# Investigation of Atom-Bond Connectivity Indices of Line Graphs Using Subdivision Approach 

Mohamad Nazri Husin (1), ${ }^{1}$ Sohail Zafar, ${ }^{2}$ and R. U. Gobithaasan ( ${ }^{(1)}$<br>${ }^{1}$ Special Interest Group on Modelling \& Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology \& Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia<br>${ }^{2}$ University of Management and Technology, Lahore, Pakistan

Correspondence should be addressed to Mohamad Nazri Husin; nazri.husin@umt.edu.my
Received 9 February 2022; Accepted 27 May 2022; Published 17 June 2022
Academic Editor: A. M. Bastos Pereira
Copyright © 2022 Mohamad Nazri Husin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


#### Abstract

A topological index is a numerical measure that characterises the whole structure of a graph. Based on vertex degrees, the idea of an atom-bond connectivity $(A B C)$ index was introduced in chemical graph theory. Later, different versions of the ABC index were created, and some of these indices were recently designed. In this paper, we present the edge version of the atom-bond connectivity $\left(A B C_{e}\right)$ index, edge version of the multiplicative atom-bond connectivity $\left(A B C I I_{e}\right)$ index, and atom-bond connectivity temperature $(A B C T)$ index for the line graph of subdivision graph of tadpole graph $\left(T_{n, k}\right)$, ladder graph $\left(L_{n}\right)$, and wheel graph $\left(W_{n+1}\right)$. Numerical simulation has also been shown for some novel families of atom-bond connectivity index comparing the three types of indices which can be useful for QSAR and QSPR studies.


## 1. Introduction

In this article, we have considered simple graphs, which are unweighted, undirected graphs that have no loops and multiple edges attached. Let $G$ be a simple graph, with vertex set $V(G)$ and edge set $E(G)$. Suppose $e$ is an edge of $G$, which connects the vertices $u$ and $v$, then we denote $e=u v$ and state that " $u$ and $v$ are adjacent." The degree $d_{u}$ of a vertex $u$ is the number of edges that are incident to it. Topological indices are the mathematical measures that correspond to the structure of any simple finite graph. They are invariant under the graph isomorphism. There are some famous degree-based topological indices, which are introduced and applied in chemical engineering, for instance, the Randic index (refer to Ali \& Du [1], Li \& Shi [2], and Shi [3] for more details). These indices are also significant in quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) (see [4, 5]).

The subdivision graph $[6,7] S(G)$ is the graph obtained from $G$ by replacing each of its edge by a path of length 2 . In
graph $G$, if the corresponding edges share a vertex in $G$, the line graph $L(G)$ of a graph $G$ is considered as a graph with vertices of the edges in G. Two vertices $e$ and $f$ are incident if and only if they have a common end vertex in G. Estrada et al. [8] put forward a topological index named atom-bond connectivity index (briefly, $A B C$ ) as

$$
\begin{equation*}
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} \times d_{v}}} \tag{1}
\end{equation*}
$$

where $d_{u}$ and $d_{v}$ represent the degrees of the vertices $u$ and $v$, respectively. Recent advances on $A B C$ index can be referred to in Das et al. [9], Lin et al. [10], Gao \& Shao [11], and Bianchi et al. [12]. Referring to the end vertex degree $d_{e}$ and $d_{f}$ of edges $e$ and $f$ in a line graph of $G$, Farahani [13] proposed the edge version of atom-bond connectivity, $A B C_{e}$ index. This idea is described in the following:

$$
\begin{equation*}
A B C_{e}(G)=\sum_{e f \in E(G)} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} \times d_{f}}} \tag{2}
\end{equation*}
$$

where $d_{e}$ and $d_{f}$ are the degree of the edge $e$ and $f$, respectively. The reader can find more information about $A B C_{e}$ index in References [14-18].

The multiplicative atom-bond connectivity index was introduced by Kulli in 2016 [19]. More information regarding the multiplicative atom-bond connectivity index may be found in references [20, 21]. Later, the edge version of the multiplicative atom-bond connectivity index [22] of a graph $G$ was introduced, and it is defined as

$$
\begin{equation*}
\operatorname{ABCII}_{e}(G)=\prod_{e f \in E(L(G))} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} \cdot d_{f}}} \tag{3}
\end{equation*}
$$

where $d_{e}$ is the degree of the edge $e$ in $L(G)$.
The temperature of a vertex $u$ of a connected graph $G$ is defined by Fajtlowicz [23] as

$$
\begin{equation*}
T(u)=\frac{d_{u}}{n-d_{u}} \tag{4}
\end{equation*}
$$

where $d_{u}$ is the degree of a vertex $u$ and $n$ is the size of a graph G. Recently, Kahasy et al. [24] introduced a new index, known as the atom-bond connectivity temperature index. This index is defined as follows:

$$
\begin{equation*}
\operatorname{ABCT}(G)=\prod_{u v \in E(G)} \sqrt{\left|\frac{T_{u}+T_{v}-2}{T_{u} T_{v}}\right|}, \tag{5}
\end{equation*}
$$

where $T_{u}$ and $T_{v}$ are the temperature of the vertex $u$ and $v$, respectively.

## 2. Main Results

In 2011, Ranjini et al. calculated the explicit expression for the Shultz indices of the subdivision graphs of the tadpole, wheel, helm, and ladder graphs [25]. They also studied the Zagreb indices of line graphs of tadpole, wheel, and ladder graphs with subdivision in [26]. In 2015, Su \& Xu calculated the general sum-connectivity indices and coindices of line graphs of tadpole, wheel, and ladder graphs with subdivision in [27]. In [28], Nadeem et al. computed $A B C_{4}$ and $G A_{5}$ indices of the line graphs of these graphs by using the notion of subdivision. They also studied the $A B C_{4}$ and $G A_{5}$ of these graphs [28]. Other studies on these include Rajasekar \& Nagarajan [29] research on the location domination number of the line graph. Recently, Li \&. Taylor [30] also studied the first Zagreb index and some Hamilton properties of the line graph.

A tadpole graph $T_{n, k}$ is the graph obtained by joining a cycle of $n$ vertices with a path of length $k$. A ladder $L_{n}$ is obtained by taking the Cartesian product of two paths $P_{n} \times P_{2}$. A wheel graph $W_{n}$ or order $n$ composed of a vertex is called the hub, adjacent to all vertices of a cycle of the order $n$.

Motivated by the results of $[26,27,31]$, we studied the line graph of the subdivision graph $T_{n, k}, L_{n}$, and $W_{n+1}$ and derived an expression for the edge version of atom-bond connectivity, multiplicative atom-bond connectivity indices, and atom-bond connectivity temperature index of the graphs $L\left(S\left(T_{n, k}\right)\right), L\left(S\left(W_{n+1}\right)\right)$, and $L\left(S\left(L_{n}\right)\right)$.

Theorem 1. The edge version of the atom-bond connectivity index of $L\left(S\left(T_{n, k}\right)\right)$ is

$$
A B C_{e}(G)=\left\{\begin{array}{l}
\sqrt{2} n+\sqrt{2} k+2-\sqrt{2}, \text { when } k>1  \tag{6}\\
\sqrt{2} n+2+\sqrt{\frac{2}{3}}-\frac{3 \sqrt{2}}{2}, \text { when } k=1
\end{array}\right.
$$

Proof. Let $G$ be the line graph of the subdivision graph $L\left(S\left(T_{n, k}\right)\right)$, seeing Figure 1. It contained $2(n+k)$ edges of the subdivision graph of $S\left(T_{n, k}\right)$, and then, in the graph of $G$, it contained $2(n+k)$ vertices. It consists of three types of degree of edge $e$, such as 1,2 , and 3 . Out of which, 3 vertices are of the degree 3 , one vertex of degree 1 and the remaining $2(n+k-2)$ vertices are of the degree 2 . The graph of $G$ contains path of length $2 k-1$. Let $V_{1}$ be the vertex of degree 3 which is attached to this path. Let $V_{1}^{\prime}$ and $V_{2}^{\prime}$ be the neighbor of $V_{1}$ which are of degree 3 in the $L(G)$. The vertices $V_{1}^{\prime}$ and $V_{2}^{\prime}$ have two neighbors of degree 3 and one neighbor of degree 2 in $L\left(S\left(C_{n}\right)+e\right)$, where $e$ is the edge adjacent to $S\left(C_{n}\right)$. The vertex $V_{1}$ has 2 adjacent vertices of degree 3 and one vertex of degree 2 in the path. Let we derive an expression for the edge version of topological indices of the graph $G$, for $k=1$. In graph $G$, it contains a path of length 1 which attached with $V_{1}$. Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to the path is $\sqrt{2 / 3}$. For $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ corresponding to the vertices $V_{1}$, $V_{1}^{\prime}$, and $V_{2}^{\prime}$ in $L\left(S\left(C_{n}\right)+e\right)$, hence, we have $4+\sqrt{2}$. Since one edge in $G$ is shared between pairs of vertices, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}=2+\sqrt{1 / 2}$. Among the remaining, $2 n-4$ vertices, for $2 n-5$ vertices, have neighbors of degree 2 , and one vertex has neighbor of degree 3. Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to $2 n-4$ vertices is $\sqrt{2} n-2 \sqrt{2}$. Adding all these number together, the edge version of atom-bond connectivity index of $G$ is found as $A B C_{e}(G)=\sqrt{2} n+2+\sqrt{2 / 3}-3 \sqrt{2} / 2$.

If $k>1$, then the graph $G$ contains path of length $2 k-1$ which attached with $V_{1}$. Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to the path is $\sqrt{1 / 2}(2 k-1)$. For $\sum_{V^{\prime}} \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ corresponding to the vertices $V_{1}$, $V_{1}^{\prime}$ and $V_{2}^{\prime}$ in $L\left(S\left(C_{n}\right)+e\right)$, hence, we have $4+\sqrt{2}$. Since one edge in $G$ is shared between pairs of vertices, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}=2+\sqrt{1 / 2}$. Out of $2 n-2$ vertices, for $2 n-3$ vertices have neighbors of degree 2 and one vertex has neighbor of degree 3 . Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to $2 n-2$ vertices is $\sqrt{2} n-\sqrt{2}$. Adding all these number together, the edge version of atom-bond connectivity index of $G$ is found as $A B C_{e}(G)=\sqrt{2} n+\sqrt{2} k+2-\sqrt{2}$. This completes the proof.

Theorem 2. The edge version of the multiplicative atombond connectivity index of $L\left(S\left(T_{n, k}\right)\right)$ is


FIGURE 1: [27] (a) The subdivision graph $S\left(T_{n, k}\right)$ of the tadpole graph $T_{n, k}$. (b) The line graph $L\left(S\left(T_{n, k}\right)\right)$.

$$
\operatorname{ABCII}_{e}(G)=\left\{\begin{array}{l}
3 \sqrt{2}(n+k-3), \text { when } k>1  \tag{7}\\
2 \sqrt{\frac{2}{3}}(2 n-5), \text { when } k=1
\end{array}\right.
$$

Proof. After adopting the induction method, it is clear that overall speaking, this line graph of subdivision graph
possesses of $2(n+k)$ vertices and $2(n+k)+1$ edges. If $d_{e}$ and $d_{f}$ are the degree of edge $e$, then there are 1 edge of type $d_{e}=1, d_{f}=3,2 n-5$ edges with $d_{e}=d_{f}=2,2$ edges of type $d_{e}=2, d_{f}=3,3$ edges with $d_{e}=d_{f}=3$. Hence, for graph $G$ with $k=1$, we have $A B C I I_{e}(G)=2 \sqrt{2 / 3}(2 n-5)$. For $k>1$, we have 1 edge of type $d_{e}=1, d_{f}=2,2 n+2 k-6$ edges with $d_{e}=d_{f}=2,3$ edges of type $d_{e}=2, d_{f}=3,3$ edges with $d_{e}=d_{f}=3$. Hence, we deduce

$$
\begin{equation*}
A B C I I_{e}(G)=(1) \sqrt{\frac{1+2-2}{1 \times 2}} \times(2 n+2 k-6) \sqrt{\frac{2+2-2}{2 \times 2}} \times(3) \sqrt{\frac{2+3-2}{2 \times 3}} \times(3) \sqrt{\frac{3+3-2}{3 \times 3}}=3 \sqrt{2}(n+k-3) \tag{8}
\end{equation*}
$$

This completes the proof.

Theorem 3. The atom-bond connectivity temperature index of $L\left(S\left(T_{n, k}\right)\right)$ is

$$
\operatorname{ABCT}(G)=\left\{\begin{array}{l}
\sqrt{\left|-4 n^{2}+9 n-8 n k+9 k-4 k^{2}-4\right|}+(2 n+2 k-6) \sqrt{|(-2 n-2 k+4)(n+k-1)|},  \tag{9}\\
+3 \sqrt{\left|\frac{-4 n^{2}-8 n k+15 n-4 k^{2}+15 k-12}{3}\right|}+3 \sqrt{\left|\frac{(-4 n-4 k+12)(2 n+2 k-3)}{9}\right|}, \\
(2 n-5) \sqrt{\left|-2 n^{2}+2 n\right|}+\sqrt{\left.\frac{\mid-8 n^{2}+8 n+4}{3} \right\rvert\,}+2 \sqrt{\left|\frac{-4 n^{2}+7 n-1}{3}\right|}, \quad \text { when } k>1 ; \\
+2 \sqrt{\left|-2 n^{2}+5 n-2\right|},
\end{array}\right.
$$

Proof. In $G$, there are total $2(n+k)$ vertices, among which 3 vertices are of the degree 3 , one vertex of degree 1 and the remaining $2(n+k-2)$ vertices are of the degree 2 . The total number of edges of $G$ is $2(n+k)+1$. For $k=1$, we have $2(n+1)$ vertices, which one vertex of degree 1,3 vertices of degree 3 and $2(n-1)$ vertices of degree 2 . Therefore, after
adopting the induction trick, we have 4 edge partition based on the temperature. If $T_{u}$ and $T_{v}$ are the temperature of the vertex $u$ and $v$, then there are 1 edge of type $T_{1}=1 / 2 n+1$, $T_{3}=3 / 2 n-1,2 n-5$ edges with $T_{2}=T_{2}=1 / n, 2$ edges of type $\quad T_{2}=1 / n, \quad T_{3}=3 / 2 n-1, \quad 3$ edges with $T_{3}=T_{3}=3 / 2 n-1$. Hence, for graph $G$ with $k=1$, we have


Figure 2: [27] (a) The subdivision graph $S\left(W_{n}\right)$ of the tadpole graph $W_{n}$. (b) The line graph $L\left(S\left(W_{n}\right)\right.$ ).

$$
\begin{align*}
\operatorname{ABCT}(G) & =(1) \sqrt{\left|\frac{1 / 2 n+1+3 / 2 n-1-2}{1 / 2 n+1 \times 3 / 2 n-1}\right|}+(2 n-5) \sqrt{\left|\frac{1 / n+1 / n-2}{1 / n \times 1 / n}\right|}+(2) \sqrt{\left|\frac{1 / n+3 / 2 n-1-2}{1 / n \times 3 / 2 n-1}\right|}+(3) \sqrt{\left|\frac{3 / 2 n-1+3 / 2 n-1-2}{3 / 2 n-1 \times 3 / 2 n-1}\right|} \\
& =(2 n-5) \sqrt{\left|-2 n^{2}+2 n\right|}+\sqrt{\left|\frac{-8 n^{2}+8 n+4}{3}\right|}+2 \sqrt{\left|\frac{-4 n^{2}+7 n-1}{3}\right|}+2 \sqrt{\left|-2 n^{2}+5 n-2\right|} . \tag{10}
\end{align*}
$$

For $k>1$, we have 1 edge of type $T_{1}=1 / 2 n+2 k-1$,
$T_{3}=3 / 2 n+2 k-3,3$ edges with $T_{3}=T_{3}=3 / 2 n+2 k-3$. $T_{2}=2 / 2 n+2 k-2, \quad 2 n+2 k-6 \quad$ edges with Therefore, we get $T_{2}=T_{2}=2 / 2 n+2 k-2,3$ edges of type $T_{2}=2 / 2 n+2 k-2$,

$$
\begin{align*}
B C T(G)= & (1) \sqrt{\left|\frac{1 / 2 n+2 k-1+2 / 2 n+2 k-2-2}{1 / 2 n+2 k-1 \times 2 / 2 n+2 k-2}\right|}+(2 n+2 k-6) \sqrt{\left|\frac{2 / 2 n+2 k-2+2 / 2 n+2 k-2-2}{1 / 2 n+2 k-2 \times 3 / 2 n+2 k-2}\right|} \\
& +(3) \sqrt{\left|\frac{2 / 2 n+2 k-2+3 / 2 n+2 k-3-2}{2 / 2 n+2 k-2 \times 3 / 2 n+2 k-3}\right|}+(3) \sqrt{\left|\frac{3 / 2 n+2 k-3+3 / 2 n+2 k-3-2}{3 / 2 n+2 k-3 \times 3 / 2 n+2 k-3}\right|}  \tag{11}\\
& =\sqrt{\left|-4 n^{2}+9 n-8 n k+9 k-4 k^{2}-4\right|}+(2 n+2 k-6) \sqrt{|(-2 n-2 k+4)(n+k-1)|} \\
& +3 \sqrt{\left|\frac{-4 n^{2}-8 n k+15 n-4 k^{2}+15 k-12}{3}\right|}+3 \sqrt{\left|\frac{(-4 n-4 k+12)(2 n+2 k-3)}{9}\right|} .
\end{align*}
$$

This completes the proof.
Theorem 4. The edge version of the atom-bond connectivity index of $L\left(S\left(W_{n+1}\right)\right)$ is

$$
\begin{equation*}
A B C_{e}(G)=\frac{8 n}{3}+n \sqrt{\frac{n+1}{3 n}}+\frac{(n-1) \sqrt{2(n-1)}}{2} \tag{12}
\end{equation*}
$$

Proof. Let $G$ be the line graph of the subdivision graph $L\left(S\left(T_{n, k}\right)\right)$, seeing Figure 2. It contains $4 n$ vertices are of degree 3 and $n$ vertices of degree $n$. Out of $n^{2}+9 n / 2$ edges,
the $4 n$ edges of degree 3 have neighbor of degree 3 . Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ corresponding to these $4 n$ edges which have only neighbor of degree 3 is $8 n / 3$. The remaining $n$ vertices of degree 3 are adjacent to vertices of degree $n$. Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to these $n$ vertices is $n \sqrt{n+1 / 3 n}$. Also remaining $n(n-1) / 2$ edges of degree $n$ have neighbor of degree $n$. Hence, $\sum \sqrt{d_{e}+d_{f}-2 / d_{e} \cdot d_{f}}$ with respect to all these degrees of $n$ is $(n-1) \sqrt{2(n-1)} / 2$. Adding all these number together, the edge version of atom-
bond connectivity index of $G$ is found as $A B C_{e}(G)=8 n / 3+n \sqrt{n+1 / 3 n}+(n-1) \sqrt{2(n-1)} / 2$. This completes the proof.

Theorem 5. The edge version of the multiplicative atombond connectivity index of $L\left(S\left(W_{n+1}\right)\right.$ ) is

$$
\begin{equation*}
A B C I I_{e}(G)=\frac{4 n^{2}(n-1) \sqrt{3+n-2 / 3 n} \sqrt{2 n-2}}{3} \tag{13}
\end{equation*}
$$

Proof. After adopting the induction technology, it is clear to find that, roughly speaking, this line graph of subdivision graph has contained $4 n$ vertices and $n^{2}+9 n / 2$ edges. Also, there are $4 n$ edges of type $d_{e}=d_{f}=3, n$ edges of type $d_{e}=3$, $d_{f}=n, n(n-1) / 2$ edges with $d_{e}=d_{f}=n$. As a result, we infer

$$
\begin{equation*}
A B C I I_{e}(G)=(4 n) \sqrt{\frac{3+3-2}{3 \times 3}} \times(n) \sqrt{\frac{3+n-2}{3 \times n}} \times\left(\frac{n(n-1)}{2}\right) \sqrt{\frac{n+n-2}{n \times n}}=\frac{4 n^{2}(n-1) \sqrt{3+n-2 / 3 n} \sqrt{2 n-2}}{3} \tag{14}
\end{equation*}
$$

This completes the proof.
Theorem 6. The atom-bond connectivity temperature index of $L\left(S\left(W_{n+1}\right)\right)$ is

$$
\begin{aligned}
\operatorname{ABCT}(G)= & \frac{4}{3} n \sqrt{|(4 n-3)(-8 n+12)|}+n \sqrt{\left|\frac{-20 n+24}{3}\right|} \\
& +\sqrt{3} n(n-1)
\end{aligned}
$$

Proof. In G, there are total $4 n$ vertices are of degree 3 and $n$ vertices of degree $n$. The total number of edges of $G$ is $n^{2}+9 n / 2$. After adopting the induction method, we have 3 edge partition based on the temperature. If $T_{u}$ and $T_{v}$ are the temperature of the vertex $u$ and $v$, then there are $4 n$ edge of type $T_{3}=T_{3}=3 / 4 n-3, n$ edges with $T_{3}=3 / 4 n-3, T_{n}=1 / 3$ and $n(n-1) / 2$ edges of type $T_{n}=T_{n}=1 / 3$. Hence, we deduce

$$
\begin{align*}
\operatorname{ABCT}(G)= & (4 n) \sqrt{\left|\frac{3 / 4 n-3+3 / 4 n-3-2}{3 / 4 n-3 \times 3 / 4 n-3}\right|}+(n) \sqrt{\left|\frac{3 / 4 n-3+1 / 3-2}{3 / 4 n-3 \times 1 / 3}\right|}  \tag{16}\\
& +\left(\frac{n(n-1)}{2}\right) \sqrt{\left|\frac{1 / 3+1 / 3-2}{1 / 3 \times 1 / 3}\right|}=\frac{4}{3} n \sqrt{|(4 n-3)(-8 n+12)|}+n \sqrt{\left|\frac{-20 n+24}{3}\right|}+\sqrt{3} n(n-1) .
\end{align*}
$$

This completes the proof.

Theorem 7. The edge version of the atom-bond connectivity index of $L\left(S\left(L_{n}\right)\right)$ is

$$
\begin{equation*}
A B C_{e}(G)=5 \sqrt{2}+\frac{2(9 n-20)}{3} \tag{17}
\end{equation*}
$$

Proof. Let $G$ be the line graph of subdivision graph $L\left(S\left(L_{n}\right)\right)$, seeing Figure 3. The number of vertices in $G$ is $6 n-4$ among which 8 vertices are of degree 2 and the remaining $6 n-12$ vertices are of degree 3. The number of edges in $G$ is $9 n-10$ among which 6 edges are of degree 2 with itself, 4 edges are of degree 2 and 3 , and the remaining $9 n-20$ edges are of degree 3 with itself. Adding all these numbers together, the edge version of the atom-bond connectivity index of $G$ is found as $A B C_{e}(G)=5 \sqrt{2}+2(9 n-20) / 3$. This completes the proof.

Theorem 8. The edge version of multiplicative atom-bond connectivity index of $L\left(S\left(L_{n}\right)\right)$ is

$$
\begin{equation*}
A B C I I_{e}(G)=8(9 n-20) \tag{18}
\end{equation*}
$$

Proof. After adopting the induction trick, we can find that, in general, this line graph of subdivision graph has $6 n-4$ vertices and $9 n-10$ edges. At the same, there are 6 edges of type $d_{e}=d_{f}=2,4$ edges of type $d_{e}=2, d_{f}=3,9 n-20$ edges with $d_{e}=d_{f}=3$. Therefore, we get

$$
\begin{align*}
\operatorname{ABCII}_{e}(G)= & (6) \sqrt{\frac{2+2-2}{2 \times 2}} \times(4) \sqrt{\frac{2+3-2}{2 \times 3}}  \tag{19}\\
& \times(9 n-20) \sqrt{\frac{3+3-2}{3 \times 3}}=8(9 n-20)
\end{align*}
$$

This completes the proof.

(a)

(b)

Figure 3: [27]: (a) The subdivision graph $S\left(L_{n}\right)$ of the tadpole graph $L_{n}$. (b) The line graph $L\left(S\left(L_{n}\right)\right.$ ).

Table 1: Comparison between $\mathbf{A B C}_{e}, \mathbf{A B C}_{e}$, and $\operatorname{ABCT}$ of $\mathbf{L}\left(\mathbf{S}\left(\mathbf{T}_{\mathrm{n}, \mathrm{k}}\right)\right)$.

| $(\mathbf{n}, \mathbf{k})$ | ABC $_{\mathbf{e}}$ | ABCII $_{e}$ |
| :--- | :---: | :---: |
| $(1,1)$ | 2.1093898 | -4.898979486 |
| $(2,2)$ | 6.242640687 | 4.242640687 |
| $(3,3)$ | 9.071067812 | 12.72792206 |
| $(4,4)$ | 11.89949494 | 21.21320344 |
| $(5,5)$ | 14.72792206 | 29.69848481 |
| $(6,6)$ | 17.55634919 | 38.18376618 |
| $(7,7)$ | 20.38477631 | 46.66904756 |
| $(8,8)$ | 23.21320344 | 55.15432893 |
| $(9,9)$ | 26.04163056 | 63.63961031 |
| $(10,10)$ | 28.87005769 | 72.12489168 |

Theorem 9. The atom-bond connectivity temperature index
of $L\left(S\left(L_{n}\right)\right)$ is

$$
\begin{equation*}
A B C T(G)=6 \sqrt{|(3 n-3)(-6 n+8)|}+4 \sqrt{\left|\frac{-36 n^{2}+93 n-58}{3}\right|}+\frac{(9 n-20) \sqrt{|(6 n-7)(-12 n+20)|}}{3} . \tag{20}
\end{equation*}
$$

Proof. In G, there are total $6 n-4$ vertices in which 8 vertices are of degree 2 and the remaining $6 n-12$ vertices are of degree 3. The total number of edges of $G$ is $9 n-10$. After adopting the induction technology, we have 3 edge partition based on the temperature. If $T_{u}$ and $T_{v}$ are the temperature
of the vertex $u$ and $v$, then there are 6 edge of type $T_{2}=T_{2}=1 / 3 n-3,4$ edges with $T_{2}=1 / 3 n-3$, $T_{3}=3 / 6 n-7$ and $9 n-20$ edges of type $T_{3}=T_{3}=3 / 6 n-7$. As a result, we infer

$$
\begin{align*}
\operatorname{ABCT}(G) & =(6) \sqrt{\left|\frac{1 / 3 n-3+1 / 3 n-3-2}{1 / 3 n-3 \times 1 / 3 n-3}\right|}+(4) \sqrt{\left|\frac{1 / 3 n-3+3 / 6 n-7-2}{1 / 3 n-3 \times 3 / 6 n-7}\right|}+(9 n-20) \sqrt{\left|\frac{3 / 6 n-7+3 / 6 n-7-2}{3 / 6 n-7 \times 3 / 6 n-7}\right|} \\
& =6 \sqrt{|(3 n-3)(-6 n+8)|}+4 \sqrt{\left|\frac{-36 n^{2}+93 n-58}{3}\right|+\frac{(9 n-20) \sqrt{|(6 n-7)(-12 n+20)|}}{3}} . \tag{21}
\end{align*}
$$

This completes the proof.


Figure 4: Comparison between $A B C_{e}, A B C_{e}$, and $A A B C_{e}$ of $L\left(S\left(T_{n, k}\right)\right)$.

Table 2: Comparison between $\mathbf{A B C}_{e}, \mathbf{A B C I I}_{\mathrm{e}}$, and $\mathbf{A B C T}$ of $\mathbf{L}\left(\mathbf{S}\left(\mathbf{W}_{\mathbf{n}+1}\right)\right)$.

| $\mathbf{n}$ | $\mathbf{A B C}_{\mathbf{e}}$ | $\mathbf{A B C I I}_{\mathbf{e}}$ | $\mathbf{A B C T}$ |
| :--- | :---: | :---: | :---: |
| 1 | 3.483163248 | 0 | 3.821367205 |
| 2 | 7.454653677 | 12 | 5.333333333 |
| 3 | 16.92289018 | 32 | 20.00859965 |
| 4 | 22.15246524 | 101.1928851 | 62.35382907 |
| 5 | 27.64735154 | 238.5139176 | 124.0640009 |
| 6 | 33.37946531 | 473.2863826 | 205.2566258 |
| 7 | 39.32811367 | 838.1312546 | 425.862831 |
| 8 | 45.47722558 | 1368.662608 | 565.0772789 |
| 9 | 51.81385047 | 2103.254621 | 723.5738722 |
| 10 | 3082.855819 | 901.2753388 |  |



Figure 5: Comparison between $A B C_{e}, A B C I I_{e}$, and $A B C T$ of $L\left(S\left(W_{n+1}\right)\right)$.

Table 3: Comparison between $\mathbf{A B C}_{e}, \mathbf{A B C I I}_{\mathbf{e}}$, and $\mathbf{A B C T}$ of $\mathbf{L}\left(\mathbf{S}\left(\mathbf{L}_{\mathbf{n}}\right)\right)$.

| $\mathbf{n}$ | $\mathbf{A B C}_{\mathbf{e}}$ | ABCII $_{\mathbf{e}}$ | $\mathbf{A B C T}$ |
| :--- | :---: | :---: | :---: |
| 1 | -0.2622655215 | -88 | -8.061498381 |
| 2 | 5.737734479 | -16 | 27.04079003 |
| 3 | 11.73773448 | 56 | 100.868826 |
| 4 | 17.73773448 | 128 | 225.7405179 |
| 5 | 23.73773448 | 200 | 401.5280011 |
| 6 | 29.73773448 | 272 | 628.2266894 |
| 7 | 35.73773448 | 344 | 905.8363724 |
| 8 | 41.73773448 | 416 | 1234.357204 |
| 9 | 47.73773448 | 488 | 1613.789329 |
| 10 | 53.73773448 | 560 | 2044.132853 |



Figure 6: Comparison between $A B C_{e}, A B C I I_{e}$, and $A B C T$ of $L\left(S\left(L_{n}\right)\right)$.

## 3. Numerical Simulation and Conclusion

In this paper, we propose some novel families of atom-bond connectivity index. Now, the results of these indices will be compared. The comparison between $A B C_{e}, A B C I I_{e}$, and $A B C T$ of $L\left(S\left(T_{n, k}\right)\right)$ is shown in Table 1. The graphical representation of Table 1 is illustrated in Figure 4.

Similarly, the results for $A B C_{e}, A B C I I_{e}$, and $A B C T$ of $L S\left(W_{n+1}\right)$ are compared in Table 2. Table 2 is given in Figure 5. Finally, the comparison of $A B C_{e}, A B C I I_{e}$, and $A B C T$ of $L\left(S\left(L_{n}\right)\right)$ is shown in Table 3. The illustration of the results for $A B C_{e}, A B C I I_{e}$, and $A B C T$ is shown as Figure 6.

In this paper, certain degree-based topological indices, namely, $A B C$ indices, were studied for the case of the line graphs of the subdivision graphs. It is anticipated that this computational study will encourage the researchers to have a firm grasp on the index framework they have chosen. The computational technique presented here can be useful for analysing the physicochemical features of the specified network, as well as being cost-effective and time-efficient. Future work includes the investigation of new classes of line graph of subdivision graphs and their topological indices which is useful in QSAR and QSPR studies.

## Data Availability

All data required for this paper are included within these papers.

## Conflicts of Interest

The authors declare that they have no conflicts of interest.

## Acknowledgments

The authors acknowledge Universiti Malaysia Terengganu for providing the financial support under Talent and Publication Enhancement-Research Grant (TAPE-RG; vot no. 55330).

## References

[1] A. Ali and Z. Du, "On the difference between atom-bond connectivity index and Randic index of binary and chemical trees," International Journal of Quantum Chemistry, vol. 117, 2017.
[2] X. Li and Y. Shi, "A survey on the Randi'c index," MATCH Commun. Math. Comput. Chem.vol. 59, no. 1, pp. 127-156, 2008.
[3] Y. Shi, "Note on two generalizations of the Randi'c index," Applied Mathematics and Computation, vol. 265, pp. 1019-1025, 2015.
[4] M. Saheli, H. Saati, and A. R. Ashrafi, "The eccentric connectivity index of one pentagonal carbon nanocones," Optoelectron. Adv. Mater. Rapid Commun, vol. 4, no. 6, pp. 896-897, 2010.
[5] S. Javed, Y. F. Alanazi, and A. M. Alanazi, "Computing correlation among the graphs under Lexicographic product via Zagreb indices," Molecular Topology of Graphs, vol. 2021, Article ID 7465171, 17 pages, 2021.
[6] M. A. Rajan, V. Lokesha, and P. S. Ranjini, "A study on series edge graph transformation," in Proceedings of the 23rd Joint Congress Iran-South Korea Jangjeon Math. Soc, Iran, 2010.
[7] N. H. A. M. Saidi, M. N. Husin, and N. B. Ismail, "Zagreb indices and Zagreb coindices of the line graphs of the subdivision graphs," Journal of Discrete Mathematical Sciences and Cryptography, vol. 23, no. 6, pp. 1253-1267, 2020.
[8] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, "An atom-bond connectivity index: modelling the enthalpy of formation of Alkanes," Indian Journal of Chemistry, vol. 37A, pp. 849-855, 1998.
[9] K. C. Das, M. A. Mohammed, I. Gutman, and K. A. Atan, "Comparison between atom-bond connectivity indices of graphs, MATCH Commun," Math. Comput. Chem, vol. 76, no. 1, pp. 159-170, 2016.
[10] W. Lin, J. Chen, C. Ma et al., "On trees with minimal ABC index among trees with given number of leaves, MATCH Commun," Math. Comput. Chem, vol. 76, no. 1, pp. 131-140, 2016.
[11] Y. Gao and Y. Shao, "The smallest ABC index of trees with $n$ pendent vertices, MATCH Commun," Math. Comput. Chem, vol. 76, no. 1, pp. 141-158, 2016.
[12] M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, "New upper bounds for the ABC index, MATCH Commun," Math. Comput. Chem, vol. 76, no. 1, pp. 117-130, 2016.
[13] M. R. Farahani, "The edge version of atom bond connectivity index of connected graph," Acta Universitatis Apulensis, vol. 36, pp. 277-284, 2012.
[14] W. Gao, M. R. Farahani, S. Wang, and M. N. Husin, "On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations," Applied Mathematics and Computation, vol. 308, pp. 11-17, 2017.
[15] M. N. Husin and A. Ariffin, "On the edge version of topological indices for certain networks," Italian Journal of Pure and Applied Mathematics, vol. 47, pp. 550-564, 2022.
[16] W. Gao, M. N. Husin, M. R. Farahani, and M. Imran, "On the edges version of atom-bond connectivity index of nanotubes," Journal of Computational and Theoretical Nanoscience, vol. 13, no. 10, pp. 6733-6740, 2016.
[17] W. Gao, M. N. Husin, M. R. Farahani, and M. Imran, "On the edges version of atom-bond connectivity and geometric arithmetic indices of nanocones $C N C_{k}[n]$," Journal of Computational and Theoretical Nanoscience, vol. 13, no. 10, pp. 6741-6746, 2016.
[18] X. Zhang, X. Wu, S. Akhter, M. K. Jamil, J. B. Liu, and M. R. Farahani, "Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs," Symmetry, vol. 10, no. 12, p. 751, 2018.
[19] V. R. Kulli, "Multiplicative connectivity indices of certain nanotubes," Annals of Pure and Applied Mathematics, vol. 12, no. 2, pp. 169-176, 2016.
[20] A. Mahboob, S. Mahboob, M. M. M. Jaradat, N. Nigar, and I. Siddique, "On some properties of multiplicative topological indices in silicon-carbon," Journal of Mathematics, vol. 2021, Article ID 4611199, 10 pages, 2021.
[21] V. R. Kulli, "Multiplicative connectivity indices of T U C4C8 [m, n] and T U C4 [m, n] nanotubes," Journal of Computer and Mathematical Sciences, vol. 7, no. 11, pp. 599-605, 2016.
[22] V. R. Kulli, "Edge version of multiplicative atom-bond connectivity index of certain nanotubes and nanotorus," International Journal of Mathematics and Applications, vol. 6, no. 1-E, pp. 977-982, 2018.
[23] S. Fajtlowicz, "On conjectures of graffiti," Discrete Mathematics, vol. 72, no. 1-3, pp. 113-118, 1988.
[24] A. T. Kahasy, K. Narayankar, and D. Selvan, "Atom bond connectivity temperature index," J. Maths Nanoscienese, vol. 8, no. 2, pp. 67-75, 2018.
[25] P. S. Ranjini, V. Lokesha, and I. Cangül, "On the Zagreb indices of the line graphs of the subdivision graphs," Applied Mathematics and Computation, vol. 218, no. 3, pp. 699-702, 2011.
[26] P. S. Ranjini, V. Lokesha, and M. A. Rajan, "On the Scultz index of the subdivision graph," Adv. Stud. Contemp. Math, vol. 21, no. 2, pp. 279-290, 2011.
[27] G. Su and L. Xu, "Topological indices of the line graph of subdivision graphs and their Schur-bounds," Applied Mathematics and Computation, vol. 253, pp. 395-401, 2015.
[28] M. F. Nadeem, S. Zafar, and Z. Zahid, "On certain topological indices of the line graph of subdivision graphs," Applied Mathematics and Computation, vol. 271, pp. 790-794, 2015.
[29] G. Rajasekar and K. Nagarajan, "Location domination number of line graph," Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 5, pp. 777-786, 2019.
[30] R. Li and M. M. Taylor, "The first zagreb index and some Hamiltonian properties of the line graph of a graph," Journal of Discrete Mathematical Sciences and Cryptography, vol. 20, no. 2, pp. 445-451, 2017.
[31] M. F. Nadeem, S. Zafar, and Z. Zahid, "On topological properties of the line graphs of subdivision graphs of certain nanostructures," Applied Mathematics and Computation, vol. 273, pp. 125-130, 2016.

