Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials

Ala Amourah ©,1 Mohammad Alomari $\left(\mathbb{D},{ }^{1}\right.$ Feras Yousef $\mathbb{C}{ }^{2}{ }^{2}$ and Abdullah Alsoboh \mathbb{D}^{3}
${ }^{1}$ Department of Mathematics, Irbid National University, Irbid, Jordan
${ }^{2}$ Department of Mathematics, School of Science, University of Jordan, Amman 11942, Jordan
${ }^{3}$ Umm-Alqura University, P.O Box 715, Mecca, Saudi Arabia
Correspondence should be addressed to Mohammad Alomari; alomari@inu.edu.jo

Received 22 March 2022; Revised 28 April 2022; Accepted 4 May 2022; Published 29 May 2022
Academic Editor: Ismail Shah
Copyright © 2022 Ala Amourah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we introduce and investigate a new subclass of analytic bi-univalent functions based on subordination conditions between the zero-truncated Poisson distribution and Gegenbauer polynomials. More precisely, we will estimate the first two initial Taylor-Maclaurin coefficients and solve the Fekete-Szegö functional problem for functions belonging to this new subclass.

1. Introduction

Let \mathscr{A} denote the class of all analytic functions f defined on the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Thus, each $f \in \mathscr{A}$ has a Taylor-Maclaurin series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},(z \in \mathbb{U}) . \tag{1}
\end{equation*}
$$

Let the functions f and g be in the class \mathscr{A}. We say that the function f is subordinate to g, written as $f<g$, if there exists a Schwarz function w, which is analytic in \mathbb{U} with

$$
\begin{align*}
w(0) & =0 \tag{2}\\
|w(z)| & <1(z \in \mathbb{U})
\end{align*}
$$

such that

$$
\begin{equation*}
f(z)=g(w(z)) \tag{3}
\end{equation*}
$$

Further, let $\mathcal{\delta}$ denote the class of all functions $f \in \mathscr{A}$ that are univalent in \mathbb{U}. It is worth to mention that if the function g is univalent in \mathbb{U}, then the following equivalence holds (see [1]):

$$
\begin{equation*}
f(z)<g(z) \text { if and only if } \quad f(0)=g(0) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\mathbb{U}) \subset g(\mathbb{U}) . \tag{5}
\end{equation*}
$$

It is well known [2] that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
\begin{align*}
& f^{-1}(f(z))=z(z \in \mathbb{U}) \tag{6}\\
& f^{-1}(f(w))=w\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
f^{-1}(w)= & w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3} \\
& -\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{8}
\end{align*}
$$

A function is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of biunivalent functions in \mathbb{U} given by (1). For interesting examples of functions in the class Σ, see [3-10].

In probability theory, the zero-truncated Poisson distribution is a certain discrete probability distribution
whose support is the set of positive integers, that is, the zero-truncated Poisson distribution is the same as the Poisson distribution without the zero count [11]. This distribution is also known as the conditional Poisson distribution [12] or the positive Poisson distribution [13]. The probability density function of the zero-truncated Poisson distribution is given by

$$
\begin{equation*}
P_{m}(X=s)=\frac{m^{s}}{\left(e^{m}-1\right) s!}, s=1,2,3, \ldots, m>0 . \tag{9}
\end{equation*}
$$

Here, let us consider a power series whose coefficients are probabilities of the zero-truncated Poisson distribution, that is,

$$
\begin{equation*}
\mathbb{P}(m, z)=z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{\left(e^{m}-1\right)(n-1)!} z^{n}, z \in \mathbb{U}, \tag{10}
\end{equation*}
$$

where $m>0$. By the ratio test, the radius of convergence of this series is infinity.

Define the linear operator $\chi: \mathscr{A} \longrightarrow \mathscr{A}$ by

$$
\begin{align*}
\chi_{m} f(z) & =\mathbb{P}(m, z) * f(z) \\
& =z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{\left(e^{m}-1\right)(n-1)!} a_{n} z^{n}, \mathrm{z} \in \mathscr{U} \tag{11}\\
& =z+\frac{m}{\left(e^{m}-1\right)} a_{2} z^{2}+\frac{m^{2}}{2\left(e^{m}-1\right)} a_{3} z^{3}+\cdots,
\end{align*}
$$

where * denotes the convolution or Hadamard product of two series (see [14]).

Orthogonal polynomials have been studied extensively as early as they were discovered by Legendre in 1784 [15]. In mathematical treatment of model problems, orthogonal polynomials arise often to find solutions of ordinary differential equations under certain conditions imposed by the model. The importance of the orthogonal polynomials for the contemporary mathematics, as well as for wide range of their applications in the physics and engineering, is beyond any doubt. Recently, many researchers have been exploring bi-univalent functions associated with orthogonal polynomials [16-24]. Very recently, Amourah et al. [25, 26] considered the generating function for Gegenbauer polynomials $H_{\alpha}(x, z)$, which is given by

$$
\begin{equation*}
H_{\alpha}(x, z)=\frac{1}{\left(1-2 x z+z^{2}\right)^{\alpha}} \tag{12}
\end{equation*}
$$

where $x \in[-1,1], \alpha>-1 / 2$, and $z \in \mathbb{U}$. For fixed x, the function H_{α} is analytic in \mathbb{U}, so it can be expanded in a Taylor series as

$$
\begin{equation*}
H_{\alpha}(x, z)=\sum_{n=0}^{\infty} C_{n}^{\alpha}(x) z^{n} \tag{13}
\end{equation*}
$$

where $C_{n}^{\alpha}(x)$ is Gegenbauer polynomial of degree n (see [27]).

Obviously, H_{α} generates nothing when $\alpha=0$. Therefore, the generating function of the Gegenbauer polynomial is set to be

$$
\begin{equation*}
H_{0}(x, z)=1-\log \left(1-2 x z+z^{2}\right)=\sum_{n=0}^{\infty} C_{n}^{0}(x) z^{n} \tag{14}
\end{equation*}
$$

for $\alpha=0$. Moreover, it is worth to mention that a normalization of α to be greater than $-1 / 2$ is desirable [28, 29]. Gegenbauer polynomials can also be defined by the following recurrence relations:

$$
\begin{equation*}
C_{n}^{\alpha}(x)=\frac{1}{n}\left[2 x(n+\alpha-1) C_{n-1}^{\alpha}(x)-(n+2 \alpha-2) C_{n-1}^{\alpha}(x)\right] \tag{15}
\end{equation*}
$$

with the initial values

$$
\begin{equation*}
C_{0}^{\alpha}(x)=1, C_{1}^{\alpha}(x)=2 \alpha x \text { and } C_{2}^{\alpha}(x)=2 \alpha(1+\alpha) x^{2}-\alpha \tag{16}
\end{equation*}
$$

Special cases of Gegenbauer polynomials $C_{n}^{\alpha}(x)$ are Chebyshev polynomials when $\alpha=1$ and Legendre polynomials when $\alpha=1 / 2$.

2. The Class $\zeta_{\Sigma}(x, \boldsymbol{\alpha}, \boldsymbol{\mu})$

In this section, we introduce a new subclass of Σ involving the new constructed series (10) and Gegenbauer polynomials.

Definition 2.1. A function $f \in \Sigma$ given by (1) is said to be in the class $\zeta_{\Sigma}(x, \alpha, \mu)$ if the following subordinations are satisfied:

$$
\begin{align*}
& (1-\mu) \frac{\chi_{m} f(z)}{z}+\mu\left(\chi_{m} f(z)\right)^{\prime}<H_{\alpha}(x, z) \tag{17}\\
& (1-\mu) \frac{\chi_{m} g(w)}{w}+\mu\left(\chi_{m} g(w)\right)^{\prime}<H_{\alpha}(x, w) \tag{18}
\end{align*}
$$

where $\alpha>0, \mu \geq 0, x \in(1 / 2,1]$, and the function $g=f^{-1}$ is given by (8).

Upon specializing the parameter μ, one can get the following new subclass of Σ as illustrated in the following example.

Example 2.1. If $\mu=1$, then we have $\zeta_{\Sigma}(x, \alpha, 1)=\zeta_{\Sigma}(x, \alpha)$, in which $\zeta_{\Sigma}(x, \alpha)$ denotes the class of functions $f \in \Sigma$ given by (1) and satisfying the following conditions.

$$
\begin{align*}
& \left(\chi_{m} f(z)\right)^{\prime}<H_{\alpha}(x, z) \tag{19}\\
& \left(\chi_{m} g(w)\right)^{\prime}<H_{\alpha}(x, w) \tag{20}
\end{align*}
$$

3. Estimates of the Class $\zeta_{\Sigma}(x, \boldsymbol{\alpha}, \boldsymbol{\mu})$

First, we give the coefficient estimates for the class $\zeta_{\Sigma}(x, \alpha, \mu)$ given in Definition 2.1.

Theorem 3.1. Let $f \in \Sigma$ given by (1) belong to the class $\zeta_{\Sigma}(x, \alpha, \mu)$. Then,

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{2 \alpha x\left(e^{m}-1\right) \sqrt{2 \alpha x}}{m \sqrt{\left|\left[2 \alpha^{2}(1+2 \mu)\left(e^{m}-1\right)-2 \alpha(1+\mu)^{2}(1+\alpha)\right] x^{2}+\alpha(1+\mu)^{2}\right|}} \tag{21}\\
& \left|a_{3}\right| \leq \frac{4 \alpha^{2} x^{2}\left(e^{m}-1\right)^{2}}{m^{2}(1+\mu)^{2}}+\frac{4 \alpha x\left(e^{m}-1\right)}{m^{2}(1+2 \mu)} \tag{22}
\end{align*}
$$

Proof. Let $f \in \zeta_{\Sigma}(x, \alpha, \mu)$. From Definition 2.1, for some analytic functions w, v such that $w(0)=v(0)=0$ and $|w(z)|<1,|v(w)|<1$ for all $z, w \in \mathbb{U}$, then we can write

$$
\begin{align*}
& (1-\mu) \frac{\chi_{m} f(z)}{z}+\mu\left(\chi_{m} f(z)\right)^{\prime}=H_{\alpha}(x, w(z)), \tag{23}\\
& (1-\mu) \frac{\chi_{m} g(w)}{w}+\mu\left(\chi_{m} g(w)\right)^{\prime}=H_{\alpha}(x, v(w)) . \tag{24}
\end{align*}
$$

From the equalities (23) and (24), we obtain that

$$
\begin{align*}
(1 & -\mu) \frac{\chi_{m} f(z)}{z}+\mu\left(\chi_{m} f(z)\right)^{\prime} \tag{25}\\
& =1+C_{1}^{\alpha}(x) c_{1} z+\left[C_{1}^{\alpha}(x) c_{2}+C_{2}^{\alpha}(x) c_{1}^{2}\right] z^{2}+\cdots \\
(1 & -\mu) \frac{\chi_{m} g(w)}{w}+\mu\left(\chi_{m} g(w)\right)^{\prime} \\
& =1+C_{1}^{\alpha}(x) d_{1} w+\left[C_{1}^{\alpha}(x) d_{2}+C_{2}^{\alpha}(x) d_{1}^{2}\right] w^{2}+\cdots \tag{26}
\end{align*}
$$

It is fairly well known that if

$$
\begin{align*}
& |w(z)|=\left|c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right|<1,(z \in \mathbb{U}) \tag{27}\\
& |v(w)|=\left|d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots\right|<1,(w \in \mathbb{U}) \tag{28}
\end{align*}
$$

then (see [30])

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \text { and }\left|d_{j}\right| \leq 1 \text { for all } j \in \mathbb{N} . \tag{29}
\end{equation*}
$$

Thus, upon comparing the corresponding coefficients in (25) and (26), we have

$$
\begin{equation*}
\frac{(1+\mu) m}{e^{m}-1} a_{2}=C_{1}^{\alpha}(x) c_{1} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(1+2 \mu) m^{2}}{2\left(e^{m}-1\right)} a_{3}=C_{1}^{\alpha}(x) c_{2}+C_{2}^{\alpha}(x) c_{1}^{2} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{(1+\mu) m}{e^{m}-1} a_{2}=C_{1}^{\alpha}(x) d_{1} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(1+2 \mu) m^{2}}{2\left(e^{m}-1\right)}\left[2 a_{2}^{2}-a_{3}\right]=C_{1}^{\alpha}(x) d_{2}+C_{2}^{\alpha}(x) d_{1}^{2} \tag{33}
\end{equation*}
$$

It follows from (30) and (32) that

$$
\begin{align*}
c_{1} & =-d_{1} \tag{34}\\
\frac{2(1+\mu)^{2} m^{2}}{\left(e^{m}-1\right)^{2}} a_{2}^{2} & =\left[C_{1}^{\alpha}(x)\right]^{2}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{35}
\end{align*}
$$

If we add (31) and (33), we get

$$
\begin{equation*}
\frac{(1+2 \mu) m^{2}}{\left(e^{m}-1\right)} a_{2}^{2}=C_{1}^{\alpha}(x)\left(c_{2}+d_{2}\right)+C_{2}^{\alpha}(x)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{36}
\end{equation*}
$$

Substituting the value of $\left(c_{1}^{2}+d_{1}^{2}\right)$ from (35) in the right hand side of (36), we deduce that

$$
\begin{align*}
& {\left[(1+2 \mu)-\frac{2(1+\mu)^{2}}{\left(e^{m}-1\right)} \frac{C_{2}^{\alpha}(x)}{\left[C_{1}^{\alpha}(x)\right]^{2}}\right] \frac{m^{2}}{\left(e^{m}-1\right)} a_{2}^{2}} \tag{37}\\
& =C_{1}^{\alpha}(x)\left(c_{2}+d_{2}\right)
\end{align*}
$$

Moreover, using (16), (29), and (37), we find that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha x\left(e^{m}-1\right) \sqrt{2 \alpha x}}{m \sqrt{\left|\left[2 \alpha^{2}(1+2 \mu)\left(e^{m}-1\right)-2 \alpha(1+\mu)^{2}(1+\alpha)\right] x^{2}+\alpha(1+\mu)^{2}\right|}} \tag{38}
\end{equation*}
$$

Now, if we subtract (33) from (31), we obtain $\frac{(1+2 \mu) m^{2}}{\left(e^{m}-1\right)}\left(a_{3}-a_{2}^{2}\right)=C_{1}^{\alpha}(x)\left(c_{2}-d_{2}\right)+C_{2}^{\alpha}(x)\left(c_{1}^{2}-d_{1}^{2}\right)$.

Then, in view of (16) and (35), (39) becomes
$a_{3}=\frac{\left(e^{m}-1\right)^{2}\left[C_{1}^{\alpha}(x)\right]^{2}}{2 m^{2}(1+\mu)^{2}}\left(c_{1}^{2}+d_{1}^{2}\right)+\frac{\left(e^{m}-1\right) C_{1}^{\alpha}(x)}{m^{2}(1+2 \mu)}\left(c_{2}-d_{2}\right)$.

Thus, applying (16) and (29), we conclude that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2} x^{2}\left(e^{m}-1\right)^{2}}{m^{2}(1+\mu)^{2}}+\frac{4 \alpha x\left(e^{m}-1\right)}{m^{2}(1+2 \mu)} \tag{41}
\end{equation*}
$$

This completes the proof of Theorem 3.1.

Making use of the values of a_{2}^{2} and a_{3}, we prove the following Fekete-Szegö inequality for functions in the class $\zeta_{\Sigma}(x, \alpha, \mu)$.

Theorem 3.2. Let $f \in \Sigma$ given by (1) belong to the class $\zeta_{\Sigma}(x, \alpha, \mu)$. Then,

$$
\begin{equation*}
\delta=\left|1-\frac{(1+\mu)^{2}\left(2(1+\alpha) x^{2}-1\right)}{2 \alpha x^{2}\left(e^{m}-1\right)(1+2 \mu)}\right| \tag{42}
\end{equation*}
$$

$\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}4 \alpha x\left(e^{m}-1\right) / m^{2}(1+2 \mu), & \\ 8 \alpha^{2} x^{3}\left(e^{m}-1\right)^{2}(1-\eta) / \mid m^{2} & |\eta-1| \leq \delta \\ \left(\left[2 \alpha(1+2 \mu)\left(e^{m}-1\right)\right.\right. & |\eta-1| \geq \delta, \\ \left.\left.-2(1+\mu)^{2}(1+\alpha)\right] x^{2}+(1+\mu)^{2}\right) \mid, & \end{cases}$
Proof. From (37) and (39),
where

$$
\begin{align*}
a_{3}-\eta a_{2}^{2} & =(1-\eta) \frac{\left(e^{m}-1\right)^{2}\left[C_{1}^{\alpha}(x)\right]^{3}\left(c_{2}+d_{2}\right)}{m^{2}\left[\left(e^{m}-1\right)(1+2 \mu)\left[C_{1}^{\alpha}(x)\right]^{2}-2(1+\mu)^{2} C_{2}^{\alpha}(x)\right]}+\frac{\left(e^{m}-1\right) C_{1}^{\alpha}(x)}{m^{2}(1+2 \mu)}\left(c_{2}-d_{2}\right) \tag{43}\\
& =C_{1}^{\alpha}(x)\left[h(\eta)+\frac{\left(e^{m}-1\right)}{m^{2}(1+2 \mu)}\right] c_{2}+C_{1}^{\alpha}(x)\left[h(\eta)-\frac{\left(e^{m}-1\right)}{m^{2}(1+2 \mu)}\right] d_{2},
\end{align*}
$$

where
$h(\eta)=\frac{\left(e^{m}-1\right)^{2}\left[C_{1}^{\alpha}(x)\right]^{2}(1-\eta)}{m^{2}\left[\left(e^{m}-1\right)(1+2 \mu)\left[C_{1}^{\alpha}(x)\right]^{2}-2(1+\mu)^{2} C_{2}^{\alpha}(x)\right]}$.

Then, in view of (16), we conclude that
$\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{2\left(e^{m}-1\right)\left|C_{1}^{\alpha}(x)\right|}{m^{2}(1+2 \mu)} & 0 \leq|h(\eta)| \leq \frac{\left(e^{m}-1\right)}{m^{2}(1+2 \mu)}, \\ 2\left|C_{1}^{\alpha}(x)\right||h(\eta)| & |h(\eta)| \geq \frac{\left(e^{m}-1\right)}{m^{2}(1+2 \mu)},\end{cases}$

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{2 \alpha x\left(e^{m}-1\right) \sqrt{2 \alpha x}}{m \sqrt{\left|\left[2 \alpha^{2}\left(e^{m}-1\right)-2 \alpha(1+\alpha)\right] x^{2}+\alpha\right|}}, \tag{46}\\
\left|a_{3}\right| \leq \frac{4 \alpha^{2} x^{2}\left(e^{m}-1\right)^{2}}{m^{2}}+\frac{4 \alpha x\left(e^{m}-1\right)}{m^{2}}, \\
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{4 \alpha x\left(e^{m}-1\right)}{m^{2}}, & |\eta-1| \leq\left|1-\frac{\left(2(1+\alpha) x^{2}-1\right)}{2 \alpha x^{2}\left(e^{m}-1\right)}\right| \\
\frac{8 \alpha^{2} x^{3}\left(e^{m}-1\right)^{2}(1-\eta)}{\left|m^{2}\left(\left[2 \alpha\left(e^{m}-1\right)-2(1+\alpha)\right] x^{2}+1\right)\right|},|\eta-1| \geq\left|1-\frac{\left(2(1+\alpha) x^{2}-1\right)}{2 \alpha x^{2}\left(e^{m}-1\right)}\right| .\end{cases} \tag{47}
\end{gather*}
$$

4. Conclusions

In our present investigation, we have introduced a new subclass $\zeta_{\Sigma}(x, \alpha, \mu)$ of normalized analytic and bi-univalent functions associated with the zero-truncated Poisson distribution and Gegenbauer polynomials. For functions belonging to this class, we have derived the estimates of the

Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ and the Fekete-Szegö functional problem. Furthermore, by suitably specializing the parameter μ, one can deduce the result for the subclass $\zeta_{\Sigma}(x, \alpha)$ which is defined in Example 2.1.

The results presented in this paper would lead to various other new results for the classes $\zeta_{\Sigma}(x, 1, \mu)$ for Chebyshev polynomials and $\zeta_{\Sigma}(x, 1 / 2, \mu)$ for Legendre polynomials.

The special families examined in this research paper and linked with zero-truncated Poisson distribution and Gegenbauer polynomials could inspire further research related to other aspects, such as families using q-derivative operator [31, 32] and bi-univalent function families associated with differential operators [33].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] S. Miller and P. Mocanu, Differential Subordination: Theory and Applications, CRC Press, New York, NY, USA, 2000.
[2] F. Yousef, S. Alroud, and M. Illafe, "New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems," Analysis and Mathematical Physics, vol. 11, no. 2, p. 58, 2021.
[3] G. Murugusundaramoorthy, N. Magesh, and V. Prameela, "Coefficient bounds for certain subclasses of bi-univalent function," Abstract and Applied Analysis, vol. 2013, Article ID 573017, 3 pages, 2013.
[4] Z. Peng, G. Murugusundaramoorthy, and T. Janani, "Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator," J. Complex Analysis, vol. 2014, Article ID 693908, 6 pages, 2014.
[5] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, "Certain subclasses of analytic and bi-univalent functions," Applied Mathematics Letters, vol. 23, no. 10, pp. 1188-1192, 2010.
[6] B. A. Frasin and M. K. Aouf, "New subclasses of bi-univalent functions," Applied Mathematics Letters, vol. 24, no. 9, pp. 1569-1573, 2011.
[7] M. Illafe, A. Amourah, and M. Haji Mohd, "Coefficient estimates and fekete-szegö functional inequalities for a certain subclass of analytic and Bi-univalent functions," Axioms, vol. 11, no. 4, p. 147, 2022.
[8] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, and M. G. Khan, "Applications of-derivative operator to the subclass of Bi -univalent functions involving Chebyshev polynomials," Journal of Mathematics, vol. 2022, Article ID 8162182, 7 pages, 2022.
[9] A. Amourah, T. Al-Hawary, and B. A. Frasin, "Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\alpha+i \delta$," Afrika Matematika, vol. 32, pp. 1-8, 2021.
[10] B. A. Frasin, S. R. Swamy, and J. Nirmala, "Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function," Afrika Matematika, vol. 32, 2020.
[11] F. N. David and N. L. Johnson, "The truncated Poisson," Biometrics, vol. 8, no. 4, pp. 275-285, 1952.
[12] A. C. Cohen, "Estimating the parameter in a conditional Poisson distribution," Biometrics, vol. 16, no. 2, pp. 203-211, 1960.
[13] J. Singh, "A characterization of positive Poisson distribution and its statistical application," SIAM Journal on Applied Mathematics, vol. 34, no. 3, pp. 545-548, 1978.
[14] A. Ala, B. A. Frasin, M. Ahmad, and F. Yousef, "Exploiting the pascal distribution series and gegenbauer polynomials to construct and study a new subclass of analytic Bi-univalent functions," Symmetry, vol. 14, no. 1, p. 147, 2022.
[15] A. Legendre, Research on the attraction of homogeneous spheroids, Vol. 10, Papers presented by various scholars at the Academy of Sciences of the Institut de France, , Paris, France, 1785.
[16] S. Altinkaya and S. Yalcin, "Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q - derivative operator by means of the Chebyshev polynomials," Asia Pacific Journal of Management, vol. 4, no. 2, pp. 90-99, 2017.
[17] F. Yousef, B. A. Frasin, and T. Al-Hawary, "Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials," Filomat, vol. 32, no. 9, pp. 3229-3236, 2018.
[18] G. Murugusundaramoorthy and T. Bulboacă, "Subclasses of yamakawa-type Bi-starlike functions associated with gegenbauer polynomials," Axioms, vol. 11, no. 3, p. 92, 2022.
[19] T. Al-Hawary, A. Amourah, and B. A. Frasin, "Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials," Bol. Soc. Mat. Mex.vol. 27, no. 3, pp. 1-12, 2022.
[20] A. K. Wanas and L. I. Cotirla, "New Applications of gegenbauer Polynomials on a new Family of Bi-bazilevic functions Governed by the q-srivastava-attiya operator," Mathematics, vol. 10, no. 8, p. 1309, 2022.
[21] S. Bulut, "Coefficient estimates for a class of analytic and biunivalent functions," Novi Sad Journal of Mathematics, vol. 43, pp. 59-65, 2013.
[22] S. Bulut, N. Magesh, and V. K. Balaji, "Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials," Journal of Classical Analysis, vol. 11, no. 1, pp. 83-89, 2017.
[23] B. A. Frasin, F. Yousef, T. Al-Hawary, and I. Aldawish, "Application of generalized Bessel functions to classes of analytic functions," Afrika Matematika, vol. 32, no. 3-4, pp. 431-439, 2021.
[24] B. A. Frasin, T. Al-Hawary, F. Yousef, and I. Aldawish, "On subclasses of analytic functions associated with Struve functions," Nonlinear Func. Anal. App.vol. 27, no. 1, pp. 99-110, 2022.
[25] A. Amourah, B. A. Frasin, and T. Abdeljawad, "Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials," J. Funct. Spaces, vol. 2021, Article ID 5574673, 7 pages, 2021.
[26] A. Amourah, A. Alamoush, and M. Al-Kaseasbeh, "Gegenbauer polynomials and bi-univalent functions," Pales. J. Math, vol. 10, no. 2, pp. 625-632, 2021.
[27] K. Kiepiela, I. Naraniecka, and J. Szynal, "The Gegenbauer polynomials and typically real functions," Journal of Computational and Applied Mathematics, vol. 153, no. 1-2, pp. 273-282, 2003.
[28] B. Doman, The Classical Orthogonal Polynomials, World Scientific, Singapore, 2015.
[29] M. Reimer, Multivariate Polynomial Approximation, Birkh Auser, Basel, Switzerland, 2012.
[30] C. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, Germany, 1975.
[31] S. M. El-Deeb, T. Bulboacă, and B. M. El-Matary, "Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative," Mathematics, vol. 8, no. 3, p. 418, 2020.
[32] S. Bulut, "Certain subclasses of analytic and bi-univalent functions involving the q -derivative operator," Соттии. Fac. Scie. Univer. Ankara Ser. A1 Math. Stat.vol. 66, pp. 108-114, 2017.
[33] F. Yousef, T. Al-Hawary, and G. Murugusundaramoorthy, "Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator," Afrika Matematika, vol. 30, no. 3-4, pp. 495-503, 2019.

