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Since the railway vehicle structure has lots of parameters and several complex constraints, this study establishes a method for
structural parameter optimization based on sensitivity analysis and surrogate models. Fatigue crack problem of the equipment
cabin bottom cover of the EMU is taken as an example to optimize its structural parameters. First, establish the �nite element (FE)
model of the bottom cover and compare it with the bench test results to verify the accuracy of the load and restraint conditions.
�e sensitivity analysis method is used to determine the main parameters. �e input samples are obtained by Latin hypercube
sampling method, and the output samples are obtained by the method jointly developed by ABAQUS+Python and the surrogate
model between the input and output samples is obtained by �tting, and its accuracy is veri�ed. According to the design re-
quirements, the optimization objective function and constraint conditions are established, and the optimization result is obtained
by optimization algorithm. �e results were substituted into the FE model for veri�cation. �e results show that the maximum
equivalent stress of the bottom cover is reduced from 126.7MPa to 78.9MPa under a cyclic aerodynamic load of ±4 kPa, which is
37.7% optimized, and the e�ect is signi�cant. �is method avoids the iterative optimization of the FE model and improves the
optimization e�ciency.

1. Introduction

In the application of large mechanical structural parts, fa-
tigue cracks have always been themain factor leading to their
failure [1–3]. Take railway vehicles as an example; fatigue
cracks are found on the equipment cabin bottom cover. �e
reason is that the alternating aerodynamic load under the
working conditions when trains enter and exit tunnels is the
main factor leading to the initiation and propagation of
cracks [4]. �erefore, it is necessary to study the structural
optimization design method to reduce the stress level at the
crack under alternating aerodynamic loads.

Nowadays, there has been in-depth research on the
optimization method of structural parts [5]. �e authors in
[6–11] separately optimized the structure of energy-ab-
sorbing structure, carbody structure, and the subway vehicle
air-conditioning suspension. �eir weights were reduced
while meeting the requirements of strength and modal. But

for the bottom cover, its protection function and manu-
facturability need to be considered, so the topology opti-
mization results often do not have engineering application
value. �e authors in [12, 13] optimized the shape of the
frame and wheel. But the shape optimization required
modi�cation of the ¦oor structure. At the same time, it was
also necessary to consider constraints such as installation,
connection, and manufacturability, so the space for modi-
�cation was limited. �e size optimization does not require
major changes to the ¦oor structure, which is relatively easy
to implement and has high engineering value.�erefore, this
article uses the size optimization method to optimize the
bottom cover.

Now scholars have begun to use a variety of methods to
optimize the parameters of the structure [14–16]. Among
them, approximate methods have been widely used [17]. For
the railway vehicle structure, the structure is complex and the
boundary conditions are numerous, which often requires a lot
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of time in the simulation calculation. In order to improve the
optimization efficiency, many scholars have conducted re-
search on the optimization method of size parameters.
Myzrglob and Zielinski [18, 19] studied the optimization
method of structural parameters under multi-axial high-cycle
fatigue. Sun et al. and Hudson et al. [20, 21] studied the
optimization method of carbody parameters considering
multiple factors. Sun et al. [22] optimized the modal fre-
quency of the railway vehicle carbody based on SA.Miao et al.
[23] used the ant colony algorithm to optimize the composite
sandwich structure of the bottom cover. Zhi et al. [24] studied
the fuzzy optimization method of bogie frame parameters
based on response surface model. Baek et al. [25] optimized
the wagon frame structure based on the Chebyshev poly-
nomial model. )e authors in [26–28] used surrogate models
and multi-objective genetic algorithms to optimize the design
of the carbody collision energy absorption structure. )e
authors in [29–31] optimized the fatigue strength of the
welded frame weld by the surrogate model method.

)e above research used mathematical models to express
the relationship between structural parameters of vehicle
components such as carbody, bogie frame, and energy-ab-
sorbing structure with modal and strength indicators and
optimized them with optimization algorithms to improve
optimization efficiency. However, the optimization research
on the equipment cabin bottom cover is still lacking at the
present stage, and the connection and contact between the
various components cannot be ignored for this type of as-
sembly. )ere are many size parameters and installation pa-
rameters of components, and each parameter has a complex
nonlinear relationship with the stress response of key points.
Establishing a FEmodel that can reflect the actual components
and meet the requirements of optimization accuracy is a
prerequisite for optimization design. For this reason, this
paper carried out the static strength test of the bottom cover
and compared the FE calculation results with the test results to
verify the accuracy of the FE model. Considering the complex
preprocessing of the FE model and the long calculation time,
this paper first extracts the key parameters of the bottom plate
according to the sensitivity analysis (SA) method and uses the
optimal Latin hypercube sampling to obtain the input sample
set of the key parameters.)rough the ABAQUS+Python co-
simulation method, the FE model under different input pa-
rameters is obtained in batches, and the output parameter
samples are obtained. )en, the surrogate model is fitted to
replace the FEmodel, and optimization is performed based on
the optimization algorithm. )is method can effectively im-
prove optimization efficiency.

2. Structural Parameter Optimization
Design Method

2.1. Parameter Optimization Process Based on FE Model.
In the FE model, due to the model scale, contact nonline-
arity, material nonlinearity, and other issues, it often takes a
long time to simulate. At the same time, optimization re-
search needs to modify the parameters multiple times for
iterative calculations, so there are many repeated calcula-
tions. If the FE model is directly called, it will consume a lot

of time and be inefficient. )erefore, in order to improve the
optimization efficiency under the premise of ensuring ac-
curacy, the optimization method shown in Figure 1 can be
used for the complicated FE model.

According to Figure 1, firstly, the SA method is used to
screen the optimized parameters, and then the optimal Latin
hypercube sampling or orthogonal test is used to sample in
the range to obtain a uniform and representative parameter
sample set. Use the Python program to read the samples in
order, modify the parameters of the FE model in ABAQUS,
submit calculations, and read the stresses at the key points.
Summarize the stress values under different samples and use
them as input and output parameters. Use the above input
and output parameters as samples and import them into the
Isight software to fit the surrogate model and evaluate the
goodness of fit. Based on the surrogate model, optimization
algorithms such as steepest descent method and genetic
algorithm are used for optimization. )en, the optimal
solution of the model is obtained and imported into
ABAQUS for verification.

2.2. Parameter SA Method. When there are many optimi-
zation parameters, the amount of calculation in sampling
calculation and optimization calculation is large. )e pa-
rameter SA method can eliminate the parameters that have
little influence on the result. Assuming that there are-
nparameters, there is the following functional relationship
between thei-th parameterpiand the response r:

r � r p1, p2, p3, . . . , pn( 􏼁. (1)

)e sensitivity εi of different parameters can be expressed
by the following formula:

εi �
zr p1, p2, p3, . . . , pn( 􏼁

zpi

,

i � 1, 2, 3, . . . , n.

(2)

It is often a discrete variable in engineering applications.
Its sensitivity εi can be expressed by the finite difference
method:

εi �
r pi + Δpi( 􏼁 − r pi( 􏼁

Δpi

,

i � 1, 2, 3, . . . , n.

(3)

However, when calculating the sensitivity through the
above formula, the influence of the parameter scale and the
variation range is ignored.When the parameter scale is large,
the calculated sensitivity is often small. )erefore, the
original parameter value pi0 and the original response value
r0 are used as scale factors, and the sensitivity parameters are
normalized:

εi �
r pi + Δpi( 􏼁 − r pi( 􏼁􏼂 􏼃/r0
Δpi/pi0

,

i � 1, 2, 3, . . . , n.

(4)
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In order to improve the accuracy of the sensitivity pa-
rameter, take m different difference step size Δpij

(j � 1, 2, 3, . . . , m, including the original value, Δpi1 � 0)
within the parameter change range. )e least square method
is used to fit it into a proportional function relationship of
ri � kipi, and the absolute value of the slope ki is taken as the
sensitivity parameter:

εi � ki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

􏽐
m
j�1 RijPij

􏽐
m
j�1 R

2
ij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

i � 1, 2, 3, . . . , n,

j � 1, 2, 3, . . . , m,

(5)

where

Rij �
r pi + Δpij􏼐 􏼑 − r pi( 􏼁􏽨 􏽩

r0
,

Pij �
Δpij

pi0
.

(6)

2.3. Sample Acquisition Method Based on FE Model.
According to the optimized parameters and their ranges, a
set of representative input parameters needs to be extracted.
)e optimal Latin hypercube sampling method has strong
filling ability, uniform sample distribution, and good rep-
resentativeness. Assuming that a total of m samples are
required, m small hypercubes are randomly selected in the
n-dimensional hypercube space composed of n design
variables to ensure that each small hypercube is unique in
each design variable interval. )at is, each design variable
will be sampled only once at each level. In this way, a Latin
hypercube design matrix with m samples under n design
variables is obtained. At the same time, through the opti-
mization algorithm, the Euclidean distance between

different sample points is minimized, and the evenly dis-
tributed and representative sampling results are obtained.
)is paper uses the optimal Latin hypercube method to
sample the parameters. Generate the optimal Latin hyper-
cube sampling results in Isight software as input samples.

)e FE model is established based on the input pa-
rameters, and the output parameters can be obtained
through FE simulation. ABAQUS has a powerful secondary
development function. Using Python programs, it can
perform secondary development on the preprocessing and
postprocessing parts of ABAQUS, achieve automatic
modeling, automatic submission calculations, and automatic
postprocessing batch calculations, which can save simula-
tion time.

Figure 2 shows the parameter flow of using the Python
program to obtain the output. First read a set of input
parameters from the input parameter set and import the
ABAQUS library function into the program, and the
ABAQUS library function contains members that can be
used for modeling. )e members in the Model object under
the Mdb object can be used for preprocessing work such as
building 3D models, defining material properties, meshing,
and defining loads and constraints. )e Job object can
submit calculations to the model. Each member under the
Odb object can read the field output and history output
results in the calculated odb result file to obtain the required
output parameters. In this loop, the output parameters
under different input parameters can be obtained, and the
output parameter set can be summarized. )e input pa-
rameter set and the output parameter set are combined as
surrogate model training samples.

2.4. Surrogate Model Establishment Method. Isight software
provides a variety of surrogate model fitting algorithms,
including response surface model (RSM), radial basis
function neural network (RBFNN) model, Kriging model,
and so on.
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Figure 1: Bottom cover optimization method.
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2.4.1. Response Surface Model (RSM). Taking the fourth-
order response surface model as an example, the surrogate
model fitting formula is shown in the following equation:

􏽢y � β0 + 􏽘
M

i�1
βixi + 􏽘

M

i�1
βM+ix

2
i + 􏽘

M

i�1
β2M+ix

3
i

+ 􏽘

M

i�1
β3M+ix

4
i + 􏽘

M

i≠ j

βijxixj,

(7)

where M is the number of input variables; xi represents the
input variables; 􏽢y is the output value; and βi represents the
coefficients.

2.4.2. Kriging Model. )e expression of the Kriging model is
shown in the following equation:

􏽢y � f
T
(x)β + Z(x), (8)

where fT(x)β is the global regression model; Z(x) is the
random fluctuation; and 􏽢y is the output value.

2.4.3. Radial Basis Function Neural Network (RBFNN)
Model. In the RBFNNmodel, the radial function is the basis
function of the model, and its independent variable is the
Euclidean distance between the measured point and the
input point. (3) is the basic form of the radial basis function.

􏽢y � 􏽘
M

j�1
Hj(r)wj � HT

(r)w, (9)

where wj is the weight; M is the number of samples; Hj(r) is
the radial function; and 􏽢y is the output value. By adjusting
the weights, the radial basis function can be used to fit
different models.

)ere are many indicators for evaluating the goodness of
fit of a surrogate model. )e normalized root mean square
error (NRMS) and certainty coefficient (R2) are commonly
used to evaluate the global goodness of fit [32]. )e ex-
pression of the NRMS is

NRMS �

������������

􏽐
N
i�1 yi − 􏽢yi( 􏼁

2

􏽐
N
i�1y

2
i

􏽶
􏽴

. (10)

)e value range of NRMS is [0, 1]. )e closer its value is
to 0, the better the goodness of fit is. Its threshold value is 0.1.

)e expression of R2 is

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2 . (11)

)e value range of R2 is [0, 1]. )e closer its value is to 1,
the better the goodness of fit is. Its threshold value is 0.9.

yi is the sample value, y is the sample mean, and 􏽢yi is the
surrogate model predicted value.

2.5. Optimization Method. )e optimization problem with
constraints can be expressed as

min
x

f(x), x ∈ Rn
, (12)

s.t.
gi(x)≤ 0,

hi(x) � 0.
􏼨 (13)

(12) is the optimization objective function. (13) is the
optimization constraint, where gi(x) is an inequality con-
straint and hi(x) is an equality constraint. When solving the
above two equations, in order to obtain reliable optimization
results, it is often necessary to resort to optimization al-
gorithms. Optimization algorithms can be divided into
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Figure 2: Sample acquisition process based on FE parameter model.
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numerical and exploratory types. Among them, the nu-
merical optimization algorithm has a faster calculation speed
and fewer iterations, but it is easy to fall into a local min-
imum. Representative algorithms include NLPQLP (con-
tinuous quadratic programming method), LSGRG
(generalized gradient descent method), and so on. Explor-
atory optimization technology can search the whole world
and is not easy to fall into the local minimum, but there are
relatively many iterations. Among them, the representative
algorithm is genetic algorithm, and the process is shown in
Figure 3. Commonly used genetic algorithms include MIGA
(multi-island genetic algorithm), NSGA-II (nondominant
sorting genetic algorithm), and so on.

3. Establishment and Verification of the
Equipment Cabin Bottom Cover FE Model

)e equipment cabin bottom cover structure is shown in
Figure 4.)emain body is a flat plate, which is reinforced by
three rectangular tube beams. )e plate size is
1144× 576mm. )e flat plate and rectangular tube beams
are formed by bending 2mm thick cold-rolled SUS304
stainless steel plates. )e bottom cabin is fixed to the side
beam of the equipment cabin by a total of eight bolts and
backing plates at both ends.

3.1. Static Strength Test of Bottom Cover. )e static strength
test of the equipment cabin bottom cover is carried out under
the conditions of the indoor fatigue test bench, and the stress
measurement points are arranged at the key positions of the
bottom cover as shown in Figure 5. Vacuum suction cups are
uniformly arranged on the surface of the bottom cover to
simulate the aerodynamic uniform load. )e MTS fatigue
testing machine is used to load the aerodynamic load under
tension and compression at 4 kPa. )e static strength test
method and tooling under aerodynamic load are as described
in the literature [33]. After the loading force is stable, use
TDS-530 static data acquisition instrument to collect strain
data. )e loading tooling is shown in Figure 6.

3.2. Bottom Cover FE Model. Based on the 3D model of the
bottom cover, the FE model of the bottom cover is estab-
lished in ABAQUS. )e flat plate and rectangular tube beam
of the bottom cover are extracted from the midsurface and
divided into shell elements. Divide the backing plate into
solid elements. Both ends simplify the equipment cabin
bracket to a discrete rigid body, imitating the fixing of the
equipment cabin bracket to the bottom cover. )e FE model
is shown in Figure 7.

)e position of the rivet hole between the flat plate,
rectangular tube beam, and backing plate adopts beam el-
ement and rigid element to imitate riveting, and the contact
pairs are set between each surface as shown in Table 1. A
fixed constraint is applied to the equipment cabin bracket
and backing plate bolts, and a uniformly distributed aero-
dynamic load of ±4 kPa is applied to the surface of the
bottom cover. Simulations show that the model can con-
verge reliably.

3.3. Validation of the FE Model. )e measurement points
with relatively large stress values and relatively small stress
gradients are selected to prevent the effect of stress con-
centration and the zero point error of the strain gauge from
affecting the results. )e results are compared with the
output results of the FE model to verify the FE model. )e
comparison between the FE simulation results and the test
results of some measuring points is shown in Table 2:

In Table 2, measuring points 2, 3, and 4 are the corner
positions of the edge of the flat plate, and measurement
points 12 to 17 are the process hole edges of the middle
rectangular tube beam. In comparison, with the exception
of the relatively large gap between measurement point 13
and measurement point 16, the measured stresses of the
remaining measuring points are relatively close to the
simulated stresses, indicating that the boundary condition
settings of the FE model are basically consistent with the
actual model. Measuring point 13 and the measuring point
16 are located at the edge of the center process hole
rectangular tube beam, where the stress gradient is rela-
tively large due to the stress concentration effect. )erefore,
the attachment position of the strain gauge has a greater
influence on the final result. )e test result is different from
the result of the FE model, but the trend is the same, which
does not affect the direction and accuracy of the
optimization.

)rough FE analysis, under aerodynamic loads of
±4 kPa, the maximum normal stress of the bottom plate
appears on the edge of the center process hole rectangular
tube beam (its location is marked by the box in Figure 8),
and the direction is along the length of the rectangular tube
beam. )e stress distribution at the edge of the process hole
and the maximum nodal stress value are shown in Figure 8.

Under pull working conditions, the maximum nodal
stress is −130.7MPa, and the maximum integration point
stress is −138.2MPa read by Python program; under push
working conditions, the maximum nodal stress is 114.1MPa,
and the maximum integration point stress is 119.6MPa. )e
nodal stress is obtained by extrapolating the integration
point stress. In the following optimization calculations, the
integration point stress is used.

In summary, the FE model can imitate the actual model
well, and it can converge reliably, ensuring the accuracy of
the optimization.

3.4. Calculation of Equivalent Stress under Symmetrical Cycle.
Due to the influence of factors such as contact nonlinearity,
when the bottom cover is subjected to a symmetrical cycle of
pull and push load, its stress response is not necessarily a
symmetrical cycle.)e FEmethod is used to obtain the stress
peak-valley value, average stress, and stress amplitude of the
bottom cover under ±4 kPa aerodynamic load. )e equiv-
alent stress σ−1 under symmetrical cycles can be calculated
by the Goodman equation (hereinafter referred to as
equivalent stress):

σ−1 �
σa

1 − σm/σu

, (14)
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where σa is the stress amplitude, σm is the average stress, and
σu is the ultimate strength of the material. Tensile test is
performed on the small sample of the bottom plate on the
MTS-810 universal material testing machine, and the me-
chanical properties are shown in Table 3.

In ABAQUS, the integration point stress of each el-
ement under pull and push conditions can be read
through the Python program. )en, the equivalent stress
of each element at the integration point can be calculated
by (14).

4. Structural Parameter OptimizationDesign of
Equipment Cabin Bottom Cover

4.1. Parameter Selection and SA. Combined with the survey
results, cracks mostly appeared in the weak points of the hole
edge of the rectangular tube beam. After FE analysis and
static strength bench test, the edge of the center process hole
rectangular tube beam (measurement points 13 and 16 in
Figure 5) has relatively high stress, which is likely to be the
initiation of cracks. Taking into account factors such as
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Select Cross Mutations
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Y

Figure 3: )e basic process of genetic algorithm.

Flat plate
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Figure 4: Structure of bottom cover.
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121314

151617

Figure 5: Bottom cover measurement point layout.
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bottom cover assembly and manufacturability, six param-
eters are selected as shown in Figure 9.

Among them, d is the distance between the rivet hole and
the plate end, d1 is the lateral hole distance of the rivet hole,
p is the longitudinal spacing of the rectangular tube beam, w

is the width of the rectangular tube beammidsurface, h is the
height of the rectangular tube beam midsurface, and t is the
thickness of the rectangular tube beam. )e parameters d

and d1 are related to the lateral number of rivets b:

d1 �
dc − 2 d( 􏼁

b
, (15)

where dc is the lateral length of the flat plate, and the original
values and value ranges of each parameter are shown in
Table 4.

Using the SAmethod described in Section 2.2, the stress-
influence sensitivity of each parameter under the two
working conditions of pull and push at 4 kPa aerodynamic
loads is shown in Figure 10.

It can be seen from Figure 10that the sensitivity of the
parametersh, t, andwis high, indicating that their changes
have the most significant impact on the stress. )ese three
parameters are selected as the optimization parameters, and
the other parameters have less impact and are ignored in the
optimization.

4.2. Parameter Sampling and Calculation. Based on the se-
lected parameters, the range of values is the same as that
shown in Table 3, and the optimal Latin hypercubemethod is

Fixed constraint

Uniformly distributed
aerodynamic load

x
z y

Figure 7: FE model of bottom cover.

Table 1: Contact attribute settings for each contact pair.

No. Master surface Slave surface Discretization
method Contact property options

1 Flat plate lower surface Rectangular tube beam upper
surface

Surface to surface Hard contact friction coefficient:
0.152 Flat plate lower surface Backing plate upper surface

3 Equipment cabin bracket lower
surface Flat plate upper surface

Figure 6: Bottom cover loading tool.
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used to sample them. In order to meet the fitting needs of the
surrogate model, the sampled data are initially set to 50
groups. )e distribution in the parameter space is shown in
Figure 11.

It can be seen from Figure 11 that the distribution of each
sample in the parameter space is relatively uniform and
representative. Use the Python program to input these 50
groups of samples into ABAQUS to establish a parameter
model, complete the preprocessing of the model, and run it
in batches. Read the maximum normal stress of the process
hole edge of the square tube beam under two different
working conditions of the flat plate under push and pull of
4 kPa aerodynamic load and calculate the equivalent stress as

the output parameter in combination with (14). )e 50
groups of input and output parameters after all simulations
are completed and are shown in Table 5.

)e 50 sets of input and output parameters in Table 5 can
be used as training samples for the surrogate model and
input into Isight for approximate fitting.

4.3. Surrogate Model Fitting. Use different fitting models to
fit the training samples in Table 5. Based on the cross-val-
idation method, two indexes of NRMS and R2 are used to
evaluate the goodness of fit. )e goodness of fit indexes
under different models are obtained as shown in Table 6.

From Table 6, the indexes of the RBFNN model are all
the best, so the RBFNNmodel is used as the surrogate model
of the original model.)e comparison between the predicted
value of the output and the original value is shown in
Figure 12.

It can be seen from Figure 12that the distribution of the
predicted value and the original value points are all around

Table 2: Comparison of FE simulation and test results of some measuring points.

Measurement point
Pull 4 kPa uniform load Push 4 kPa uniform load

Measured stress/MPa Simulation stress/MPa Measured stress/MPa Simulation stress/MPa
2 −10.4 −9.0 5.7 6.6
3 −14.9 −12.7 12.3 12.2
4 −7.6 −9.0 6.0 6.7
12 −31.8 −37.1 22.4 26.1
13 −55.7 −64.3 40.4 48.9
14 −36.8 −36.8 24.6 27.3
15 −36.0 −36.2 24.0 27.7
16 −58.1 −65.2 41.5 48.0
17 −37.9 −36.7 23.7 27.6

(a) (b)

Figure 8: Stress distribution on the edge of the center process hole rectangular tube beam. (a) Push working condition. (b) Pull working
condition.

Table 3: Mechanical properties of SUS304 cold-rolled stainless
steel plate.

Material Yield strength σb/MPa Ultimate strength σu/MPa

SUS304 320 660
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the straight line y � x, indicating that the fitting accuracy is
high. )e fitted surrogate model can be used as a simplified
model to replace the original model for optimization.

4.4. Parameter Optimization Solution and Verification.
Based on the above surrogate model, it can be optimized and
solved in Isight. )e optimized value range of each pa-
rameter is shown in Table 4. Determine the optimization
goal to minimize the equivalent stress:

min σ−1􏼈 􏼉. (16)

In order to control the weight of the optimized bottom
cover, corresponding constraint conditions need to be set.
Since the above parameters only relate to the cross-sectional
area of the rectangular tube beam, the weight of the bottom
cover can be controlled by controlling the optimized cross-
sectional area of the rectangular tube beam. In the original
structure, the square tube beam midsurface height
h � 28mm, midsurface width w � 35mm, and thickness
t � 2mm; ignoring rounded corners, its area is
S � (35 + 28) × 2 × 2 � 252mm2. )erefore, the optimiza-
tion constraints can be expressed as

s.t. S � 2t(w + h)≤ 252. (17)

d

d1

p

h

w
t

Figure 9: Parameter determination.

Table 4: )e original value of each parameter and its range.

No. Parameter Original values Lower limit Upper limit
1 d 60mm 30mm 100mm
2 p 193mm 168mm 243mm
3 w 35mm 35mm 50mm
4 h 28mm 12mm 50mm
5 t 2 mm 1mm 3mm
6 b 9 7 11
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Figure 10: Sensitivity index of different parameters.
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Figure 11: Parameter sample space.
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Using the original parameters as the initial values, after
calculation, the iteration times and optimization results of
the NLPQLP and MIGA optimization algorithms are ob-
tained as shown in Table 7. It can be seen that the con-
vergence results of the two optimization methods are
similar, so the optimization calculation results are credible.
Among them, the numerical optimization method is less
time-consuming than the exploratory optimization
method. )e optimization history of the equivalent stress

under the two algorithms is shown in Figure 13 where the
red point is the point that does not meet the constraint, the
black point is the general point, and the green point is the
optimal point.

From the above optimization process, it can be seen that
the search speed of the NLPQLP algorithm is faster, but the
number of iterations has reached 74.)e optimization speed
of the MIGA method is slower, but it can perform a global
search in the parameter space.

Table 5: Surrogate model training samples.

No. w/mm h/mm t/mm Equivalent stress/MPa
1 19.76 2.55 48.78 78.0
2 36.04 2.14 40.20 67.2
3 32.16 1.57 38.67 115.6
4 46.90 1.37 39.90 85.9
5 36.82 1.08 40.82 129.0
6 38.37 1.61 42.65 73.9
7 12.78 1.74 36.53 218.2
8 23.63 1.90 47.55 95.8
9 50.00 2.47 46.33 31.3
10 12.00 2.18 46.63 127.8
11 43.80 2.96 37.76 37.4
12 34.49 2.63 37.14 59.9
13 25.18 2.43 39.59 82.4
14 28.29 1.94 42.96 86.5
15 35.27 1.82 46.94 65.8
16 29.06 2.51 44.18 62.2
17 15.10 2.84 40.51 113.2
18 17.43 1.29 38.98 211.3
19 31.39 2.35 48.47 54.1
20 15.88 1.04 43.57 241.2
21 30.61 1.45 50.00 88.7
22 24.41 1.49 35.31 191.9
23 20.53 2.71 35.92 116.2
24 27.51 1.00 38.06 199.8
25 42.24 1.41 49.39 78.0
26 44.57 1.12 45.10 84.9
27 18.20 2.22 42.96 110.1
28 45.35 2.02 49.08 113.2
29 18.98 2.80 44.80 44.9
30 25.96 1.33 42.35 79.3
31 41.47 2.59 49.69 142.5
32 22.86 1.16 47.24 162.8
33 13.55 2.31 38.37 33.2
34 33.71 1.25 46.02 151.5
35 16.65 1.65 43.88 104.0
36 26.73 3.00 41.73 150.8
37 39.92 2.27 44.49 61.3
38 39.14 1.20 36.22 46.4
39 47.67 1.98 41.12 124.5
40 43.02 1.78 36.84 48.1
41 14.33 1.53 48.16 69.8
42 21.31 2.06 35.00 160.3
43 49.22 2.67 42.04 161.0
44 40.69 2.88 45.71 31.8
45 32.16 2.06 35.61 35.5
46 22.08 1.86 39.29 97.5
47 37.59 2.76 41.43 121.4
48 48.45 1.69 45.41 45.3
49 46.12 2.39 37.45 56.2
50 29.84 2.92 47.86 44.5
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Table 7: Optimization results under different optimization algorithms.

Optimization algorithms Iteration times
Optimization result

w/mm h/mm t/mm
NLPQLP 74 43.333 39.151 1.5276
MIGA sub-population size: 40; number of generations: 50; number of islands: 10 20001 44.342 39.308 1.5063
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Figure 12: Comparison between predicted value and original value.

Table 6: Goodness of fit under different fitting algorithms.

Fitting model
Goodness of fit

NRMS R 2

Second-order RSM model 0.033 0.982
)ird-order RSM model 0.032 0.984
Fourth-order RSM model 0.032 0.984
RBFNN model 0.028 0.988
Kriging model 0.080 0.900
Chebyshev polynomial model 0.032 0.984

0 20 40
Interation times

St
re

ss
 (M

Pa
)

Optimal design point

60 80
70
80
90

100
110
120
130

(a)

Figure 13: Continued.
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Based on the optimization results in Table 7, round the
parameters and input them into ABAQUS for FE simulation
verification. )e output and the original model are shown in
Table 8.

It is shown in Table 8 that the equivalent stress of the hole
edge of the optimized model is significantly optimized
compared with the original model, the optimization rate
reaches 37.7%, and its weight is also reduced. )e optimi-
zation effect is significant.

5. Summary

(1) Establish the parameterized model of the bottom
cover by ABAQUS+Python jointly development
method. Obtain the output samples in batches
according to the input samples, which eliminates
tedious pre and postprocessing and can improve the
efficiency of sample acquisition.

(2) Comparing the FE model with the bench test re-
sults of the equipment cabin bottom cover, the
stress levels at each measurement point are basi-
cally the same, indicating that the boundary
conditions and contact conditions of the FE model
can basically simulate the actual model. Its accu-
racy can ensure the subsequent optimization
design.

(3) )e bottom cover is optimized based on the SA
method and surrogate model. After optimization, the
equivalent stress at the edge of the model hole de-
creased from 126.7MPa to 78.9MPa, which was
optimized by 37.7%. )e optimization effect was
significant.

(4) )is study only needs to perform 50 simulations on
the FE model to obtain samples, and the surrogate
model method can save thousands of repeated op-
timization calculations on the FE model. )erefore,
based on the method in this paper, the optimization
efficiency can be improved for complex FE models.
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