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Te probability information of random variables is frequently fnite in the rolling bearing contact fatigue reliability design process,
making it impossible to calculate the reliability index or rolling bearing reliability accurately. In this study, the dynamic model of
rolling bearings is established, the Box–Behnken design and the response surface method are combined to obtain the mapping
relationship between random variables, and the rolling bearing reliability design model is established with the strength obeying
gamma process. Te transient reliability, cumulative reliability, and reliability sensitivity analysis methods based on contact
fatigue under fnite probability information are used to calculate the change law and size order of the rolling bearing reliability
afected by the change of each basic random variable. Finally, we apply this research method to analyse the reliability of a certain
type of angular contact ball bearing compared with the Monte Carlo simulation method. Tis demonstrates that the method
presented in this study is correct and efective.

1. Introduction

Bearing failure is one of the most prevalent causes of me-
chanical failure in spinning equipment [1]. Te bulk of
failures in steel rolling bearings is caused by contact fatigue.
Due to constraints such as test time and cost, it is often
difcult to accurately determine the distribution law of
design variables for rolling bearings in engineering practice.
It will be a great challenge to precisely estimate the reliability
of contact fatigue of rolling bearings under fnite probability
information. With the development of rolling bearings to
high speed, heavy load, and high reliability, more demands
have been put on the reliability design of rolling bearings. In
addition, the material strength of the bearing will deteriorate
during use, and the bearing will fail when the deterioration
accumulates to a certain extent. How to improve the reli-
ability of rolling bearings to prevent the occurrence of
catastrophic mechanical failure has become a research
hotspot.

Signifcant progress has been achieved recently in rolling
bearing reliability engineering research based on contact

fatigue, covering modelling approaches, testing procedures,
engineering applications, and a variety of other facets.
Weibull [2] proposed that the failure probability of fatigue
strength at any point on the S–N curve is equal to the failure
probability of fatigue life, and they expounded two methods
to determine the probability distribution of fatigue strength.
Lundberg and Palmgren [3] completed the basic work of
rolling contact fatigue research, analysed the characteristics
of bearing fatigue failure, and evaluated the efect of stress
material volume by modifying Weibull’s statistical theory of
failure. Hai et al. [4] developed a method for evaluating
rolling contact fatigue reliability based on the Lund-
berg–Palmgren theory and ISO 281, which took into con-
sideration the contact load, the geometric parameters of
contact pairs, the oscillation amplitude, the reliability, and
the material properties. Feng et al. [5] established a residual
life prediction model based on the Weibull distribution of
the residual life reliability prediction method and the pa-
rameter estimationmethod of the slewing bearing. Yoon and
Choi [6] analysed the infuence of the randomness of
geometric shapes on the reliability of air-bearing structures
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by using the mean frst-order second-moment method and
carried out the reliability optimization design.

Te reliability sensitivity design of rolling bearings is
used to determine the evaluation of the infuence of changes
in design variables on the reliability of rolling bearings,
which can accurately refect the varying degrees of infuence
that each design variable has on the failure of rolling
bearings. Hohenbichler and Rackwitz [7] frst proposed and
studied the concept of reliability sensitivity to random
variables. On this basis, Bjerager and Krenk [8] studied the
frst-order reliability sensitivity problem. Karamchandani
and Cornell [9] proposed a reliability sensitivity analysis
method based on the quadratic second moment.
Papaioannou et al. [10] proposed an estimation of sensi-
tivities of the probability of failure with sequential impor-
tance sampling, applied for estimating sensitivities to both
distribution and limit state parameters. Zhang and Gu [11]
constructed a nonlinear dynamicmodel of a pair of mounted
angular contact ball bearings to analyse the motion error of
the bearing by using the random perturbation method and
Edgeworth series to obtain reliability and reliability
sensitivity.

We fully consider the randomness of rolling bearing load
parameters, geometry parameters, and material parameters
and obtain the state function based on the stress-strength
interference model, in which the bearing material strength
obeys the gamma process. Te reliability and reliability
sensitivity analysis models of rolling bearing contact fatigue
are built with only the frst four random moments known.
Te reliability information of rolling bearing contact fatigue
under fnite probability information is used for verifcation.
A numerical example shows that the method proposed in
this study is convenient and practical for the reliability
design and reliability sensitivity analysis of rolling bearing
contact fatigue, which has a profound efect on the im-
provement of the design variables of rolling bearings.

2. Dynamic Model of Rolling Bearings

To carry out the contact fatigue reliability of rolling bearings,
it is necessary to check the contact strength, and the stress
state of the contact area should be calculated frst. In this
section, based on the dynamic model and Hertz contact
theory, considering the elastic contact between the rolling
element and the raceway under the combined load, the
dynamic analysis model of the angular contact ball bearing is
established to solve the maximum contact stress in the
contact area between the rolling element and the raceway.
Furthermore, the vonMises yield criterion is used to fnd the
equivalent contact stress in the contact area.

2.1. Deformed Relations. According to the rigid raceway
theory, which simplifes the deformation analysis of rolling
bearings, the relative position relation between the ball
center and the inner and outer raceway groove curvature
centers with the fxed outer raceway and rotating inner
raceway before and after loading is established at the angular
position ψj, as shown in Figure 1. At high rotational speeds,

the centrifugal force and gyroscopic moment of the rolling
elements will change the distribution between the balls, so the
rolling element has diferent dynamic loads at diferent an-
gular position ψj, which can be solved by ψj � 2π(j − 1)/Z,
(j � 1, 2, · · · , Z), where Z is the number of balls.

When the rolling bearing is not under load, the distance
between the inner and outer raceway groove curvature
centers is always A:

A � fi + fo − 1( Db, (1)

where fi and fo are the inner and outer raceway groove
curvature radius coefcients, respectively, and Db is the ball
diameter.

After the rolling bearing loading runs at high speed and the
outer raceway groove curvature center position B is fxed, the
inner raceway groove curvature center position moves relative
to the fxed center from A to A′, and the ball center position
changes from O to O′. At this time, the axial and radial dis-
tances between the inner and outer raceway groove curvature
centers at any angular position ψj are, respectively, as follows:

A1j � A sin α0 + δa,

A2j � A sin α0 + δr cos ψj,
(2)

where δa and δr are the relative axial distance and relative
radial distance of the inner and outer raceways, respectively,
and α0 is the free contact angle without loading.

During the high-speed operation of ball bearings, the
actual contact angle between each ball and the inner and
outer raceways is not equal. In order to facilitate the analysis,
Jones [12] introduced the auxiliary variables X1j and X2j,
and the actual contact angles αij and αoj between the ball and
the inner and outer raceways at any ball position are, re-
spectively, as follows:

Outer raceway groove curvature center fixed

Initial position, inner 
raceway groove curvature 
center

Final position, inner 
raceway groove 
curvature center

α°

X2j

X1j
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Ball center, final position
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.5)D b

+δ ij

(f o
-0

.5)
D b+

δ oj

A2j

BDb

A1j

δa

δrcosψj

αij
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Figure 1: Positions of the ball center and the raceway groove
curvature centers at the angular position ψj before and after
loading.
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sin αoj �
X1j

fo − 0.5( Db + δoj

,

cos αoj �
X2j

fo − 0.5( Db + δoj

,

sin αij �
A1j − X1j

fo − 0.5( Db + δij

,

cos αij �
A2j − X2j

fo − 0.5( Db + δij

,

(3)

where δij and δoj are the normal contact deformations of the
inner and outer raceways, respectively. According to Fig-
ure 1, by using the Pythagorean theorem, the geometric
relation of the change of the ball center position is

A1j − X1j 
2

+ A2j − X2j 
2

− fi − 0.5( Db + δij 
2

� 0,

X
2
1j + X

2
2j − fo − 0.5( Db + δoj 

2
� 0.

(4)

2.2. Force Analysis. In the high-speed bearing, the centrif-
ugal force of the ball causes the contact deformation and the
change of the contact angle, and the constant change of the
rotation axis of the ball causes the gyroscopic moment and
the corresponding frictional resistance. Te force analysis of
the ball is shown in Figure 2, and the relative angular po-
sition of each ball and the overall force analysis of the
bearing are shown in Figure 3.

According to the Hertz contact theory, at the angular
position ψj, the relation between the normal load of the ball
and the normal contact deformation of the inner and outer
raceways is

Qij � Kijδ
1.5
ij ,

Qoj � Kojδ
1.5
oj ,

(5)

where Kij and Koj are the load-deformation coefcients,
which are related to the contact angle between the ball and
the raceway and vary with the angular position ψj, and the
specifc expression can be seen in reference [13].

Te centrifugal force and gyroscopic moment of the ball
are, respectively, as follows:

Fc �
1
2

mdmw
2
m,with m �

1
6
ρbπD

3
b, (6)

Mg � JwRwm sin β, with J �
1
60
ρbπD

5
b, (7)

wherem is the ball mass, J is the moment of inertia, ρb is the
ball material density, dm is the bearing pitch diameter, wm is
the orbital speed of the ball, and β is the ball pitch angle.

In order to simplify the complex kinematic relation
between the various parts of the rolling bearing, Jones
established the raceway control theory [14], the core of
which is to solve the pitch angle β of the rolling element by

Qoj

Qij

Fcj

Mgj
αij

Mgj

Db

Mgj

Db

λoj

λij

αoj

Figure 2: Ball loading at angular position ψj.
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Figure 3: Te angular position of the rolling elements in the yz
plane and the overall force of the bearing △ψ � 2π/Z.
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judging whether the rolling element spins relative to the
raceway. Meanwhile, Changan [15] and Noel et al. [16]
established a new equation to determine the pitch angle β by
applying “d’Alembert’s principle” to balls. Ding et al. [15]
and Lei et al. [17] found a simple expression of the pitch
angle β, and this theory will be referred to as the hybrid
theory. Te details of these selection criteria and the pitch
angle β expressions are given in Table 1.

In high-speed bearings, the centrifugal force on the rolling
elements presses the outer raceway, which increases the friction
between the rolling elements and the outer raceway, resulting
in the outer-race control. At this time, at each angular position
ψj, the ball pitch angle βj is obtained as follows:

tan βj �
sin αoj

cos αoj + c′
,

c′ �
Db

dm

.

(8)

Te expressions of centrifugal force and gyroscopic
moment on each ball can be used to replace (6) and (7) with
(9) and (10)

Fcj �
1
2

mdmw
2 wm

w
 

2

j
, (9)

Mgj � J
wR

w
 

j

wm

w
 

j
w

2 sin βj, (10)

where w is the speed of the rotating raceway and wR is the
spin angular velocity of the ball.

Harris and Kotzalas [18] analysed the relative motion
relation between the ball and the raceway, ignoring the gyro
pivot motion of the ball, and deduced the relation of the
absolute angular velocity between the rolling element and
the rotating raceway. Te ratios of the spin angular velocity
and revolution angular velocity of the ball to the absolute
angular velocity of the raceway are, respectively, as follows:

wR

w
�

± 1
cos αo + tan β sin αo( / 1 + c′ cos αo(  + cos αi + tan β sin αi( / 1 − c′ cos αi(  c′ cos β

, (11)

wm

w
�

1
1 + 1 + c′ cos αo( / 1 − c′ cos αi(  

∓1 cos αi + tan β sin αi( / cos αo + tan β sin αo(  
∓1, (12)

where the above operator applies to outer raceway rotation,
and the below operator applies to inner raceway rotation.
Substitute equation (8), which describes the outer raceway
control conditions, into equation (12). At each angular
position ψj, for the bearing with outer raceway rotation, the
ratio is

wm

w
 

j
�
cos αij − αoj  + c′ cos αij

1 + cos αij + αoj 
. (13)

For bearings with inner raceway rotation, the ratio is

wm

w
 

j
�

1 − c′ cos αij

1 + cos αij − αoj 
. (14)

According to the dynamic analysis, considering the
equilibrium of forces in the x′ and y′ directions, we have

Qij sin αij − Qoj sin αoj −
Mgj

Db

λij cos αij − λoj cos αoj  � 0,

(15)

Qij cos αij − Qoj cos αoj +
Mgj

Db

λij cos αij − λoj sin αoj 

+ Fcj � 0.

(16)

Te associated distribution parameters λ i and λ o are
given in Table 2. For high-speed ball bearings with outer
raceway control, we have λij � 0 and λ oj � 2.

Once the values of δa and δr are set, equations (4), (15),
and (16) are formed into nonlinear equations at each angular
position ψj, and the solutions of X1j, X2j, δij, and δoj are
obtained by using the Newton–Raphson method.

In order to obtain the values of δa and δr, it is necessary
to establish the force balance equation of the entire
bearing:

Fa − 

j�Z

j�1
Qij sin αij −

λijMgj

Db

cos αij � 0, (17)

Fr − 

j�Z

j�1
Qij sin αij −

λijMgj

Db

cos αij  cos ψj � 0. (18)

After knowing axial force Fa and radial force Fr and
calculating X1j, X2j, δij, and δoj at each angular position ψj,
equations (17) and (18) are used to fnd the values of δa and
δr. After the unknown δa and δr are obtained, X1j, X2j, δij,
and δoj must be calculated repeatedly until the unknown δa

and δr meet the accuracy requirements.
Once the values of δa and δr are obtained, the maximum

contact load Q of the ball can be solved.

2.3. Equivalent Contact Stress. Te Hertz contact theory is a
classic method for solving contact problems [19]. In the
calculation of contact stress, the contact between the ball and
the raceway is regarded as a contact analysis of an equivalent
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ellipsoid and a half-plane.Te long and short semi-axes a and
b of the ellipse in the contact area are, respectively, as follows:

a � a
∗ 3Q

2E∗ ρ
 

1/3

, a
∗

�
2k2Π
π

 

1/3

,

b � b
∗ 3Q

2E∗ ρ
 

1/3

, b
∗

�
2Π
πk

 
1/3

,

(19)

where  ρ is the bearing curvature sum, E∗ is the contact
modulus, E∗ � [(1 − ξ21)/E1 + (1 − ξ22)/E2]

− 1, with ξ1 and ξ2
being Poisson’s ratios of the raceway and ball, respectively,
and E1 and E2 being the elastic moduli of the raceway and
ball, respectively.

Brewe and Hamrock [20] gave a set of approximate
calculation equations to calculate k andΠ by using the curve
ftting method, and the errors of the calculated results are all
less than 3% compared with the exact values.

k ≈ 1.0339
Ry

Rx

 

0.636

,

Π ≈ 1.0003 +
0.5968
Ry/Rx

,

(20)

where Rx is the equivalent curvature radius of the ball-bearing
contact point along the motion direction, and Ry is the
equivalent curvature radius of ball-bearing contact point along
the vertical motion direction. For inner raceway contact,

Rx �
Db

2
(1 − c), Ry �

Dbfi

2fi − 1
. (21)

For outer raceway contact,

Rx �
Db

2
(1 + c), Ry �

Dbfo

2fo − 1
. (22)

For the elliptic contact area formed by the ball and
raceway, the maximum contact stress qmax is

qmax �
3Q

2πab
. (23)

In order to analyse the fatigue failure of the contact
surface of the rolling bearing and obtain the criterion of the

contact failure, Harris and Kotzalas [21] have given the curve
results of the stress state estimation. To obtain a better
criterion for contact fatigue failure, the von Mises yield
criterion is used here, and the von Mises equivalent contact
stress can be expressed as

σeq �

��������������������������������
1
2

σ1 − σ2( 
2

+ σ2 − σ3( 
2

+ σ3 − σ1( 
2

 



. (24)

Under the condition of point contact, the stress state of
the contact center point is a three-dimensional compressive
stress state σ1, σ2, and σ3. In order to facilitate the application
in practical engineering, the following estimation equations
can be used to calculate equivalent contact stress [22–24].

σ1 � −qmax 0.505 + 0.255
b

a
 

0.6609
⎡⎣ ⎤⎦, (25)

σ2 � −qmax 1.01 − 0.250
b

a
 

0.5797
⎡⎣ ⎤⎦, (26)

σ3 � −qmax, (27)

where the negative sign in the equation indicates that the
principal stress is compressive stress. Substitute equations
(25)–(27) into (24) to obtain the equivalent contact stress σeq
of the bearing:

σeq � qmax

�����������������������������

0.25 − 0.379
b

a
 

0.62

+ 0.192
b

a
 

1.24




. (28)

3. State Function of Contact Fatigue
Reliability of Rolling Bearings

Since the dynamic model of rolling bearings is a complex
implicit nonlinear system, the response surface method
(RSM) is used to explicitly express the relation between the
maximum contact stress and random variables. Further-
more, in the sense of mechanical strength failure, whether
the part fails depends on the relative magnitude of strength

Table 1: Selection criteria and β expressions.

Type Inner-race control Outer-race control Ding et al. [15] and
Noel et al. [16]

Ding et al. [15] and
Lei et al. [17]

Criteria C cos(αi − αo)> 1 cos(αi − αo)>C d’ Alembert’s principle Hybrid theory
tan β sin αo/(cos αo − c′) sin αo/(cos αo + c′) [C(S + 1)sin αi + 2 sin αo]/[C(S + 1)cos αi + 2(cos αo + c) + A] tan(αi/2 − αo/2)

Note: C � QiaiLi/QoaoLo.

Table 2: Gyroscopic moment distributions.

Type 1 Inner-race control Outer-race control Equal distribution Hybrid theory
λi 2 0 1 2C/(1 + C)

λ o 0 2 1 2/(1 + C)

Mathematical Problems in Engineering 5



and stress, and the part itself also has the problem that the
material strength gradually deteriorates with time. Tere-
fore, this section will also establish a stress-strength inter-
ference model with strength degradation as the state
function of rolling bearing contact fatigue.

3.1. SurrogateModel. In themanufacture of various machine
components, it is difcult to obtain accurate design variables
due to diferent reasons such as people, machines, and
materials, and the design variables always change by 0.5–1%
[25]. Considering the uncertainty of load parameters, geo-
metric parameters, and material parameters of rolling
bearings, the Box–Behnken design is adopted to sample the
basic random variable vector X � (X1 X2 · · · Xn)T of rolling
bearings, which is put into the dynamic model of rolling
bearings established in Section 2 to obtain the corresponding
equivalent contact stress σeq. Furthermore, the RSM as a
surrogate model is used to ft the relation between basic
random variables and equivalent contact stress σeq. Teir
relation is described by the following quadratic polynomial
with cross terms:

σeq � β0 + 
n

i�1
βiXi + 

n

i�1
βiiX

2
i + 

n

1≤i<j≤ n

βijXiXj, (29)

where β0, βi, βii, and βij (i= 1, . . ., n and j= 1, . . ., n) are the
undetermined coefcients, and X1 X2 · · · Xn  is the re-
quired n-dimensional basic random variable.

3.2. Strength Degradation Process. Te gamma degradation
process is a random process that obeys a specifc parameter
and has nonnegative independent increments. Abdel-
Hameed [26] pointed out that the gamma degradation
process is very suitable for describing the monotonic gradual
process of structural damage and is considered to be the
preferred method to describe the performance degradation
process. Terefore, the gamma degradation process is used
to describe the change process of the strength degradation
with time.

Assuming that the strength degradation of the rolling
bearing obeys the gamma distribution, its probability density
function is

f(Δσ) �
λΔσr−1

Γ(r)
exp(−λΔσ). (30)

Here, Γ(r) is the gamma function, Γ(r) � 
∞
0 tr− 1e− tdt,

where r and λ are the shape parameter and the scale pa-
rameter, respectively, both of which are positive real
numbers. If the shape parameter r is regarded as a time
variable r(t), the gamma distribution can represent a ran-
dom process X(t), t≥ 0{ } with time change, in which case
the gamma process is nonstationary.

According to the statistical characteristics of the gamma
process, the mean and variance of the strength degradation
Δσ(t) of the rolling bearing at the moment can be expressed
as

E[Δσ(t)] �
r(t)

λ
, (31)

Var[Δσ(t)] �
r(t)

λ2
. (32)

Noortwijk pointed out that the mean value of the
degradation at time t is usually proportional to the power
law of time, that is, the mean value and variance of the
degradation equations (31) and (32) can be replaced by
equations (33) and (34). In the actual calculation, the
maximum likelihood method can be used to calculate pa-
rameters m, n, and λ [27].

E[Δσ(t)] �
mt

n

λ
, (33)

Var[Δσ(t)] �
mt

n

λ2
, (34)

where m and n are the real numbers greater than zero, and
n≠ 1.

Te Ioannides–Harris theory [28] holds that material
will experience fatigue failure when the stress in the contact
area is greater than the fatigue ultimate. If only the resistance
of the structure and the actual load are considered, then the
state function under the stress-strength interferencemodel is

g(X) � σs − Δσ(  − σeq(X), (35)

where σs is the fatigue ultimate strength of the rolling
bearing material.

4. Reliability andReliability SensitivityAnalysis
Based on the High-Order Moment Method

Te matrix equations of reliability and reliability sensitivity
based on the high-order moment method are deduced, and
the reliability analysis model and reliability sensitivity
analysis model of rolling bearing contact fatigue are
established. Te expression in matrix form can easily and
quickly calculate the reliability and reliability sensitivity
through computer program simulation, determine the
variation trend of reliability with design variables, and reveal
the infuence level of random variables on bearing contact
fatigue reliability.

4.1. ReliabilityAnalysis. As we all know, in order to calculate
the reliability of a product, it is necessary to calculate the
probability density function or joint probability density
function of basic random variables. However, due to the
complex working environment and the lack of relatively
reliable statistics, we cannot easily and accurately determine
the distribution law of random variables. If the distribution
law cannot be determined, but the frst fourth moment of the
design variables is known, the high-order moment method
can still be used to determine the contact fatigue reliability of
the rolling bearing.
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By using random perturbation technology and me-
chanical reliability theory [29], the mean μg, standard de-
viation σg, third-order moment θg and fourth-order

moment ηg of state function of bearing contact fatigue
reliability can be obtained:

μg � E[g(X)] � g μX(  � g(X), (36)

σ2g � Var[g(X)] � E g(X) − μg 
2

  �
zg(X)

zXT C2(X)
zg(X)

zX
, (37)

θg � E g(X) − μg 
3

  �
zg(X)

zXT C3(X)
zg(X)

zX
⊗

zg(X)

zX
, (38)

ηg � E g(X) − μg 
4

  �
zg(X)

zXT ⊗
zg(X)

zXT C4(X)
zg(X)

zX
⊗

zg(X)

zX
, (39)

where μX, C2(X), C3(X), and C4(X) represent the mean
matrix, variance and covariancematrix, third-order moment
matrix, and fourth-order moment matrix of the basic ran-
dom variable vector X, respectively.

In the case where the probability distribution of the basic
random variable vectorX cannot be determined, but the frst
four moments of X are known, according to the higher-
order moment method, the transient reliability index βt can
be defned as follows:

βt �
3 3ηg + σ4g μg + 5θg μ2g − σ2g 

�����������������������������

9 3ηg + σ4g 
2
σ2g − 5θ2g 13ηg + 11σ4g 

 . (40)

After the reliability index βt is obtained by using the
high-order moment method, the approximate estimation
value of transient reliability Rt can be determined as

Rt � Φ βt( , (41)

where Φ(·) represents the standard normal distribution
function. Terefore, the transient reliability of the rolling
bearing can be obtained, that is, the reliability of the bearing
at each operating moment.

Te transient failure rate h(t) refects the failure situation
of the bearing at each moment and has a corresponding
relation with the transient reliability Rt and failure proba-
bility density function f(t):

h(t) �
f(t)

Rt(t)
� −

dRt(t)/dt
Rt(t)

. (42)

Te transient reliability obtained here is essentially
quasistatic reliability, which represents the real-time
working state of the rolling bearing and has important
practical signifcance, but cannot truly refect the cumulative
characteristics of the rolling bearing reliability during the
operating process.Terefore, in order to further consider the
overall reliability state of the rolling bearing during

operation, Su [30] proposed a calculation method for the
cumulative reliability Ra:

Ra � e
− 

t

0
λ(t)dt

,
(43)

where λ(t) is the failure rate of the rolling bearing in the
efective operating period, and λ(t) is a function related to
cumulative reliability Ra:

λ(t) �
1 − Ra

Δt
1

N − 
Ni

i�1 1 − Ra( 
, (44)

whereN is the total number of discrete time periods,Δt is the
time interval of sampling time periods, and Nt is the number
of discrete time periods at time t.

4.2. Reliability Sensitivity Analysis. Reliability sensitivity
analysis is a sensitivity design based on reliability analysis,
which can directly refect the infuence of random variables
on system reliability from quantitative analysis. In practical
engineering design, if a random variable of the bearing has a
greater infuence on the contact fatigue failure, it should be
studied and controlled in the design and manufacturing
process. Conversely, if the variability of a random variable
has no signifcant efect on the bearing contact fatigue re-
liability, it can be treated as a deterministic quantity in
structural design to reduce the number of random variables.
Since the transient reliability can better refect the real-time
characteristics of the bearing, it is of practical engineering
signifcance to study the transient reliability sensitivity of
rolling bearing contact fatigue.

Using the reliability index equation (40) and reliability
equation (41) of the high-order moment method of reli-
ability analysis [31, 32], the sensitivities of the reliability Rt to
the mean vector μX and standard deviation vector σX of the
basic random variable vector X are derived, respectively:
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(45)

where

zRt

zβt

� ϕ βt( . (46)

Here, ϕ(·) represents the standard normal probability
density function.

Te reliability sensitivity is used to evaluate the infuence of
the basic random variables on the contact fatigue reliability of
rolling bearings. In order to uniformly describe the infuence
of each random variable on the reliability, the mean sensitivity
and standard deviation sensitivity of the reliability to the basic
random variables are comprehensively considered and
expressed in the form of the reliability sensitivity gradient as

grad Rt μXi
, σXi

   �

����������������

zRt

zμXi

 

2

+
zRt

zσXi

 

2




. (47)

where the reliability sensitivity gradient grad[·] represents
the change rate of reliability.

Te dimensionless reliability sensitivity avoids the prob-
lem that the reliability sensitivity gradients are not comparable
due to the disunity of the units of the basic random variables.
Te dimensionless mean sensitivity and standard deviation
sensitivity of bearing contact fatigue reliability to basic random
variables are, respectively, expressed as

τi �
zRt

zμXi

σXi

Rt

, (48)

ηi �
zRt

zσXi

μXi

Rt

. (49)

Te dimensionless reliability sensitivity gradient si is

si �

������

τ2i + η2i


. (50)

After standardizing si, the reliability sensitivity factor λ i,
which represents the proportion of the comprehensive in-
fuence of random variables on the bearing reliability, is

λ i �
si


n
k�1 sk

× 100%. (51)

5. Numerical Example

In this section, a certain type of angular contact rolling
bearing that can bear axial force and radial force at the same
time and is widely used in rotating systems is selected with
the following known conditions: the number of rolling
elements Z � 11, the free contact angle α0 � 15°,

Poisson’s ratio and elastic modulus of the raceway and
the rolling elements ξ1 � ξ2 � 0.3, E1 � E2 � 208GPa, and
the rotating speed n = 5000 r/min. Seven random vari-
ables (dm, ri, ro, Db, Fa, Fr, and σs) are used for reliability
and reliability sensitivity analysis of rolling bearing
contact fatigue, since these parameters control the
performance of rolling bearings and are prone to
manufacturing tolerances. In the basic random variable
vector X � (dm ri ro Db Fa Fr σs)

T, the fatigue ultimate
strength σs is the only random variable whose probability
distribution is difcult to determine, but its frst four
moments are known: (μσs

, σσs
, θσs

, ησs
)= (684MPa,

13.68MPa, 153.6270 (MPa)3, 1.0529 ×105 (MPa)4), and
other random variables obey independent normal dis-
tribution. Te mean and standard deviation of the basic
random variables in the bearing design process are given
in Table 3.

Te random variables dm, ri, ro, Db, Fa, and Fr are
sampled by using the Box–Behnken design according to the
experimental design of 6 factors and 3 levels, and the
sampling data are brought into the dynamic model of rolling
bearings in groups to obtain the corresponding equivalent
contact stress σeq. Te input and output of the sampled data
are ftted by RSM within the allowable error range, and a
response surface function of the quadratic polynomial with
cross terms is obtained as a surrogate model. Te results
show that the F value of the response surface model is 64.60,
and the P value is less than 0.0001, indicating that the model
is signifcant, and the signifcance level is 0.01%. Tis shows
that there is only a 0.01% chance of such an F value due to
noise.

Considering that the fatigue ultimate strength of rolling
bearing materials will degrade with operating time, when the
degradation of rolling bearing fatigue ultimate strength
obeys the gamma distribution [33], the maximum likelihood
method is used to obtain the parameters m= 2.496, n= 0.3,
and λ= 0.2013, and the state function equation (35) estab-
lished according to the stress-strength interference model
can be replaced by

g(X) � σs − Δσ(  − β0 + 
6

i�1
βiXi + 

6

i�1
βiiX

2
i + 

6

1≤i<j≤6
βijXiXj

⎛⎝ ⎞⎠.

(52)

Te reliability design is carried out by substituting the
relevant data of the rolling bearing into the frst four-
order moment expressions equations (36)–(39) of the
reliability state function and then into the reliability
expression equation (41) and the reliability expression
equation (42). Trough calculation, the transient reli-
ability Rt and transient failure rate h(t) of the established
rolling bearing contact fatigue model with operating time
t can be obtained and shown in Figure 4. Furthermore,
the cumulative reliability Ra and corresponding cumu-
lative failure efciency λ(t) can be calculated from
equations (43) and (44), and the calculation results are
shown in Figure 5.

During the operating, the fatigue ultimate strength of the
rolling bearing gradually degrades with time, which means
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that at the moment of contact between the rolling element
and the raceway, the equivalent contact stress will have a
greater probability of exceeding the fatigue ultimate
strength, resulting in the occurrence and accumulation of

contact fatigue. Tis will lead to lower contact fatigue re-
liability and faster failure rate of rolling bearings, and at this
time, the transient failure rate shows the right half of the
bathtub curve, which is because with the development of the

Table 3: Statistical characteristics of basic random variables of rolling bearings.

Basic random variable Distribution type Mean value Standard deviation
Bearing pitch diameter dm/mm Normal 46 0.0920
Inner raceway groove curvature radius ri/mm Normal 4.9 0.0098
Outer raceway groove curvature radius ro/mm Normal 5.0 0.0100
Ball diameter Db/mm Normal 9.525 0.0191
Axial force Fa/N Normal 1000 20
Radial force Fr/N Normal 1000 20
Allowable yield stress σs/MPa Unknown 684 13.68
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Figure 4: Variation of transient reliability Rt and transient failure rate h(t) with operating time t.
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Figure 5: Variation of cumulative reliability Ra and cumulative failure efciency λ(t) with operating time t.
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bearing manufacturing level, the experimental bearing does
not have an early running-in period, and the accelerated
degradation makes the stable period shorter, and the deg-
radation occurs faster.

From the defnition of transient reliability and cumu-
lative reliability, transient reliability can better refect the
real-time state of rolling bearings. Trough transient reli-
ability, the real-time details of contact fatigue failure can be
obtained, which can provide designers with a more accurate
real-time working state of rolling bearing, which has im-
portant practical signifcance.Te cumulative reliability pays
more attention to the performance evaluation of the overall
state of the rolling bearing within the construction period,
but due to its overall efect, it masks the dangerous points in
the operating process of the system. For example, in
Figure 4(a), when the reliability is less than 50%, it can be
regarded that the rolling bearing begins to enter the risk
stage, which probably occurs after the rolling bearing has
been running for 600 hours, but in Figure 5(a), it can be seen
that the cumulative reliability is always above 50% during the
operating time of the rolling bearing. Terefore, transient
reliability and cumulative reliability should be considered
simultaneously in practical engineering, that is, to not only
consider the real-time performance of rolling bearings but
also to pay attention to the overall performance of rolling
bearings.

For the design of the rolling bearing, the reliability of
contact fatigue of the rolling bearing should bemaintained at
a high level as far as possible. In the life cycle of rolling
bearing, it is in such a stable stage with high reliability for a
long time. Terefore, the state function of contact fatigue
reliability of rolling bearings under fnite probability in-
formation without considering the occurrence of degrada-
tion can be expressed by equation (35):

g(X) � σs − σeq(X). (53)

By substituting the relevant data of the rolling bearing
into the frst four-order moment equations (36)–(39) of the
reliability state function and then substituting the reliability
index and reliability equations (40) and (41) of the contact
fatigue for reliability design and calculation, it can be ob-
tained that the reliability index βt and reliability Rt of the
rolling bearing are, respectively, as follows:

βt � 3.3875,

Rt � 0.9996.
(54)

Te MCS method has become the benchmark for reli-
ability design because it is independent of calculation error
and problem dimension and does not need to be discretized
for continuous problems. Trough the MCS simulates 105
times, the reliability is

RMC � 0.9995. (55)

Te calculation results show that the results obtained by
the method proposed in this study are in good agreement

with those obtained by using Monte Carlo numerical
simulation.

According to equations (48)–(51), the reliability sensi-
tivity results calculated are given in Table 4, and the fol-
lowing conclusions can be obtained:

(1) From the reliability mean sensitivity zRFM/zμX, it
can be analysed that the reliability of rolling bearing
contact fatigue is positive to the mean sensitivity of
rolling bearing variables dm, ro, Db, and σs, indi-
cating that the reliability of rolling bearings increases
with the increase of these variables’ mean values. In
other words, their infuence is positive. Te mean
sensitivity of ri, Fa, and Fr is negative, indicating that
these variables are negative. For example, in the
engineering design of rolling bearings, improving the
strength properties of materials can efectively re-
duce the occurrence of rolling contact fatigue and
improve the corresponding reliability. With the in-
crease of Fa and Fr, the stress of bearing increases,
and the reliability of rolling contact fatigue will
decrease.

(2) From the reliability standard deviation sensitivity
zRFM/zσX, it can be analysed that the reliability of
the rolling bearing decreases with the increase of the
standard deviation of all seven variables, and the
contact result will tend to fail. Te most sensitive are
ri and Db, and other variables are not very sensitive.
Te larger the standard deviation of the basic ran-
dom variables, the greater the random dispersion of
the variables. Te standard deviation of the variables
will have a negative infuence on the reliability of
contact fatigue, which is also consistent with the
actual engineering design rules.

(3) From the reliability sensitivity gradient grad[·], it can
be analysed that the gradient can be sorted from high
to low in the following order: inner raceway groove
curvature radius ri, ball diameter Db, outer raceway
groove curvature radius ro, fatigue ultimate strength
σs, bearing pitch diameter dm, radial force Fr, and
axial force Fa. On this basis, it is possible to evaluate
the degree to which the variation of each basic
random variable afects the reliability. Tis can be
used as an efective and practical tool for engineering
modifcation design, reanalysis, and redesign. On
this basis, the infuence of the change of each basic
random variable on reliability can be evaluated,
which can be used as an efective and practical tool
for engineering modifcation, design, reanalysis, and
redesign.

(4) From the dimensionless reliability sensitivity gra-
dient si and its proportion λ i, it can be analysed that
the three random variables Db, ri, and σs are rela-
tively sensitive and account for about 98.5% of the
whole. Terefore, in the design, production, and use
of rolling bearings, these three factors should be
strictly controlled. It can also be seen from the results
that the most important bearing structural
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parameters to determine whether contact fatigue
occurs in a rolling bearing are the rolling element
diameter, the inner raceway groove curvature
radius, and the material properties of the bearing
itself. Figures 6–8 show the reliability variation of
contact fatigue around the mean value of the three

main variables so that they can be improved during
design.

In conclusion, the analysis results show that increasing
the rolling element diameter, decreasing the inner raceway
groove curvature radius, and improving the material
properties of the bearing material are the most efective ways
to reduce the contact fatigue failure probability of the
bearing. For the geometric dimensions of the bearing, the
rolling element’s diameter and the inner raceway groove
curvature radius should be strictly controlled to prevent the
occurrence of contact fatigue.

Te theory and practice of reliability engineering show
that the reliability index is closely related and very sensitive
to statistical characteristics such as the mean value and
standard deviation of basic random variables. Terefore,
models and analyses of reliability and reliability sensitivity
can describe quantitative changes and serve as efective
analytical tools for engineering design.

6. Conclusion

Currently, due to the complexity of rolling bearings in
practical engineering and the relatively fnite statistical data,
the basic random variables are subject to various forms of
probability distribution patterns, and sometimes, it is im-
possible to judge their distribution patterns. Reliability

Table 4: Reliability sensitivity results.

Random variable zRFM/zμX zRFM/zσX Grad[·] si λ i (%)

dm 1.4226×10−4 −2.6489×10−6 1.4228×10−4 1.6182×10−4 0.01
ri −4.9673×10−2 −4.8317×10−2 6.9296×10−2 3.1264×10−1 31.26
ro 5.0925×10−4 −4.8115×10−4 7.0060×10−4 3.1769×10−3 0.32
Db 2.6785×10−2 −3.7828×10−2 4.6350×10−2 4.7579×10−1 47.5
Fa −5.2149×10−6 −1.5767×10−6 5.4481× 10−6 2.0866×10−3 0.21
Fr −9.6924×10−6 −5.9436×10−6 1.3370×10−5 7.8528×10−3 0.79
σs 7.8068×10−5 −2.1953×10−4 2.3300×10−4 1.9829×10−1 19.83
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research based on probability statistics information will
certainly bring errors or be far from the true solution. In this
study, the reliability and reliability sensitivity analysis under
the condition of fnite probability information are studied by
using the high-order moment method of reliability design
and the dynamic model of rolling bearings, and the variation
law of the reliability index of rolling bearings with the change
of basic random variables is explored, which provides a
quantitative design basis for rolling bearings. Te results of
reliability and reliability sensitivity under fnite probability
information analysis illustrate the variation law and infu-
ence degree of each basic random variable on the reliability
and reliability sensitivity of rolling bearings based on contact
fatigue. Terefore, the blindness of contact fatigue engi-
neering design of rolling bearings can be avoided, and the
design work can be carried out reasonably and pertinently.
Tis research provides an innovative theoretical method and
implementation technology for the reliability design of
rolling bearings in engineering practice.
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