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To achieve the underdetermined direction of arrival (DOA) tracking in impulse noise, we propose a robust DOA tracking method
in this paper. Firstly, an in�nite norm di�erence covariance (INDC) matrix is introduced to suppress the impulse noise. Secondly,
using a nested array, we present a maximum likelihood DOA tracking equation based on the INDC matrix. Furthermore, a
quantum-inspired multiverse algorithm is proposed to maximize e�ciently the proposed tracking equation. �e simulation
results show that our method has better robustness and superiority compared to other DOA tracking methods, which can achieve
underdetermined DOA tracking in impulse noise as well as in the multipath environment.

1. Introduction

In the past few decades, many high-resolution direction of
arrival (DOA) estimation algorithms [1–3] have been pro-
posed and applied in many �elds such as radar and wireless
communication, most of which assume that the targets are
stationary, whereas the targets are usually time-varying in
fact. For time-varying DOA tracking problem, many re-
searchers have made great e�orts for its development. In [4],
the authors proposed a projection approximation subspace
tracking (PAST) algorithm to track the subspace. In [5], a
particle �lter (PF) DOA tracker was proposed, which utilized
a partitioned state-vector method to achieve multiple targets
tracking. In [6], a fast approximated power iteration sub-
space tracking method was proposed, which o�ered a faster
tracking response. In [7], on the basis of low-rank and sparse
recovery, the authors proposed a novel DOA tracking
method. In [8], a multisource DOA tracking approach using
a superposition model was proposed, which utilized the PF
to achieve the DOA tracking.

�e above methods are derived in Gaussian noise,
whereas in real world, there exists some impulse noises,
including the lightning and the low-frequency atmospheric

noise, which can be described well as symmetric α-stable
(SαS) distribution [9], and these forms of impulse noise exist
a long tail, which deteriorates the performance of the
existing methods. Many methods, including fractional
lower-order moment [10], correntropy technique [11, 12],
in�nite norm [13], and kernel method [14, 15], have been
proposed to achieve accurate estimates in impulse noise.
DOA tracking in impulse noise has also made great progress
in recent years. In [16], the authors proposed a robust PAST
(RPAST) algorithm for tracking subspace in impulse noise.
In [17], a PF method for DOA tracking in impulse noise was
proposed, which o�ered robustness in impulse noise but
cannot obtain excellent performance in fast time-varying
scenario. In [18], a correntropy method was proposed to
achieve subspace tracking in impulse noise.

Furthermore, the above algorithms are based on uniform
linear array (ULA), which will be invalid when the number
of targets exceeds the number of antennas. Many nonuni-
form arrays have been proposed to achieve underdetermined
DOA estimation [19, 20]. Some researchers also applied
them in DOA tracking problems. In [21], a PF method using
coprime array was proposed for DOA tracking, which was
based on the propagator method. In [22], a spatial
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smoothing projection approximation subspace tracking
(SSPAST) method was proposed, which utilized the dif-
ference coarray of nested array (NA) and coprime array to
achieve underdetermined DOA tracking. In [23], a DOA
tracking method using NA was proposed, which was based
on offset compensation to obtain accurate tracking results.

)e noted methods are only an improvement on one
aspect of the DOA tracking problem; in order to address the
above problems simultaneously, a robust DOA tracking
method using nested array in impulse noise is proposed in
our work. First, we propose an infinite norm difference
covariance (INDC) matrix to obtain robustness in impulse
noise, and on this basis, a maximum likelihood (ML) DOA
tracking equation based on NA is utilized, which involves a
multidimension joint optimization problem requiring
enormous computational complexity. Fortunately, intelli-
gent optimization algorithms, such as the sea lion optimi-
zation algorithm [24] and the Archimedes optimization
algorithm [25], can allow for this cost function. However, the
above algorithms are easy to trap in local optimum.
)erefore, we propose a quantum-inspired multiverse al-
gorithm (QMVA) to avoid this problem, which is inspired
by quantum computation [26] and theory of cosmology [27].
)e resulting method is termed as QMVA-INDC-ML-NA.
)e simulation results demonstrate that our method offers
better robustness and effectiveness compared to other
approaches.

)e main contributions are as follows:

(1) An INDC matrix is proposed to suppress the strong
impulsive noise.

(2) A ML tracking equation based on INDC, using NA,
is proposed to achieve underdetermined DOA
tracking in impulse noise.

(3) A quantum-inspired multiverse algorithm is pro-
posed to solve efficiently the considered ML tracking
equation.

)e following is the rest of this paper. )e DOA tracking
model in impulse noise is introduced in Section 2. )e DOA
trackingmethod based on the QMVA is presented in Section
3. )e simulation results are shown in Section 4. Finally, the
conclusions of our work are given in Section 5.

2. DOA Tracking Model in Impulse Noise

Assume that a nested array consists of N ULAs and M
isotropic antennas and dm denotes the distance between the
mth antenna and the first antenna, where m � 1, 2, . . . , M,
d1 � 0<d2 < · · · <dM. )e minimum spacing of the an-
tenna elements is ε, and then the coordinates of the antenna
elements are

d � ∪
N

n
dn � d1, d2, . . . , dM  � ε h1, h2, . . . , hM , (1)

where h1,h2, . . . ,hM are integers, and dn � hε∐n−1
n (Mn +1),

h � 1,2, . . . ,Mn} and d1 � hε, h � 1,2, . . . ,M1  denote the
coordinates of the nth ULA and the first ULA, respectively,
where Mn≥2 and M1 + M2 + · · · + MN � M. A set

_H � ha − hb|a, b � 1,2, . . . ,M;a>b  is a continuous or
nearly continuous set of natural numbers.

Consider that P narrowband signals with wavelength λ
impinging on a nested array with M isotropic antenna el-
ements thus the receiving M × 1 vector is described as

x(t) � A(θ)s(t) + n(t), (2)

where A(θ) � [a(θ1), a(θ2), . . . , a(θP)] is the M × P array
manifold, the pth steering vector is a(θp) �

[1, e− j2πd2 sin(θp)/λ, . . . , e− j2πdM sin(θp)/λ]T, p � 1, 2 . . . , P, θ �

[θ1, θ2, . . . , θP], s(t) � [s1(t), s2(t), . . . , sP(t)T] is the P × 1
signal vector, and n(t) is the M × 1 complex impulse noise
vector.

)e characteristic function of zero-location SαS distri-
bution is given by

φ(w) � &e−c|w|α
, (3)

where α and c denote the characteristic exponent and the
scale. In impulse noise, one usually use generalized signal-to-
noise ratio (GSNR)

GSNR � 10lg
E ‖s(t)‖

2
 

c
α

⎧⎨

⎩

⎫⎬

⎭, (4)

where E[·] denote the expectation.
As conventional second-moment-based methods will

deteriorate or even be invalid in impulse noise, we employ
the infinite norm normalization preprocessing method, and
on this basis, we propose an infinite norm difference co-
variance (INDC) matrix for the kth snapshot, and the INDC
matrix is given by

R(k) � r1(k), r2(k), . . . rM (k)

�

r
h1−h1( )

11 (k) . . . r
h1−hM( )

1M (k)

⋮ ⋱ ⋮

r
hM−h1( )

M1 (k) · · · r
hM−hM( )

MM (k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where

rm(k) � r
h1− hm( )

1m (k), r
h2− hm( )

2m (k), . . . , r
hM− hm( )

Mm (k) 
T

. (6)

)e ith row and jth column element of R(k) is
ril(k) � xi(k)xl

∗(k)|xi(k) − xl
∗(k)|σ , where x(k) � [x1(k),

x2(k), . . . , xM(k)]T � x(k)/ max
1≤m≤M

|xm(k)| ; σ denotes the

difference constant, k � 1, 2, . . . , KP; and KP denotes the
number of snapshots.

Next, virtualize the INDC of the nested array into an
extended INDC of a virtual ULA with more antenna ele-
ments, and virtualize the array manifold into a virtual array
manifold. )e maximum correlation delay calculated by the
nested array is M, the number of antenna elements of virtual
ULA is M + 1, the pth virtual steering vector is
a(θp) � [1, e− j2πε sin(θp)/λ, . . . , e− j2πεM sin(θp)/λ]T, and the vir-
tual INDC is given by
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R(k) � r1(k), r2(k), . . . rM+1(k) , (7)

where rc(k) � [r1c(k),r2c(k), . . . ,r
( M+1)c

(k)]T, 1≤c≤ M +1,

rρτ(k) � E[r
(ha−hb)

ab (k)], ρ− τ � ha − hb, 1≤ρ,τ≤ M +1, and
1≤a,b≤M.

For the (k+ 1)th snapshot, the updated INDC is obtained
as

RS(k + 1) � ωRS(k) + R(k + 1), (8)

whereRS(k) is the updated INDC of the kth snapshot, R(k +

1) is the virtual INDC of the (k+1)th snapshot, ω is the
update constant, and for the first snapshot, RS(1) � R(1).

)e maximum likelihood (ML) tracking equation can be
represented by

θ � argmaxθtrace PA(θ)
RS(k) , (9)

where PA(θ)
� A(θ)[ A

H
(θ)A(θ)− 1 A

H
(θ)] denotes the

projection matrix of A(θ), A(θ) � [a(θ1), a(θ2), . . . , a(θP)],
and trace(·) denotes the trace of the matrix.

3. DOA Tracking Method Based on the QMVA

3.1. Quantum-InspiredMultiverse Algorithm. )e quantum-
inspired multiverse algorithm (QMVA) is inspired by
quantum computation [26] and theory of cosmology [27].
Assume that Q denotes the number of quantum universes
and G denotes the maximum number of iterations. )e
quantum state of the qth quantum universe at the gth
iteration is yg

q � [y
g
q,1, y

g
q,2, . . . , y

g

q,B], where 0≤y
g

q,b ≤ 1
(b � 1, 2, . . . , B) with B denoting the number of variables of
the optimization problems, and the actual state of the qth
quantum universe yg

q � [y
g
q,1, y

g
q,2, . . . , y

g
q,B](q � 1, 2, . . . , Q)

can be obtained by

y
g

q,b � y
g

q,b y
U
b − y

L
b  + y

L
b , (10)

where y
g

q,b ∈ [yL
b , yU

b ], yU
b and yL

b denote the bth dimensional
upper bound and lower bound, respectively, and
f

g
q � f(yg

q ) denotes the fitness of yg
q .

In the exploration stage, quantum universes are sorted
according to their fitness at each iteration, and on this basis,
a quantum universe is chosen by the roulette wheel, and the
specific formula is given by

y
g

q,b � y
g

q,b
, r

g

q,b <f
g

q , y
g

q,b, r
g

q,b ≥f
g

q , (11)

where f
g

q � f
g
q /‖fg‖2 denotes the normalized fitness of the

qth quantum universe at the gth iteration, where
fg � [f

g
1 , f

g
2 , . . . , f

g

Q] denotes the set of the fitness at the g th
iteration, and ‖·‖2 denotes the Euclidean norm of the vector,
r

g

q,b denotes a uniformly random number in [0, 1], and y
g

q,b

denotes the quantum state of the qth quantum universe at
the gth iteration selected by the roulette wheel. )is roulette
wheel mechanism can guarantee the exploration capacity of
the QMVA.

In the exploitation stage, generate a wormhole existence
probability Pg at first, which is given by

P
g

� Pmin + g ×
Pmax − Pmin

G
 , (12)

where Pmax and Pmin denote the user defined maximum and
minimum of Pg, respectively.)en, a travelling distance rate
T

g
r is given by

T
g
r � 1 −

g
1/v

G
1/v, (13)

where v denotes the exploitation constant.
For the qth quantum universe at the gth iteration,

generate a uniformly random number r
g

q,b in [0, 1]. If
r

g

q,b <Pg, the bth quantum rotational angle of the qth
quantum universe at (g + 1)th iteration is given by

μ⌢g+1
q,b �

r1 × T
g
r , r

g

q,b < 0.5,

−r1 × T
g
r , r

g

q,b ≥ 0.5,

⎧⎪⎨

⎪⎩
(14)

where r1 and r
g

q,b are random numbers that obeys a uniform
distribution in the range [0,1]. )en, the quantum state of
the qth quantum universe is updated by

y
g+1
q,b � y

g

best,b cos μ⌢g+1
q,b  +

����������

1 − y
g

best,b 
2



sin μ⌢g+1
q,b 




, (15)

where y
g

best,b denotes the bth quantum state of the quantum
universe with best fitness until the gth iteration.)e wormhole
existence probability increases adaptively during entire itera-
tions, which emphasizes the exploitation capacity of the
QMVA. )e travelling distance rate increases the accuracy of
local search during entire iterations. )erefore, the balance
between exploration and exploitation of the proposed QMVA
is guaranteed by the effective combination of two stages.

3.2. DOA Tracking Based on the QMVA. To reduce the
computational cost of DOA tracking, we propose the dy-
namic upper and lower bounds of the search space, which
will continue to decrease as the number of snapshots in-
creases, and the dynamic upper and lower bounds are de-

fined as u1(k), u2(k), . . . , uB(k)

l1(k), l2(k), . . . , lB(k)
 , where ub(k) and lb(k)

denote the bth dimension upper and lower bounds of the
search space for the kth snapshot, respectively.

At the first snapshot, the upper and lower bounds are the
definition domain of the search space. For the kth snapshot,
the upper and lower bound of the search space are updated by

ub(k) � μb(k − 1) + ub(k − 1) − μb(k − 1)


 × 1 − ϑ × e− 1/B
 

k
+ r,

lb(k) � lb(k − 1) − lb(k − 1) − μb(k − 1)


 × 1 − ϑ × e− 1/Bk
  − r,

⎧⎪⎨

⎪⎩

(16)

where ϑ denotes the convergence constant, μb(k − 1) de-
notes the centre value of the bth dimension search space for
the (k− 1)th snapshot, μb(k) � ςμb(k − 1)+ (1 − ςμ)b(k − 1),
ς denotes the genetic factor, and μb(k − 1) denotes the bth
dimension estimated value for the (k− 1)th snapshot.
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Moreover, the maximum number of iterations is
G � ζmax1≤p≤P up(k) − vp(k) , where ζ is a positive
integer, and ⌊·⌋ denotes the round down operation.

In the QMVA, the quantum states of the initial quantum
universes are randomly generated in [0,1], and for the pro-
posedDOA trackingmethod, the fitness function is defined as

f
g
q � f y

g
q  � trace PA y

g
q 
RS(k) , (17)

where yg
q � [y

g
q,1, y

g
q,2, . . . , y

g

q,B] is corresponding to the
estimation of DOAs of the P moving targets; thus, B = P.
)erefore, the proposed DOA tracking method can be
summarized as follows:

Step 1. Obtain the first snapshot data, initialize
RS(1) � R(1)

Step 2. Initialize the upper and lower bounds of the search
space, and initialize the parameters of the QMVA: the
number of quantum universes, the minimum and maximum
of wormhole existence probability, the exploitation constant,
and the maximum number of iterations G.

Step 3. Initialize randomly the quantum states of the initial
quantum universes, calculate the fitness of all quantum
universes and store the quantum state of the quantum
universe with best fitness

Step 4. In the exploration stage, quantum universes are
sorted according to their fitness at each iteration, and on this
basis, a quantum universe is chosen by the roulette wheel, for
details, see equation (11). In the exploitation stage, quantum
universes are evolved through equations (14) and (15)

Step 5. Calculate the fitness of all quantum universes,
update the quantum state of the quantum universe with
best fitness

Step 6. Examine whether G is reached, if not, let g � g + 1,
and then go back to step 4; otherwise, stop the loop iteration,
output the actual state of the quantum state with best fitness
for the kth snapshot and go to the next step

Step 7. Examine whether KP is reached, if not, obtain the
next snapshot data, update the INDC through (8), let
k � k + 1, and go back to step 2; otherwise, output the DOA
tracking results according to the actual state of the quantum
universe with best fitness of all snapshots
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Figure 1: RMSE curves via α� 1.2.
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4. Simulation Results

)e root mean square error (RMSE) is defined as

RMSE �

����������������������



KP

k�1


P

i�1


Ne

_n�1

θi(k) − θ
_n

i (k) 
2

PKPNe




,
(18)

where θi(k) denotes the ith true DOA at kth snapshot, θ
_n

i (k)

denotes the ith estimated DOA at kth snapshot in the _n run,
and Ne denotes the number of Monte-Carlo runs.

)e probability of convergence (PROC) is defined as

PROC � 

KP

k�1


P

i�1


Ne

_n�1

χ _n
i (k)

PKPNe

, (19)
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Figure 4: DOA tracking results via GSNR � 10 dB and α� 1.2. (a) )e proposed method. (b) )e PASTmethod. (c) )e SSPASTmethod.
(d) )e RPAST method.
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where

χi
_n
(k) �

1, θi(k) − θi
_n
(k)< 2°,

0, otherwise.

⎧⎨

⎩ (20)

We consider that NA consists of two ULAs,
M1 � M2 � 3, ε � 0.5λ, difference constant σ � −0.5, update
constant ω � 0.95, ζ � 2, ϑ � 0.01, r � 3, and ς � 0.8. For the
QMVA, Q � 10, Pmax � 1, Pmin � 0.2, and ] � 6.

We execute 300 Monte-Carlo runs in the numerical
simulations, and the proposed method is compared with
three alternative methods: PAST [4], RPAST [16], and
SSPAST [22].

4.1. Me Independent Sources Tracking Scenario. Consider
that two independent time-varying sources with

θ1 �
20 − k

100, k � 1, 2, . . . , KP

,

θ2 �
40 − k

100, k � 1, 2, . . . , KP

,

(21)

where KP � 600, and θ1 and θ2 are in degrees. Figures 1 and
2 show the RMSE curves and the PROC curves via α= 1.2,
respectively. Figure 3 shows the PROC curves via
GSNR= 10 dB. Figure 4 plots the DOA tracking results of
four methods via GSNR= 10 dB and α= 1.2. From Figure 1,
the proposed method has highest tracking accuracy in the
low GSNR scenario compared with alternative algorithms.
From Figures 2 and 3, the PROC of the proposed method
exceeds 90% in terms of GSNR and characteristic exponent.
From Figure 4, we can conclude that the tracking curve of
the proposed method is smoother; in other words, the
proposed method can achieve accurate tracking in the
considered scenario compared with other methods.

4.2. Me Coherent Sources Tracking Scenario. Consider that
two coherent time-varying sources with the identical time-
varying DOAs to the first simulation. Figures 5 and 6 show
the RMSE curves and the PROC curves via α� 1.2, re-
spectively. Figure 7 shows the PROC curves via
GSNR� 10 dB. Figure 8 plots the DOA tracking results of
four methods via GSNR� 10 dB and α� 1.2. From the fig-
ures, the PAST and the RPAST fail to work in the coherent
sources tracking scenario. )e SSPAST can achieve DOA
tracking in the considered scenario, whose tracking per-
formance is relatively weak. Furthermore, it is obvious that
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the proposed method yields robust tracking performance in
the coherent sources tracking scenario.

4.3. Me Underdetermined DOA Tracking Scenario.
Consider that seven independent time-varying sources with

θp �
θ0p − k

100, k � 1, 2, . . . , KP

, (22)

where p � 1, 2, · · · , 7, and the corresponding
θ0p � −60, −40, −20, 0, 20, 40, 60, KP � 600, and θp are in
degrees. In the underdetermined DOA tracking scenario, the
PAST and the RPAST will be invalid; thus, we plot the
tracking results of the proposed method and the SSPAST
method. Figures 9 and 10 plot the DOA tracking results of
the proposed method and the SSPAST method via
GSNR= 10 dB and α= 1.2. From the tracking results, al-
though both the SSPAST and the proposed method can
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Figure 8: DOA tracking results via GSNR � 10 dB and α� 1.2. (a) )e proposed method. (b) )e PASTmethod. (c) )e SSPASTmethod.
(d) )e RPAST method.
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achieve underdetermined DOA tracking, it is obvious that
our tracking method has better DOA tracking performance
in the underdetermined DOA tracking scenario.

5. Conclusions

In this paper, we propose a robust DOA tracking method
using nested array for achieving the underdetermined DOA
tracking in the impulse noise. Simulation results demon-
strate that our method offers better robustness and effec-
tiveness both in independent and coherent sources tracking
scenarios and obtains better DOA tracking results in the
underdetermined DOA tracking scenario. In the future, we
will try to generalize it to other complex DOA tracking
problems.
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