ having lower and upper ends λδ
and λδ of the δ-cuts, respectively, where

λδ �
n


n
i�1 yi,δ − θδ 

∀δ ∈ (0, 1], (25)

and

λδ �
n


n
i�1 y

i,δ − θδ 

∀δ ∈ (0, 1].
(26)

Let (Aδ(
λ
∗
) � [λδ, λδ]∀δ ∈ (0, 1]) be the desired gen-

erating family of intervals; using construction lemma, the CF
of the generated fuzzy estimate λ

∗
is obtained.

In Figure 6, CF of the fuzzy estimate is obtained through
(25) and (26) based on all the available information which is
given in the form of fuzziness and stochastic variation; these
make it more suitable in real-life applications.

3.2. Weibull Distribution. Based on (5), the fuzzy (gener-
alized) estimates of the Weibull shape parameter can be
obtained in the following way:
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ηδ ≔ min
y ∈×n

i�1Cδ y∗
i( )

CV y  �

��������������������

Γ(1 + 2/η) − Γ2(1 + 1/η)



Γ(1 + 1/η)

⎧⎨

⎩

⎫⎬

⎭ ∀δ ∈ (0, 1], (27)

and

ηδ ≔ max
y ∈×n

i�1Cδ y∗
i( )

CV y  �

��������������������

Γ(1 + 2/η) − Γ2(1 + 1/η)



Γ(1 + 1/η)

⎧⎨

⎩

⎫⎬

⎭ ∀δ ∈ (0, 1]. (28)
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Figure 1: Minimum and maximum fuzzy observations from above sample.
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Figure 2: Sample of fuzzy observations.
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Figure 3: A frame diagram for the analysis.
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Figure 4: CF of a fuzzy sample.
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Figure 5: CF of the fuzzy estimator θ
∗
.

Mathematical Problems in Engineering 5



Similarly, based on (6), fuzzy (generalized) estimates of
theWeibull scale parameter can be obtained in the following
way:

τδ �
y δ

Γ 1 + 1/η δ 
⎛⎝ ⎞⎠

1
ηδ , (29)

and

τδ �
yδ

Γ 1 + 1/ηδ 
⎛⎝ ⎞⎠

1
η δ

.

(30)

Example 2. Consider fuzzy life times
(y∗1 , y∗2 , . . . , y∗8 ) � [0, 1, 2, 3], [1, 2, 3, 4], [3, 4, 5, 6],
[5, 6, 7, 8], [7, 8, 9, 10],

[9, 9.5, 10.5, 11], [10, 10.5, 11.5, 12], [11, 11.5, 12.5, 13] for
the Weibull distribution with characterizing functions in
Figure 7.

Using (27) and (28), let (Aδ(η∗) � [ηδ, ηδ] ∀δ ∈ (0, 1])

be the desired generating family of intervals; using the
construction lemma, CF of the fuzzy estimate η∗ is obtained
as shown in Figure 8.

Let (Aδ(τ∗) � [τδ, τδ] ∀δ ∈ (0, 1]) be the desired
generating family of intervals through which the CF of the
fuzzy estimate τ∗ mentioned in Figure 9 is obtained by using
the construction lemma.

,e above CF of the fuzzy estimate obtained through
(29) and (30) is based on all the available information which
is given in the form of fuzziness and stochastic variation;
these kinds of additional information make it more suitable
in real-life applications.

3.3. Log-Logistic Distribution. For the log-logistic distribu-
tion, the corresponding fuzzy estimators are denoted by α∗
and β

∗
. Denoting (y � y1, y2, . . . , yn), the corresponding

lower and upper ends of the generating family can be ob-
tained through the following equations:

αδ ≔ min
y ∈×n

i�1Cδ y∗
i( )

−
nβ
α

+
2β
α



n

i�1

yi

α
 

β
1 +

yi

α
 

β
 

−1

� 0,

n

β
− n log(α) + 

n

i�1
log yi( 

−2
n

i�1

yi

α
 

β
log

yi

α
  1 +

yi

α
 

β
 

−1

� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀δ ∈ (0, 1], (31)

and

αδ ≔ max
y ∈×n

i�1Cδ y∗
i( )

−
nβ
α

+
2β
α



n

i�1

yi

α
 

β
1 +

yi

α
 

β
 

−1

� 0,

n

β
− n log(α) + 

n

i�1
log yi( 

−2
n

i�1

yi

α
 

β
log

yi

α
  1 +

yi

α
 

β
 

−1

� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀δ ∈ (0, 1]. (32)

Also,
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1

χ (
λ)

Figure 6: CF of the fuzzy estimator λ
∗
.
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βδ ≔ min
y ∈×n

i�1Cδ y∗
i( )

−
nβ
α

+
2β
α



n

i�1

yi

α
 

β
1 +

yi

α
 

β
 

−1

� 0,

n

β
− n log(α) + 

n

i�1
log yi( 

−2
n

i�1

yi

α
 

β
log

yi

α
  1 +

yi

α
 

β
 

−1

� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀δ ∈ (0, 1], (33)

and

βδ ≔ max
y ∈×n

i�1Cδ y∗
i( )

−
nβ
α

+
2β
α



n

i�1

yi

α
 

β
1 +

yi

α
 

β
 

−1

� 0,

n

β
− n log(α) + 

n

i�1
log yi( 

−2
n

i�1

yi

α
 

β
log

yi

α
  1 +

yi

α
 

β
 

−1

� 0
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀δ ∈ (0, 1]. (34)
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Figure 7: CF of the fuzzy life times.
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Figure 8: CF of the fuzzy estimator η∗.
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Figure 9: CF of the fuzzy estimator τ∗.
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Let (Aδ(α∗) � [αδ, αδ] ∀δ ∈ (0, 1]) and (Aδ(
β
∗
) �

[β
δ
, βδ] ∀δ ∈ (0, 1]) be the desired generating families of

intervals of the fuzzy parameter estimators through which
the CF of the fuzzy estimates α∗ and β

∗
is obtained using the

construction lemma.

Example 3. Consider fuzzy life times (y∗1 ,

y∗2 , . . . , y∗6 ) � [1, 2, 3, 4], [4, 5, 6, 7], [6, 7, 8, 9], [8, 9, 10, 11],

[13, 14, 15, 16], [17, 18, 19, 20] for the log-logistic distribu-
tion with characterizing functions in Figure 10.

From the above fuzzy life time observations using (31)
and (32), the CF of the fuzzy parameter estimate is depicted
in Figure 11.

,is estimate is based on both uncertainties, i.e., fuzz-
iness and random variation, which make it more repre-
sentative for the corresponding parameter.

From the above fuzzy life time observations shown in
Figure 9, using (33) and (34), the CF of the fuzzy parameter
estimate β

∗
is depicted in Figure 12.

,e above CF is the fuzzy estimate of the parameter β,
which incorporates all the available information in the in-
ference. ,e above CF for the fuzzy parameter estimates is
based on fuzzy life time observations which holds both
uncertainties, i.e., stochastic variation and fuzziness of the
single observations, which make these more suitable in the
real-life applications.

3.4. Birnbaum–Saunders Distribution. For fuzzy life times
(y∗1 , y∗2 , . . . , y∗n ), the fuzzy parameter estimators of the
Birnbaum–Saunders distribution are denoted by μ∗ and c∗,
having δ-cuts:

Cδ μ∗(  � μδ, μδ ∀δ ∈ (0, 1], (35)

and

Cδ c
∗

(  � cδ, cδ  ∀δ ∈ (0, 1]. (36)

Let A∗ and H∗ be fuzzy arithmetic mean and fuzzy
harmonic mean, respectively, and their δ-cuts are denoted as

Cδ
A
∗

  � Aδ, Aδ  ∀δ ∈ (0, 1], (37)

and

Cδ
H
∗

  � Hδ, Hδ , ∀δ ∈ (0, 1]. (38)

Using (10), the corresponding lower and upper ends of
the δ-cuts of A

∗ are obtained in the following way:

Aδ �


n
i�1 y

i,δ

n
andAδ �


n
i�1 yi,δ

n
, ∀δ ∈ (0, 1]. (39)

Example 4. Based on fuzzy life times presented in Figure 1,
characterizing functions of the fuzzy estimates of the Birn-
baum–Saunders distribution are given in Figures 13 and 14.

Figure 15 shows the CF of the fuzzy estimate of the
arithmetic mean based on fuzzy life times. Similarly, using
(10), the corresponding lower and upper ends of the δ-cuts
of H
∗ are obtained in the following way:

Hδ �
n


n
i�1 1/yi,δ

andHδ �
n


n
i�1 1/yi,δ

, ∀δ ∈ (0, 1]. (40)

Figure 16 shows the CF of the fuzzy estimate of the
harmonic mean based on fuzzy life times. Using (11), lower
and upper ends of the corresponding fuzzy parameter es-
timators μ∗ are obtained in the following way:

μ
δ

� 2
Aδ

Hδ
 

12

−1⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

12

, ∀δ ∈ (0, 1], (41)

and

μδ � 2
Aδ

Hδ
 

12

−1⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

12

, ∀δ ∈ (0, 1]. (42)

Denoting by (Aδ(μ∗) � [μδ, μδ] ∀δ ∈ (0, 1]) the de-
sired generating family of intervals of the fuzzy parameter
estimator and using the construction lemma, the CF of the
fuzzy estimator μ∗ is obtained.

In Figure 13, the CF of the fuzzy estimate based on fuzzy
life times is depicted. Using (12), lower and upper ends of the
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0.4

0.6

0.8

1

χ i 
(t)

5 10 15 20 250
y [time]

Figure 10: CF of a fuzzy sample.
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Figure 11: CF of the fuzzy estimator α∗.
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Figure 12: CF of the fuzzy estimator β
∗
.
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corresponding fuzzy parameter estimator c∗ are obtained in
the following way:

cδ � Aδ · Hδ( 
12 and cδ � Aδ · Hδ( 

12
, ∀δ ∈ (0, 1]. (43)

Denoting by (Aδ(c∗) � [cδ, cδ] ∀δ ∈ (0, 1]) the de-
sired generating family of intervals of the fuzzy parameter
estimator and using the construction lemma, the CF of the
fuzzy estimator μ∗ is obtained.

Figure 14 shows the CF of the fuzzy estimator of the
parameter c, which utilized all the available information in
the form of fuzziness and random variation.

,e fuzzy estimation of the parameter indicates that
the value of c is about 9.7 to 15.2 in the sence of the
function in Figure 13. It means that it is completely
possible that c is 9.7 or 15.2. In addition, it is not possible
that c is less than 11.7 or greater than 14.11, with pos-
sibility degree of 0.8.

3.5. Gamma Distribution. Let (y∗1 , y∗2 , . . . , y∗n ) represent
fuzzy life time intervals having δ-cuts:

Cδ y
∗
i(  � y

i,δ, yi,δ , i � 1(1)n, ∀δ ∈ (0, 1]. (44)

,en, the corresponding lower and upper ends of the
generating family of the mean can be obtained through the
following equations:

y δ �


n
i�1 y

i,δ

n
andyδ

�


n
i�1 yi,δ

n
, ∀δ ∈ (0, 1]. (45)

Denoting (y � y1, y2, . . . , yn), then the corresponding
lower and upper ends of the generating family of the var-
iance can be obtained through the following equations:

s
2
δ ≔ min

y ∈×n
i�1Cδ y∗

i( )
s
2  ∀δ ∈ (0, 1], (46)

and

s
2
δ ≔ max

y ∈×n
i�1Cδ y∗

i( )
s
2  ∀δ ∈ (0, 1]. (47)

,e fuzzy parameter estimators of the gamma distri-
bution are denoted by ]∗ and ϕ∗, having δ-cuts:

Cδ ]∗(  � ]δ, ]δ , ∀δ ∈ (0, 1], (48)

and

Cδ
ϕ
∗

  � ϕδ,ϕδ , ∀δ ∈ (0, 1]. (49)

Using lower and upper ends of the generating family of
the fuzzy estimates of mean and variance and (14), lower and
upper ends of the corresponding fuzzy parameter estimators
]∗ are obtained in the following way:

]δ �
y

2
δ

s
2
δ
and ]δ �

y
2
δ

s
2
δ

, ∀δ ∈ (0, 1]. (50)

In the same way, using lower and upper ends of the
generating family of the fuzzy estimates of mean and

variance and (15), lower and upper ends of the corre-
sponding fuzzy parameter estimators ϕ

∗
are obtained in the

following way:

ϕδ �
s
2
δ

yδ
andϕδ �

s
2
δ

y δ

, ∀δ ∈ (0, 1]. (51)

Example 5. Characterizing functions of fuzzy life times
(y∗1 , y∗2 , . . . , y∗n ) for the gamma distribution are given in
Figure 17.

From (50), denoting by (Aδ(]∗) � []δ, ϕδ] ∀δ ∈ (0, 1])

the desired generating family of intervals of the fuzzy parameter
estimator and using the construction lemma, the CF of the
fuzzy estimator ]∗ is obtained and depicted in Figure 18.

From (51), denoting by (Aδ(
ϕ∗) � [ϕδ,ϕδ]

∀δ ∈ (0, 1]) the desired generating family of intervals of
the fuzzy parameter estimator and using the construction
lemma, the CF of the fuzzy estimator ϕ∗ is obtained.

,e fuzzy estimation of the parameter indicates that the
value of ϕ is about 1.6 to 2.7 in the sence of the function in
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Figure 13: CF of the fuzzy estimator μ∗.
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Figure 14: CF of the fuzzy estimator c∗.
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Figure 15: CF of the fuzzy estimator A
∗.
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Figure 19. It means that it is completely possible that ϕ is 1.6
or 2.7. In addition, it is not possible that ϕ is less than 1.9 or
greater than 2.3, with possibility degree of 0.8.

4. Conclusion

According to recent developments of the measurement
sciences, it is very easy to say that measurements based on

continuous phenomena are no more precise observations
but more or less fuzzy.

Life time is a continuous phenomenon, and in the de-
velopment of life time distributions, it has been noted that
life time observations are recorded as precise numbers. But
as discussed, in real-life applications, life times are no more
precise observations but fuzzy numbers.

In order to get more suitable and realistic results, this
imprecision needs to be addressed; therefore, in this study,
generalized estimators are proposed so that fuzziness of life
time observations is integrated in the inference.

Since the proposed estimators utilize all the available
information, i.e., fuzziness as well as random variation of the
life time observations to cover all the available information.
,e proposed estimators are based on random variation like
other classical approaches, but in addition to that, these
estimators also utilize the fuzziness of the observations. ,is
integration of fuzziness in the estimates make it more re-
alistic in real-life applications. ,e characterizing functions
for the generalized estimators are obtained and explained to
cover both the uncertainties. On the other hand, the classical
approaches are only based on random variations and have
nothing to do with other kinds of variation.

,erefore, the results based on the proposed estimators
are more suitable and realistic to real-life applications.

5. Limitation and Future Work of the Study

,e study is limited to the complete observations, and this
can be extended to the censored observation; in addition to
that, this can be further extended to Pythagorean fuzzy
uncertainty mentioned in [24].
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