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A topological index is a numerical measure that characterises the whole structure of a graph. Based on vertex degrees, the idea of
an atom-bond connectivity (ABC) index was introduced in chemical graph theory. Later, di�erent versions of the ABC index were
created, and some of these indices were recently designed. In this paper, we present the edge version of the atom-bond con-
nectivity (ABCe) index, edge version of the multiplicative atom-bond connectivity (ABCIIe) index, and atom-bond connectivity
temperature (ABCT) index for the line graph of subdivision graph of tadpole graph (Tn,k), ladder graph (Ln), and wheel graph
(Wn+1). Numerical simulation has also been shown for some novel families of atom-bond connectivity index comparing the three
types of indices which can be useful for QSAR and QSPR studies.

1. Introduction

In this article, we have considered simple graphs, which are
unweighted, undirected graphs that have no loops and
multiple edges attached. Let G be a simple graph, with vertex
setV(G) and edge set E(G). Suppose e is an edge ofG, which
connects the vertices u and v, then we denote e � uv and
state that “u and v are adjacent.” �e degree du of a vertex u
is the number of edges that are incident to it. Topological
indices are the mathematical measures that correspond to
the structure of any simple �nite graph. �ey are invariant
under the graph isomorphism. �ere are some famous
degree-based topological indices, which are introduced and
applied in chemical engineering, for instance, the Randic
index (refer to Ali &Du [1], Li & Shi [2], and Shi [3] for more
details). �ese indices are also signi�cant in quantitative
structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) (see [4, 5]).

�e subdivision graph [6, 7] S(G) is the graph obtained
from G by replacing each of its edge by a path of length 2. In

graph G, if the corresponding edges share a vertex in G, the
line graph L(G) of a graph G is considered as a graph with
vertices of the edges inG. Two vertices e andf are incident if
and only if they have a common end vertex in G. Estrada
et al. [8] put forward a topological index named atom-bond
connectivity index (brie¢y, ABC) as

ABC(G) � ∑
uv∈E(G)

���������
du + dv − 2
du × dv

√

, (1)

where du and dv represent the degrees of the vertices u and v,
respectively. Recent advances on ABC index can be referred
to in Das et al. [9], Lin et al. [10], Gao & Shao [11], and
Bianchi et al. [12]. Referring to the end vertex degree de and
df of edges e and f in a line graph of G, Farahani [13]
proposed the edge version of atom-bond connectivity, ABCe
index. �is idea is described in the following:

ABCe(G) � ∑
ef∈E(G)

���������
de + df − 2
de × df

√

, (2)
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where de and df are the degree of the edge e and f, re-
spectively. (e reader can find more information about
ABCe index in References [14–18].

(e multiplicative atom-bond connectivity index was
introduced by Kulli in 2016 [19]. More information re-
garding the multiplicative atom-bond connectivity index
may be found in references [20, 21]. Later, the edge version
of the multiplicative atom-bond connectivity index [22] of a
graph G was introduced, and it is defined as

ABCIIe(G) � 
ef∈E(L(G))

���������
de + df − 2

de · df



, (3)

where de is the degree of the edge e in L(G).
(e temperature of a vertex u of a connected graph G is

defined by Fajtlowicz [23] as

T(u) �
du

n − du

, (4)

where du is the degree of a vertex u and n is the size of a
graph G. Recently, Kahasy et al. [24] introduced a new index,
known as the atom-bond connectivity temperature index.
(is index is defined as follows:

ABCT(G) � 
uv∈E(G)

�����������
Tu + Tv − 2

TuTv







, (5)

where Tu and Tv are the temperature of the vertex u and v,
respectively.

2. Main Results

In 2011, Ranjini et al. calculated the explicit expression for the
Shultz indices of the subdivision graphs of the tadpole, wheel,
helm, and ladder graphs [25]. (ey also studied the Zagreb
indices of line graphs of tadpole, wheel, and ladder graphs
with subdivision in [26]. In 2015, Su & Xu calculated the
general sum-connectivity indices and coindices of line graphs
of tadpole, wheel, and ladder graphs with subdivision in [27].
In [28], Nadeem et al. computedABC4 andGA5 indices of the
line graphs of these graphs by using the notion of subdivision.
(ey also studied the ABC4 and GA5 of these graphs [28].
Other studies on these include Rajasekar & Nagarajan [29]
research on the location domination number of the line
graph. Recently, Li &. Taylor [30] also studied the first Zagreb
index and some Hamilton properties of the line graph.

A tadpole graph Tn,k is the graph obtained by joining a
cycle of n vertices with a path of length k. A ladder Ln is
obtained by taking the Cartesian product of two paths
Pn × P2. A wheel graph Wn or order n composed of a vertex
is called the hub, adjacent to all vertices of a cycle of the order
n.

Motivated by the results of [26, 27, 31], we studied the
line graph of the subdivision graph Tn,k, Ln, and Wn+1 and
derived an expression for the edge version of atom-bond
connectivity, multiplicative atom-bond connectivity indices,
and atom-bond connectivity temperature index of the
graphs L(S(Tn,k)), L(S(Wn+1)), and L(S(Ln)).

Theorem 1. -e edge version of the atom-bond connectivity
index of L(S(Tn,k)) is

ABCe(G) �

�
2

√
n +

�
2

√
k + 2 −

�
2

√
,when k> 1;

�
2

√
n + 2 +

�
2
3



−
3

�
2

√

2
,when k � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Proof. Let G be the line graph of the subdivision graph
L(S(Tn,k)), seeing Figure 1. It contained 2(n + k) edges of
the subdivision graph of S(Tn,k), and then, in the graph of G,
it contained 2(n + k) vertices. It consists of three types of
degree of edge e, such as 1, 2, and 3. Out of which, 3 vertices
are of the degree 3, one vertex of degree 1 and the remaining
2(n + k − 2) vertices are of the degree 2. (e graph of G

contains path of length 2k − 1. Let V1 be the vertex of degree
3 which is attached to this path. Let V1′ and V2′ be the
neighbor of V1 which are of degree 3 in the L(G). (e
vertices V1′ and V2′ have two neighbors of degree 3 and one
neighbor of degree 2 in L(S(Cn) + e), where e is the edge
adjacent to S(Cn). (e vertex V1 has 2 adjacent vertices of
degree 3 and one vertex of degree 2 in the path. Let we derive
an expression for the edge version of topological indices of
the graph G, for k � 1. In graph G, it contains a path of
length 1 which attached with V1. Hence,


���������������
de + df − 2/de · df


with respect to the path is

���
2/3

√
. For


���������������
de + df − 2/de · df


corresponding to the vertices V1,

V1′, andV2′ in L(S(Cn) + e), hence, we have 4 +
�
2

√
. Since

one edge in G is shared between pairs of vertices,


���������������
de + df − 2/de · df


� 2 +

���
1/2

√
. Among the remaining,

2n − 4 vertices, for 2n − 5 vertices, have neighbors of degree
2, and one vertex has neighbor of degree 3. Hence,


���������������
de + df − 2/de · df


with respect to 2n − 4 vertices is

�
2

√
n − 2

�
2

√
. Adding all these number together, the edge

version of atom-bond connectivity index of G is found as
ABCe(G) �

�
2

√
n + 2 +

���
2/3

√
− 3

�
2

√
/2.

If k> 1, then the graph G contains path of length 2k − 1
which attached with V1. Hence, 

���������������
de + df − 2/de · df


with

respect to the path is
���
1/2

√
(2k − 1). For


���������������
de + df − 2/de · df


corresponding to the vertices V1,

V1′ andV2′ in L(S(Cn) + e), hence, we have 4 +
�
2

√
. Since one

edge in G is shared between pairs of vertices,


���������������
de + df − 2/de · df


� 2 +

���
1/2

√
. Out of 2n − 2 vertices,

for 2n − 3 vertices have neighbors of degree 2 and one vertex
has neighbor of degree 3. Hence, 

���������������
de + df − 2/de · df



with respect to 2n − 2 vertices is
�
2

√
n −

�
2

√
. Adding all these

number together, the edge version of atom-bond connectivity
index of G is found as ABCe(G) �

�
2

√
n +

�
2

√
k + 2 −

�
2

√
.(is

completes the proof. □

Theorem 2. -e edge version of the multiplicative atom-
bond connectivity index of L(S(Tn,k)) is
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ABCIIe(G) �

3
�
2

√
(n + k − 3),when k> 1;

2
�
2
3



(2n − 5),when k � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Proof. After adopting the induction method, it is clear that
overall speaking, this line graph of subdivision graph

possesses of 2(n + k) vertices and 2(n + k) + 1 edges. If de

and df are the degree of edge e, then there are 1 edge of type
de � 1, df � 3, 2n − 5 edges with de � df � 2, 2 edges of type
de � 2, df � 3, 3 edges with de � df � 3. Hence, for graph G

with k � 1, we have ABCIIe(G) � 2
���
2/3

√
(2n − 5). For k> 1,

we have 1 edge of type de � 1, df � 2, 2n + 2k − 6 edges with
de � df � 2, 3 edges of type de � 2, df � 3, 3 edges with
de � df � 3. Hence, we deduce

ABCIIe(G) � (1)

�������
1 + 2 − 2
1 × 2



×(2n + 2k − 6)

�������
2 + 2 − 2
2 × 2



×(3)

�������
2 + 3 − 2
2 × 3



×(3)

�������
3 + 3 − 2
3 × 3



� 3
�
2

√
(n + k − 3). (8)

(is completes the proof. □ Theorem 3. -e atom-bond connectivity temperature index
of L(S(Tn,k)) is

ABCT(G) �

��������������������������

−4n
2

+ 9n − 8nk + 9k − 4k
2

− 4






+(2n + 2k − 6)
����������������������
|(−2n − 2k + 4)(n + k − 1)|


,

+3

�����������������������������
−4n

2
− 8nk + 15n − 4k

2
+ 15k − 12

3







+ 3
�������������������������
(−4n − 4k + 12)(2n + 2k − 3)

9







,

when k> 1;

(2n − 5)

���������

−2n
2

+ 2n






+

������������
−8n

2
+ 8n + 4
3







+ 2

������������
−4n

2
+ 7n − 1
3







,

+2
������������

−2n
2

+ 5n − 2






,

when k � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Proof. In G, there are total 2(n + k) vertices, among which 3
vertices are of the degree 3, one vertex of degree 1 and the
remaining 2(n + k − 2) vertices are of the degree 2. (e total
number of edges of G is 2(n + k) + 1. For k � 1, we have
2(n + 1) vertices, which one vertex of degree 1, 3 vertices of
degree 3 and 2(n − 1) vertices of degree 2. (erefore, after

adopting the induction trick, we have 4 edge partition based
on the temperature. If Tu and Tv are the temperature of the
vertex u and v, then there are 1 edge of type T1 � 1/2n + 1,
T3 � 3/2n − 1, 2n − 5 edges with T2 � T2 � 1/n, 2 edges of
type T2 � 1/n, T3 � 3/2n − 1, 3 edges with
T3 � T3 � 3/2n − 1. Hence, for graph G with k � 1, we have

S (Pk) S (Cn)

(a)

P2k-1

x2
x1

x3

(b)

Figure 1: [27] (a) (e subdivision graph S(Tn,k) of the tadpole graph Tn,k. (b) (e line graph L(S(Tn,k)).
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ABCT(G) � (1)

��������������������
1/2n + 1 + 3/2n − 1 − 2
1/2n + 1 × 3/2n − 1







+(2n − 5)

������������
1/n + 1/n − 2
1/n × 1/n







+(2)

����������������
1/n + 3/2n − 1 − 2
1/n × 3/2n − 1







+(3)

��������������������
3/2n − 1 + 3/2n − 1 − 2
3/2n − 1 × 3/2n − 1







� (2n − 5)

���������

−2n
2

+ 2n






+

������������

−8n
2

+ 8n + 4
3








+ 2

������������

−4n
2

+ 7n − 1
3








+ 2
������������

−2n
2

+ 5n − 2






.

(10)

For k> 1, we have 1 edge of type T1 � 1/2n + 2k − 1,
T2 � 2/2n + 2k − 2, 2n + 2k − 6 edges with
T2 � T2 � 2/2n + 2k − 2, 3 edges of type T2 � 2/2n + 2k − 2,

T3 � 3/2n + 2k − 3, 3 edges with T3 � T3 � 3/2n + 2k − 3.
(erefore, we get

BCT(G) � (1)

����������������������������
1/2n + 2k − 1 + 2/2n + 2k − 2 − 2
1/2n + 2k − 1 × 2/2n + 2k − 2







+(2n + 2k − 6)

����������������������������
2/2n + 2k − 2 + 2/2n + 2k − 2 − 2
1/2n + 2k − 2 × 3/2n + 2k − 2







+(3)

����������������������������
2/2n + 2k − 2 + 3/2n + 2k − 3 − 2
2/2n + 2k − 2 × 3/2n + 2k − 3







+(3)

����������������������������
3/2n + 2k − 3 + 3/2n + 2k − 3 − 2
3/2n + 2k − 3 × 3/2n + 2k − 3







�

��������������������������

−4n
2

+ 9n − 8nk + 9k − 4k
2

− 4






+(2n + 2k − 6)
����������������������
|(−2n − 2k + 4)(n + k − 1)|



+ 3

�����������������������������

−4n
2

− 8nk + 15n − 4k
2

+ 15k − 12
3








+ 3

�������������������������
(−4n − 4k + 12)(2n + 2k − 3)

9







.

(11)

(is completes the proof. □

Theorem 4. -e edge version of the atom-bond connectivity
index of L(S(Wn+1)) is

ABCe(G) �
8n

3
+ n

�����
n + 1
3n



+
(n − 1)

�������
2(n − 1)



2
. (12)

Proof. Let G be the line graph of the subdivision graph
L(S(Tn,k)), seeing Figure 2. It contains 4n vertices are of
degree 3 and n vertices of degree n. Out of n2 + 9n/2 edges,

the 4n edges of degree 3 have neighbor of degree 3. Hence,


���������������
de + df − 2/de · df


corresponding to these 4n edges

which have only neighbor of degree 3 is 8n/3. (e remaining
n vertices of degree 3 are adjacent to vertices of degree n.
Hence, 

���������������
de + df − 2/de · df


with respect to these n ver-

tices is n
�������
n + 1/3n

√
. Also remaining n(n-1)/2 edges of degree

n have neighbor of degree n. Hence, 
���������������
de + df − 2/de · df



with respect to all these degrees of n is (n − 1)
�������
2(n − 1)


/2.

Adding all these number together, the edge version of atom-

x
y

z

w

(a) (b)

Figure 2: [27] (a) (e subdivision graph S(Wn) of the tadpole graph Wn. (b) (e line graph L(S(Wn)).
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bond connectivity index of G is found as
ABCe(G) � 8n/3 + n

�������
n + 1/3n

√
+ (n − 1)

�������
2(n − 1)


/2. (is

completes the proof. □

Theorem 5. -e edge version of the multiplicative atom-
bond connectivity index of L(S(Wn+1)) is

ABCIIe(G) �
4n

2
(n − 1)

����������
3 + n − 2/3n

√ �����
2n − 2

√

3
. (13)

Proof. After adopting the induction technology, it is clear to
find that, roughly speaking, this line graph of subdivision
graph has contained 4n vertices and n2 + 9n/2 edges. Also,
there are 4n edges of type de � df � 3, n edges of type de � 3,
df � n, n(n − 1)/2 edges with de � df � n. As a result, we
infer

ABCIIe(G) � (4n)

�������
3 + 3 − 2
3 × 3



×(n)

��������
3 + n − 2
3 × n



×
n(n − 1)

2
 

��������
n + n − 2

n × n



�
4n

2
(n − 1)

����������
3 + n − 2/3n

√ �����
2n − 2

√

3
. (14)

(is completes the proof. □

Theorem 6. -e atom-bond connectivity temperature index
of L(S(Wn+1)) is

ABCT(G) �
4
3

n
����������������
|(4n −3)(−8n +12)|


+ n

���������
−20n +24

3







+
�
3

√
n(n −1).

(15)

Proof. In G, there are total 4n vertices are of degree 3 and n

vertices of degree n. (e total number of edges of G is
n2 + 9n/2. After adopting the induction method, we have 3
edge partition based on the temperature. If Tu and Tv are the
temperature of the vertexu and v, then there are 4n edge of type
T3 � T3 � 3/4n − 3, n edges with T3 � 3/4n − 3, Tn � 1/3 and
n(n − 1)/2 edges of type Tn � Tn � 1/3. Hence, we deduce

ABCT(G) � (4n)

��������������������
3/4n − 3 + 3/4n − 3 − 2
3/4n − 3 × 3/4n − 3







+(n)

����������������
3/4n − 3 + 1/3 − 2
3/4n − 3 × 1/3







+
n(n − 1)

2
 

������������
1/3 + 1/3 − 2
1/3 × 1/3







�
4
3

n
�����������������
|(4n − 3)(−8n + 12)|


+ n

����������
−20n + 24

3







+
�
3

√
n(n − 1).

(16)

(is completes the proof. □

Theorem 7. -e edge version of the atom-bond connectivity
index of L(S(Ln)) is

ABCe(G) � 5
�
2

√
+
2(9n − 20)

3
. (17)

Proof. Let G be the line graph of subdivision graph L(S(Ln)),
seeing Figure 3. (e number of vertices in G is 6n − 4 among
which 8 vertices are of degree 2 and the remaining 6n − 12
vertices are of degree 3. (e number of edges in G is 9n − 10
among which 6 edges are of degree 2 with itself, 4 edges are of
degree 2 and 3, and the remaining 9n − 20 edges are of degree 3
with itself. Adding all these numbers together, the edge version
of the atom-bond connectivity index of G is found as
ABCe(G) � 5

�
2

√
+ 2(9n − 20)/3. (is completes the

proof. □

Theorem 8. -e edge version of multiplicative atom-bond
connectivity index of L(S(Ln)) is

ABCIIe(G) � 8(9n − 20). (18)

Proof. After adopting the induction trick, we can find that,
in general, this line graph of subdivision graph has 6n − 4
vertices and 9n − 10 edges. At the same, there are 6 edges of
type de � df � 2, 4 edges of type de � 2, df � 3, 9n − 20
edges with de � df � 3. (erefore, we get

ABCIIe(G) � (6)

�������
2 + 2 − 2
2 × 2



×(4)

�������
2 + 3 − 2
2 × 3



×(9n − 20)

�������
3 + 3 − 2
3 × 3



� 8(9n − 20).

(19)

(is completes the proof. □
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Theorem 9. -e atom-bond connectivity temperature index
of L(S(Ln)) is

ABCT(G) � 6
����������������
|(3n − 3)(−6n + 8)|


+ 4

���������������

−36n
2

+ 93n − 58
3








+
(9n − 20)

������������������
|(6n − 7)(−12n + 20)|



3
. (20)

Proof. In G, there are total 6n − 4 vertices in which 8 vertices
are of degree 2 and the remaining 6n − 12 vertices are of
degree 3. (e total number of edges of G is 9n − 10. After
adopting the induction technology, we have 3 edge partition
based on the temperature. If Tu and Tv are the temperature

of the vertex u and v, then there are 6 edge of type
T2 � T2 � 1/3n − 3, 4 edges with T2 � 1/3n − 3,
T3 � 3/6n − 7 and 9n − 20 edges of type T3 � T3 � 3/6n − 7.
As a result, we infer

ABCT(G) � (6)

��������������������
1/3n − 3 + 1/3n − 3 − 2
1/3n − 3 × 1/3n − 3







+(4)

��������������������
1/3n − 3 + 3/6n − 7 − 2
1/3n − 3 × 3/6n − 7







+(9n − 20)

��������������������
3/6n − 7 + 3/6n − 7 − 2
3/6n − 7 × 3/6n − 7







� 6
����������������
|(3n − 3)(−6n + 8)|


+ 4

���������������

−36n
2

+ 93n − 58
3








+
(9n − 20)

������������������
|(6n − 7)(−12n + 20)|



3
.

(21)

(is completes the proof. □

(a) (b)

Figure 3: [27]: (a) (e subdivision graph S(Ln) of the tadpole graph Ln. (b) (e line graph L(S(Ln)).

Table 1: Comparison between ABCe, ABCe, and ABCT of L(S(Tn,k)).

(n, k) ABCe ABCIIe ABCT

(1, 1) 2.1093898 −4.898979486 4.7876937
(2, 2) 6.242640687 4.242640687 23.98539667
(3, 3) 9.071067812 12.72792206 72.10624376
(4, 4) 11.89949494 21.21320344 142.5586461
(5, 5) 14.72792206 29.69848481 235.5731609
(6, 6) 17.55634919 38.18376618 351.1898721
(7, 7) 20.38477631 46.66904756 489.4215973
(8, 8) 23.21320344 55.15432893 650.2737199
(9, 9) 26.04163056 63.63961031 833.7488996
(10, 10) 28.87005769 72.12489168 1039.848602
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Figure 5: Comparison between ABCe, ABCIIe, and ABCT of L(S(Wn+1)).
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Figure 4: Comparison between ABCe, ABCe, and AABCe of L(S(Tn,k)).

Table 2: Comparison between ABCe, ABCIIe, and ABCT of L(S(Wn+1)).

n ABCe ABCIIe ABCT

1 3.483163248 0 3.821367205
2 7.454653677 5.333333333 20.00859965
3 12 32 62.35382907
4 16.92289018 101.1928851 124.0640009
5 22.15246524 238.5139176 205.2566258
6 27.64735154 473.2863826 305.8662831
7 33.37946531 838.1312546 425.8255499
8 39.32811367 1368.662608 565.0772788
9 45.47722558 2103.254621 723.5738722
10 51.81385047 3082.855819 901.2753388

Table 3: Comparison between ABCe, ABCIIe, and ABCT of L(S(Ln)).

n ABCe ABCIIe ABCT

1 −0.2622655215 −88 −8.061498381
2 5.737734479 −16 27.04079003
3 11.73773448 56 100.868826
4 17.73773448 128 225.7405179
5 23.73773448 200 401.5280011
6 29.73773448 272 628.2266894
7 35.73773448 344 905.8363724
8 41.73773448 416 1234.357204
9 47.73773448 488 1613.789329
10 53.73773448 560 2044.132853
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3. Numerical Simulation and Conclusion

In this paper, we propose some novel families of atom-bond
connectivity index. Now, the results of these indices will be
compared. (e comparison between ABCe, ABCIIe, and
ABCT of L(S(Tn,k)) is shown in Table 1. (e graphical
representation of Table 1 is illustrated in Figure 4.

Similarly, the results for ABCe, ABCIIe, and ABCT of
LS(Wn+1) are compared in Table 2. Table 2 is given in
Figure 5. Finally, the comparison of ABCe, ABCIIe, and
ABCT of L(S(Ln)) is shown in Table 3.(e illustration of the
results for ABCe, ABCIIe, and ABCT is shown as Figure 6.

In this paper, certain degree-based topological indices,
namely, ABC indices, were studied for the case of the line
graphs of the subdivision graphs. It is anticipated that this
computational study will encourage the researchers to have a
firm grasp on the index framework they have chosen. (e
computational technique presented here can be useful for
analysing the physicochemical features of the specified
network, as well as being cost-effective and time-efficient.
Future work includes the investigation of new classes of line
graph of subdivision graphs and their topological indices
which is useful in QSAR and QSPR studies.
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