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Network connectivity is an important factor in data transmission, information sharing, and network defense, and it is a crucial
indicator which determines the performance of a network. When a network node or channel contains uncertainties in both
positive and negative aspects, the entire network can be modeled with bipolar fuzzy graphs. ,is paper analyzes the influence of
each vertex on the connectivity of the entire network through the definition of the connected state on the bipolar fuzzy graph.,e
solid results are given, and the new concepts are applied in campus network connectivity analysis. ,is approach helps to analyze
the hidden dangers of the bipolar network, find the weaknesses in the connection, and prevent network attacks in advance.

1. Introduction

In information science, the connectivity of the network and
the connected state of each vertex determine the efficiency of
the entire network and the corresponding algorithm. For
example, in a proteinmolecular network, the connected state
of the apex determines the molecular activity, which affects
the working mechanism of the biological system. In fed-
erated learning, the status of each device is not like silos
which works all the time. In a certain period of time, devices
tend to be in a disconnected state, which leads to the need to
select a collection of devices that are in working state during
each iteration of federated learning. For various reasons of
actual needs, network connectivity has become a hot topic in
the field of information technology (see Cheung and Bell [1],
Yemini et al. [2], Burla et al. [3], Denison et al. [4], Hummer
et al. [5], Ma et al. [6], Gong et al. [7], Gao et al. [8, 9], and
Kumar et al. [10]).

Due to the complexity of the network itself, in many
application scenarios involving the uncertainty of vertices
and edges, it is necessary to borrow tools and methods of
fuzzy mathematics. Since the network itself uses vertices to
represent sites and edges represent the connecting channels
between sites, this network is a graph structure. When it is

necessary to describe the uncertain features in the network,
the entire model becomes a fuzzy graph model; that is, the
membership function of vertices and edges is used to describe
this uncertainty in detail. On the other hand, this uncertainty
in fuzzy mathematics can often be divided into positive and
negative properties. It is well known that the positive
membership function cannot reflect the negative uncertainty
of objectives. For example, the membership function μ1
stands for “like” and μ2 means “dislike” while μ1(x) � 0.7
cannot infer μ2(x) � 0.3. A reasonable approach is to use a
negative membership function to describe “dislike.”

In modeling, the positive uncertainty corresponds to the
positive membership function value, and the negative un-
certainty corresponds to the negative membership function
value. In this setting, the network model becomes a bipolar
fuzzy graph, and different types of uncertainties can use
different membership functions and ultimately determine
various frameworks of the bipolar fuzzy graph. Common
ones include bipolar intuitionistic fuzzy graphs, bipolar
Pythagorean fuzzy graphs, and so on (see Akram et al. [11],
Atef et al. [12], Mahapatra et al. [13], Talebi et al. [14], Gong
and Hua [15], Binu et al. [16], Amanathulla et al. [17],
Kalathian et al. [18], Akram and Sattar [19], and Mahapatra
et al. [20]).
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Very recently, several works contribute to bipolar fuzzy
sets and bipolar fuzzy graphs from the perspective of theory
and application. Mahmood and Ur Rehman [21] introduced
a new notation of bipolar complex fuzzy set which is the
fusion of bipolar fuzzy set and complex fuzzy set. Jana [22]
studied the multiple attribute group decision-making with
bipolar fuzzy numbers in terms of multiple attribute border
approximation area comparison approach. Poulik et al. [23]
determined the upper and lower boundaries of Randic index
of bipolar fuzzy graphs. Ali et al. [24] proposed the theory of
an innovative hybrid model called the fuzzy bipolar soft
expert sets and applied it to COVID-19 applications.
Mehmood et al. [25] raised a new trick to solve LR-type fully
bipolar fuzzy linear programming problems with equality
restrictions. Ozcelik and Nalkiran [26] introduced an
evaluation based on the distance from average solution
equipped with trapezoidal bipolar fuzzy sets. Cornejo et al.
[27] obtained features of the solvability of bipolar max-
product fuzzy equations with the standard negation. More
related books on bipolar fuzzy graph can be referred to
Mathew et al. [28], Pal et al. [29], Akram et al. [30],
Chakraverty et al. [31], Chakraverty [32], and Volosencu and
Aceves-Fernandez [33].

Binu et al. [34] introduced the connectivity status of
vertices in fuzzy graph and classified all the vertices bymeans
of its connectivity status. It inspires us to extend these
concepts to more fuzzy settings, and in this work, we focus
on bipolar fuzzy setting. ,e contributions of this work are
three-fold: first, we introduce the bipolar connectivity status
of each vertex and entire network; then, some theoretical
results are inferred in light of fuzzy theory and graph theory;
and finally, the given tricks are used in campus network
connectivity analysis which aims to prevent network attacks
in advance.

,e organization of the rest sections are as follows: we
present the basic existing concepts on bipolar fuzzy graph in
Section 2; new definitions, theoretical results, and proofs are
determined in Section 3; a numerical experiment is man-
ifested in Section 4 which simulates university campus
network; and finally, the conclusion and remarks are given
in the last section.

2. Definitions in Bipolar Fuzzy Graph Setting

Let V be a universal set and A � (v, μP
A(v), μN

A (v)): v ∈ V 

be a bipolar fuzzy set in V with two membership functions
μP

A: V⟶ [0, 1] and μN
A : V⟶ [− 1, 0]. If B � (μP

B, μN
B ) is a

bipolar fuzzy set in V
2 where μP

B(v, v′)≤min μP
A(v), μP

A(v′) ,

μN
B (v, v′)≥max μN

A (v), μN
A (v′)  for any (v, v′) ∈ V

2, and
μP

B(v, v′) � μN
B (v, v′) � 0 for any (v, v′) ∈ V

2
− E, then G �

(V, A, B) is a bipolar fuzzy graph (BFG) (the corresponding
originally graph is called a crisp graph of fuzzy graph). In
what follows, we always use ∧ and ∨ instead of minimum
and maximum operations, respectively.

Let G � (V, A, B) be a bipolar fuzzy graph.
P � v0v1 . . . vk− 1vk is a path with length k from x � v0 to y �

vk in G which is a sequence of different vertices, where
(μP

B(vi− 1, vi)> 0, μN
B (vi− 1, vi)< 0) for i ∈ (1, . . . , k). ,en,

μP
B(x, y) 

k
� sup μP

B x, v1( ∧μP
B v1, v2( ∧ · · ·∧μP

B vk− 1, y(  ,

(1)

and

μN
B (x, y) 

k
� inf μN

B x, v1( ∨μN
B v1, v2( ∨ · · ·∨μN

B vk− 1, y(  .

(2)

Set

CONNP
G(x, y) � sup

k∈N
μP

B(x, y) 
k

 ,

CONNN
G (x, y) � inf

k∈N
μN

B (x, y) 
k

 .

(3)

,en, the strength of connectedness between arbitrary
x, y ∈ V(G) in bipolar fuzzy graph G is denoted by

CONNG(x, y) � CONNP
G(x, y),CONNN

G (x, y) 

� μP
B(x, y) 

∞
, μN

B (x, y) 
∞

 .
(4)

If μP
B(v, v′)> 0 and μN

B (v, v′)< 0 for any (v, v′) in G, then
the bipolar fuzzy graph G is connected. If
μP

B(v, v′) � min μP
A(v), μP

A(v′)  and μN
B (v, v′) � max

μN
A (v), μN

A (v′)  for any v, v′ ∈ V, then the bipolar fuzzy
graph G is a complete bipolar fuzzy graph.

All edges in bipolar fuzzy graph can be divided into three
classes in light of connectedness. An edge vv′ is strong if
μP

B(v, v′)≥CONNP
G− vv′(v, v′) and μN

B (v, v′)≤CONNN
G− vv′

(v, v′). If μP
B(v, v′)>CONNP

G− vv′(v, v′) and μN
B (v, v′)<

CONNN
G− vv′(v, v′), then edge vv′ is called α-strong. If

μP
B(v, v′) � CONNP

G− vv′(v, v′) and μN
B (v, v′) � CONNN

G− vv′

(v, v′), then the pair (v, vv′) is called β-strong.
,e connectivity index of the bipolar fuzzy graph is

defined by Poulik and Ghorai [35], which is formulated by

CIBF(G) � CI
P
BF(G), CI

N
BF(G) 

� 
x,y∈V

μP
A(x)μP

A(y)CONNP
G(x, y), 

x,y∈V
μN

A (x)μN
A (y)CONNN

G (x, y)⎛⎝ ⎞⎠,
(5)
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where CIP
BF(G) and CIN

BF(G) are positive connectivity
index and negative connectivity index of bipolar fuzzy
graph G.

3. Connectivity Status in a Bipolar Fuzzy Graph

,e difference between the general frame fuzzy graph and
the bipolar fuzzy graph mainly depends on the membership
function that describes the fuzzy characteristics of the
negative pole contained in the bipolar fuzzy graph. ,e

membership function determines the fuzzy structure
characteristics of the negative pole and thus has a decisive
influence on the connectivity of the vertices of the entire
fuzzy graph. In this section, we introduce the connectivity
parameters for bipolar fuzzy graphs.

Definition 1. Let G � (V, A, B) be a bipolar fuzzy graph and
V � v1, v2, . . . , vn  be the ordered vertex set of G. ,e
connectivity status of a vertex v ∈ V is defined by

CSG(v) � CS
P
G(v), CS

N
G (v) 

�
1

n − 1


n

i�1,vi≠v
CONNP

G vi, v( ,
1

n − 1


n

i�1,vi ≠ v

CONNN
G vi, v( ⎛⎝ ⎞⎠,

(6)

where CSP
G(v) and CSN

G (v) are positive connectivity status
and negative connectivity status of vertex v, respectively.,e
connectivity status of bipolar fuzzy graph G is denoted by

CS(G) � CS
P
(G), CS

N
(G) 

�
1
n



n

i�1
CS

P
G vi( ,

1
n



n

i�1
CS

N
G vi( ⎛⎝ ⎞⎠,

(7)

where CSP(G) and CSN(G) are positive connectivity status
and negative connectivity status of bipolar fuzzy graph G,
respectively.

For convenience, we write CSG(v), CSP
G(v), and CSN

G (v)

as CS(v), CSP(v), and CSN(v) for short. ,e minimum
positive connectivity status, maximum positive connectivity
status, minimum negative connectivity status, and maxi-
mum negative connectivity status of bipolar fuzzy graph G

are defined by δP
CS(G) � minv∈V(G) CSP

G(v) , ΔP
CS(G) �

maxv∈V(G) CSP
G(v) , δN

CS(G) � minv∈V(G) CSN
G (v)  and

ΔN
CS(G) � maxv∈V(G) CSN

G (v) , respectively. A bipolar fuzzy
graph is positive connectivity status regular if
δP

CS(G) � ΔP
CS(G) and positive connectivity status regular if

δN
CS(G) � ΔN

CS(G). Two vertices are said to be of positive
equistatus (respectively, negative equistatus) in bipolar fuzzy
graph G if they have the same positive connectivity status
(respectively, negative connectivity status) in G. Two vertices
are said to be of equistatus if they are both positive equistatus
and negative equistatus.

Example 1. As depicted in Figure 1, V � v1, v2, v3, v4, v5 ,
E � v1v2, v2v3, v3v4, v4v5 , (μP

A(vi), μN
A (vi)) � (1, − 1) for

1≤ i≤ 5, μP
B(v1, v2) � 0.6, μN

B (v1, v2) � − 0.5, μP
B(v2, v3) � 0.4,

μN
B (v2, v3) � − 0.7, μP

B(v3, v4) � 0.9, μN
B (v3, v4) � − 0.1,

μP
B(v4, v5) � 0.8, μN

B (v4, v5) � − 0.1, CONNP
G(v1, v2) � 0.6,

CONNN
G (v1, v2) � − 0.5, CONNP

G(v1, v3) � 0.4, CONNN
G

(v1, v3) � − 0.5, CONNP
G(v1, v4) � 0.4, CONNN

G (v1, v4) �

− 0.1, CONNP
G(v1, v5) � 0.4, CONNN

G (v1, v5) � − 0.1,
CONNP

G (v2, v3) � 0.4, CONNN
G (v2, v3) � − 0.7, CONNP

G

(v2, v4) � 0.4, CONNN
G (v2, v4) � − 0.1, CONNP

G(v2, v5) �

0.4, CONNN
G (v2, v5) � − 0.1, CONNP

G(v3, v4) � 0.9, CONNN
G

(v3, v4) � − 0.1, CONNP
G(v3, v5) � 0.8, CONNN

G (v3, v5) �

− 0.1, CONNP
G(v4, v5) � 0.8, CONNN

G (v4, v5) � − 0.1,
CSG(v1) � (0.45, − 0.3), CSG(v2) � (0.45, − 0.35), CSG(v3) �

(0.625, − 0.35), CSG(v4) � (0.625, − 0.1), CSG(v5) �

(0.6, − 0.1), and CS(G) � (0.55, − 0.24).
Furthermore, we infer δP

CS(G) � 0.45, ΔP
CS(G) � 0.625,

δN
CS(G) � − 0.35, and ΔN

CS(G) � − 0.1. v1 and v2 are positive
equistatus vertices; v3 and v4 are positive equistatus vertices;
v2 and v3 are negative equistatus vertices; v4 and v5 are
negative equistatus vertices; however, no two vertices are
equistatus.

Our first result reveals the relationship between con-
nectivity index and connectivity status of the bipolar fuzzy
graph.

Theorem 1. Let G � (V, A, B) be a bipolar fuzzy graph and
V � v1, v2, . . . , vn  be the ordered vertex set of G. Suppose
that μP

A(v) � 1 and μN
A (v) � − 1 for any v ∈ V. 6en,

CIBF(G) � 

n

i�2
CS

P
vi(  − 

n− 1

i�2


n

j�i+1
CONNP

G vi, vj , 

n

i�2
CS

N
vi(  − 

n− 1

i�2


n

j�i+1
CONNN

G vi, vj ⎛⎝ ⎞⎠. (8)

Mathematical Problems in Engineering 3



Proof of,eorem 1.We only prove the negative part, i.e.,

CI
N
BF(G) � 

n

i�2
CS

N
vi(  − 

n− 1

i�2


n

j�i+1
CONNN

G vi, vj . (9)

Under the hypothesis of ,eorem 1, we infer

CI
N
BF(G) � 

x,y∈V
μN

A (x)μN
A (y)CONNN

G (x, y)

� 
x,y∈V

CONNN
G (x, y)

� CS
N

v1(  + CS
N

v2(  − CONNN
G v1, v2(   + CS

N
v3(  − CONNN

G v1, v3(  + CONNN
G v2, v3(  

+ · · · + CS
N

vn− 1(  − CONNN
G vn− 2, vn− 1(  + · · · + CONNN

G v1, vn− 1(   + CS
N

vn( 

− CONNN
G vn, vn− 1(  + · · · + CONNN

G v1, vn(  

� 

n

i�1
CS

N
G vi(  − CS

N
G v1(  + CONNN

G v2, v3(  + · · · + CONNN
G v2, vn(  

− CONNN
G v3, v4(  + · · · + CONNN

G v3, vn(   − · · · − CONNN
G vn− 2, vn− 1( 

+CONNN
G vn− 2, vn(  − CONNN

G vn− 1, vn(  

� 
n

i�2
CS

N
vi(  − 

n− 1

i�2


n

j�i+1
CONNN

G vi, vj .

(10)

For a complete bipolar fuzzy graph, we have the fol-
lowing statements.

Theorem 2. Let G � (V, A, B) be a bipolar fuzzy graph and
V � v1, v2, · · · , vn . Assume that vP

min, vP
max, vN

min, vN
max ∈ V

are four vertices (allow some of them to be the same vertex)
satisfyingminv∈V(G) μP

A(v)  � μP
A(vP

min),maxv∈V(G) μP
A(v)  �

μP
A (vP

max), minv∈V(G) μN
A (v)  � μN

A (vN
min), and maxv∈V(G)

μN
A (v)  � μN

A (vN
max). 6en, the following statements hold:

(1) CSP(vP
min) � μP

A(vP
min) and CSN(vN

max) � μN
A (vN

max)

(2) δP
CS(G) � CSP

G(vP
min), ΔP

CS(G) � CSP
G(vP

max), δN
CS

(G) � CSN
G (vN

min), and ΔN
CS(G) � CSN

G (vN
max)

(3) If (μP
A(v), μN

A (v)) � (μP
A(v′), μN

A (v′)), then v and v′
are equistatus

v2 v4

v3 v5v1

(0
.6
,-0

.5
)

(0
.9
,-0

.1
)

(0.4,-0.7)

(0.8,-0.1)
Figure 1: A bipolar fuzzy graph with five vertices.
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Proof of ,eorem 2.

(1) We only verify the negative part. Since G is a
complete bipolar fuzzy graph, we have μN

B (vN
max, v) �

μN
A (vN

max) where v ∈ V(G) − vN
max , and hence

CS
N

v
N
max  �

1
n − 1



v∈V(G)− vN
max{ }

μN
B v

N
max, v 

�
1

n − 1
(n − 1)μN

A v
N
max 

� μN
A v

N
max .

(11)

(2) Clearly, minv∈V(G) CSP
G(v)  � CSP

G(vP
min), maxv∈V(G)

CSP
G(v)  � CSP

G(vP
max), minv∈V(G) CSN

G (v)  � CSN
G

(vN
min), and maxv∈V(G) CSN

G (v)  � CSN
G (vN

max). ,us,
the results follow from the definition of δP

CS(G),
ΔP

CS(G), δN
CS(G), and ΔN

CS(G).
(3) It needs to confirm that v and v′ with the same

positive and negative membership function are both
positive equistatus and negative equistatus. We only
check the correctness of negative equistatus below.

First, we rank all the vertices according to their negative
membership function values: − 1≤ μN

A (vn)≤ μN
A (vn− 1)≤

· · · ≤ μN
A (v2)≤ μN

A (v1)≤ 0. Since μN
A (v) � μN

A (v′), we sup-
pose v and v′ are adjacent vertices in the queue. Without loss
of generality, assume v, v′  � vt, vt+1 . If t � 1, then in
terms of vN

max � v1, we are done by

CS
N
G v2(  �

1
n − 1

μN
A v1(  +(n − 2)μN

A v2(  

�
1

n − 1
μN

A v1(  +(n − 2)μN
A v1(  

� μN
A v1(  � CS

N
G v1( .

(12)

If t ∈ 2, . . . , n − 1{ }, then μN
A (vt) � μN

A (vt+1) and

CS
N
G vt(  �

1
n − 1



t− 1

i�1
μN

A vi(  +(n − t)μN
A vt( ⎛⎝ ⎞⎠

�
1

n − 1


t− 1

i�1
μN

A vi(  + μN
A vt(  +(n − t − 1)μN

A vt( ⎛⎝ ⎞⎠

�
1

n − 1


t

i�1
μN

A vi(  +(n − t − 1)μN
A vt+1( ⎛⎝ ⎞⎠

� CS
N
G vt+1( .

(13)

In all, the Proof of ,eorem 2 is finished.
Before introducing the next theorem, we need to extend

the concept of saturated fuzzy cycle raised by Mathew et al.
[36] to bipolar setting.

Definition 2. Let G be a connected bipolar fuzzy graph. G is
α-saturated (respectively, β-saturated) if each vertex is in-
cident at least one α-strong edge (β-strong edge). G is called
saturated if it is both α-saturated and β-saturated. ,at is to
say, at least one α-strong edge and one β-strong edge are
incident on every vertex in the bipolar fuzzy graph.

Example 2. As depicted in Figure 2, V � v1, v2, v3, v4 ,
E � v1v2, v2v3, v3v4, v4v1, v1v3 , μP

A(v1) � μP
A(v2) � μP

A

(v3) � μP
A(v4) � 1, μN

A (v1) � μN
A (v2) � μN

A (v3) � μN
A

(v4) � − 1, μP
B(v1, v2) � 0.6, μN

B (v1, v2) � − 0.6, μP
B(v2, v3) �

0.4, μN
B (v2, v3) � − 0.4, μP

B(v3, v4) � 0.6, μN
B (v3, v4) � − 0.6,

μP
B(v4, v1) � 0.4, μN

B (v4, v1) � − 0.4, μP
B(v1, v3) � 0.2,

andμN
B (v1, v3) � − 0.2.

Clearly, v1v2 and v3v4 are α-strong edges; v2v3 and v4v1
are β-strong edges; and v1v3 is not strong edge. Hence, G is
saturated.

6ereom 3. Let C � v1v2 . . . vn be a saturated fuzzy cycle
with n vertices. For vi ∈ V(C) i ∈ 1, . . . , n{ }, set αP

i , β
P
i , α

N
i ,

and βN
i as the positive membership value of α-strong edge,

positive membership value of β-strong edge, negative
membership value of α-strong edge, and negative mem-
bership value of β-strong edge incident to vi, respectively. Let
Eα be the edge of all α-strong edges in C. Set
uP
minvP

min � argminvivi+1∈Eα
μP

B(vi, vi+1) , uP
maxv

P
max �

argmaxvivi+1∈Eα
μP

B(vi, vi+1) , uN
minvN

min � argminvivi+1∈Eα

μP
B(vi, vi+1) , and uN

maxv
N
max � argmaxvivi+1∈Eα

μN
B (vi, vi+1) 

(allow some pair of vertices are the same). ,en,

(1) CS(vi) � (1/n − 1(αP
i + (n − 2)βP

i ), 1/n − 1 (αN
i +

(n − 2)βN
i )), i ∈ 1, . . . , n{ }

(2) If α-strong edges of C have equal positive and
negativemembership values, then all vertices inC are
of equistatus

(3) δP
CS(G) � CSP

G(uP
min) � CSP

G(vP
min), ΔP

CS(G) � CSP
G

(uP
max) � CSP

G(vP
max), δN

CS(G) � CSN
G (uN

min) � CSN
G

(vN
min), and ΔN

CS(G) � CSN
G (uN

max) � CSN
G (vN

max)

Proof of ,eorem 3. Since every vertex in C has degree
exactly 2 in C and for a fixed vertex vi in C, the connectivity of
pairs of vertices (contain vi) is determined by β-strong edges
except one pair with exactly α-strong edge. Hence, we can
obviously check the statement (1) in view of graph theory.

For statement (2), if the membership value of arbitrary
α-strong edge is equal, then the statement (1) implies that
CSP(vi) and CSN(vi) are constants for each vi, where
i ∈ 1, . . . , n{ }.

Furthermore, the statement (3) is also valid by means of
statement (1).

Imitating the vertex classification based on the bipolar
connectivity index in Poulik and Ghorai [35], we define the
vertex type based on the connectivity status in the following.

Definition 3. Let G � (V, A, B) be a bipolar fuzzy graph and
v ∈ V.
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(1) If CSP(G − v{ })<CSP(G) and CSN(G − v{ })>
CSN(G), then v is called a bipolar connectivity
status-reducing vertex

(2) If CSP(G − v{ })>CSP(G) and CSN(G − v{ })<
CSN(G), then v is called a bipolar connectivity
status-enhancing vertex

(3) If CSP(G − v{ }) � CSP(G) and CSN(G − v{ }) �

CSN(G), then v is called a bipolar connectivity
status-neutral vertex

Let V′⊆V. V′ is a bipolar connectivity status-reducing
vertex set if all its vertices are bipolar connectivity status-
reducing vertex; V′ is a bipolar connectivity status en-
hancing vertex set if all its vertices are bipolar connectivity
status-enhancing vertex; and V′ is a bipolar connectivity
status-neutral vertex set if all its vertices are bipolar con-
nectivity status-neutral vertex.

Example 3. As depicted in Figure 3, V � v1, v2, v3, v4, v5 ,
E � v1v2, v2v3, v3v4, v4v1, v2v5, v3v5, v4v5 , μP

A(v1) � μP
A

(v2) � μP
A(v3) � μP

A(v4) � μP
A(v5) � 1, μN

A (v1) � μN
A (v2) �

μN
A (v3) � μN

A (v4) � μN
A (v5) � − 1, μP

B(v1, v2) � 0.5, μN
B

(v1, v2) � − 0.5, μP
B(v2, v3) � 0.3, μN

B (v2, v3) � − 0.8, μP
B(v3,

v4) � 0.8, μN
B (v3, v4) � − 0.3, μP

B(v4, v1) � 0.4, μN
B (v4, v1) �

− 0.5, μP
B(v2, v5) � 0.2, μN

B (v2, v5) � − 0.9, μP
B(v3, v5) � 0.8,

μN
B (v3, v5) � − 0.1, μP

B(v4, v5) � 0.1, μN
B (v4, v5) � − 0.9,

CONNP
G (v1, v2) � 0.5, CONNN

G (v1, v2) � − 0.5, CONNP
G

(v1, v3) � 0.4, CONNN
G (v1, v3) � − 0.5, CONNP

G(v1, v4) �

0.4, CONNN
G (v1, v4) � − 0.5, CONNP

G(v1, v5) � 0.4, CONNN
G

(v1, v5) � − 0.5, CONNP
G(v2, v3) � 0.4, CONNN

G (v1, v5) �

− 0.8, CONNP
G(v2, v4) � 0.4, CONNN

G (v2, v4) � − 0.9,
CONNP

G(v2, v5) � 0.4, CONNN
G (v2, v5) � − 0.9, CONNP

G

(v3, v4) � 0.8, CONNN
G (v2, v5) � − 0.8, CONNP

G(v3, v5) �

0.8, CONNN
G (v3, v5) � − 0.8, CONNP

G(v4, v5) � 0.8, CONNN
G

(v4, v5) � − 0.9, CSG(v1) � (0.425, − 0.5), CSG(v2) �

(0.425, − 0.775), CSG(v3) � (0.6, − 0.725), CSG(v4) � (0.6,

− 0.775), CSG(v5) � (0.6, − 0.775), and CS(G) �

(0.53, − 0.71).
Furthermore, we get CONNP

G− v1{ }
(v2, v3) � 0.3,

CONNN
G− v1{ }

(v2, v3) � − 0.8, CONNP
G− v1{ }

(v2, v4) � 0.3,

CONNN
G− v1{ }

(v2, v4) � − 0.9, CONNP
G− v1{ }

(v2, v5) � 0.3,

CONNN
G− v1{ }

(v2, v5) � − 0.9, CONNP
G− v1{ }

(v3, v4) � 0.8,

CONNN
G− v1{ }

(v3, v4) � − 0.8, CONNP
G− v1{ }

(v3, v5) � 0.8,

CONNN
G− v1{ }

(v3, v5) � − 0.8, CONNP
G− v1{ }

(v4, v5) � 0.8,

CONNN
G− v1{ }

(v4, v5) � − 0.9, CSG− v1{ }(v2) � (0.3, − (13/15)),
CSG− v1{ }(v3) � ((19/30), − 0.8), CSG− v1{ }(v4) � ((19/30),

− (13/15)), CSG− v1{ }(v5) � ((19/30), − (13/15)), CS(G−

v1 ) � (0.55, − 0.85).
CONNP

G− v2{ }
(v1, v3) � 0.4, CONNN

G− v2{ }
(v1, v3) � − 0.3,

CONNP
G− v2{ }

(v1, v4) � 0.4, CONNN
G− v2{ }

(v1, v4) � − 0.5,

CONNP
G− v2{ }

(v1, v5) � 0.4, CONNN
G− v2{ }

(v1, v5) � − 0.5,

CONNP
G− v2{ }

(v3, v4) � 0.8, CONNN
G− v2{ }

(v3, v4) � − 0.3,

CONNP
G− v2{ }

(v3, v5) � 0.8, CONNN
G− v2{ }

(v3, v5) � − 0.3,

CONNP
G− v2{ }

(v4, v5) � 0.8, CONNN
G− v2{ }

(v4, v5) � − 0.9,
CSG− v2{ }(v1) � (0.4, − (13/30)), CSG− v2{ }(v3) � ((2/3), − 0.3),
CSG− v2{ }(v4) � ((2/3), − (17/30)), CSG− v2{ }(v5) � ((2/3),

− (17/30)), and CS(G − v2 ) � (0.6, − (7/15)).
CONNP

G− v3{ }
(v1, v2) � 0.5, CONNN

G− v3{ }
(v1, v2) � − 0.5,

CONNP
G− v3{ }

(v1, v4) � 0.4, CONNN
G− v3{ }

(v1, v4) � − 0.5,

CONNP
G− v3{ }

(v1, v5) � 0.2, CONNN
G− v3{ }

(v1, v5) � − 0.5,

CONNP
G− v3{ }

(v2, v4) � 0.4, CONNN
G− v3{ }

(v2, v4) � − 0.9,

CONNP
G− v3{ }

(v2, v5) � 0.2, CONNN
G− v3{ }

(v2, v5) � − 0.9,

CONNP
G− v3{ }

(v4, v5) � 0.2, CONNN
G− v3{ }

(v4, v5) � − 0.9,
CSG− v3{ }(v1) � ((11/30), − 0.5), CSG− v3{ }(v2) � ((11/30),

− (23/30)), CSG− v3{ }(v4) � ((1/3), − (23/30)), CSG− v3{ }(v5) �

(0.2, − (23/30)), and CS(G − v3 ) � ((19/60), − 0.7).
CONNP

G− v4{ }
(v1, v2) � 0.5, CONNN

G− v4{ }
(v1, v2) � − 0.5,

CONNP
G− v4{ }

(v1, v3) � 0.3, CONNN
G− v4{ }

(v1, v3) � − 0.5,

CONNP
G− v4{ }

(v1, v5) � 0.3, CONNN
G− v4{ }

(v1, v5) � − 0.5,

CONNP
G− v4{ }

(v2, v3) � 0.3, CONNN
G− v4{ }

(v2, v3) � − 0.8,

CONNP
G− v4{ }

(v2, v5) � 0.3, CONNN
G− v4{ }

(v2, v5) � − 0.9,

CONNP
G− v4{ }

(v3, v5) � 0.8, CONNN
G− v4{ }

(v3, v5) � − 0.8,

(06,-0.6)

(06,-0.6)

(0.2,-0.2)(0.4,-0.4) (0.4,-0.4)

v2

v4 v3

v1

Figure 2: A saturated bipolar fuzzy graph.
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Figure 3: A bipolar fuzzy graph.
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CSG− v4{ }(v1) � ((11/30), − 0.5), CSG− v4{ }(v2) � ((11/30),

− (11/15)), CSG− v4{ }(v3) � ((7/15), − 0.7), CSG− v4{ }(v5) �

((7/15), − (11/15)), and CS(G − v4 ) � ((5/12), − (2/3)).
CONNP

G− v5{ }
(v1, v2) � 0.5, CONNN

G− v5{ }
(v1, v2) � − 0.5,

CONNP
G− v5{ }

(v1, v3) � 0.4, CONNN
G− v5{ }

(v1, v3) � − 0.5,

CONNP
G− v5{ }

(v1, v4) � 0.4, CONNN
G− v5{ }

(v1, v4) � − 0.5,

CONNP
G− v5{ }

(v2, v3) � 0.4, CONNN
G− v5{ }

(v2, v3) � − 0.8,

CONNP
G− v5{ }

(v2, v4) � 0.4, CONNN
G− v5{ }

(v2, v4) � − 0.5,

CONNP
G− v5{ }

(v3, v4) � 0.8, CONNN
G− v5{ }

(v3, v4) � − 0.5,
CSG− v5{ }(v1) � ((13/30), − 0.5), CSG− v5{ }(v2) � ((13/30),

− 0.6), CSG− v5{ }(v3) � ((8/15), − 0.6), CSG− v5{ }(v4) � ((8/15),

− 0.5), and CS(G − v5 ) � ((29/60), − 0.55).
Note that CSP(G − v3 )<CSP(G) and

CSN(G − v3 )>CSN(G); CSP(G − v4 )<CSP(G) and
CSN(G − v4 )>CSN(G); CSP(G − v5 )<CSP(G) and
CSN(G − v5 )>CSN(G); hence v3, v4, and v5 are bipolar
connectivity status-reducing vertices. By CSP(G − v1 )>
CSP(G) and CSN(G − v1 )<CSN(G), we infer that v1 is a
bipolar connectivity status-enhancing vertex. However, v2
does not belong to any type of vertex.

4. Campus Network Bandwidth
Allocation Application

,e information management office of each university is
responsible for the distribution and scheduling of its net-
work resources, including the purchase of bandwidth, which
is allocated to various colleges and common institutions
such as libraries, gymnasium, school hospital, and cafeterias.
According to the geographic location of each institution in
the school, the network topology is shown in Figure 4, and

the institution corresponding to each vertex is shown in
Table 1.

It can be seen from the topological representation graph
that the entire university is divided into two areas: the east
area and the west area, centered on the library and the
administrative building. ,e west area is dominated by the
schools of humanities and arts, and the east area is domi-
nated by the departments of science and engineering. ,ere
are student dormitories and canteens on both sides. It should
be noted that this is a simplified topology graph. In the actual
campus structure, there are also parks, teaching buildings,
lakes, and so on in the circles enclosed by the east and west
district schools, which we does not show these facilities all in
Figure 3.

v2

v6

v8

v7

v9 v10

v12

v14
v16

v17

v15

v13 v11

v4v3

v5

v1
east west

(0.5,-0.5)

(0
.6,
-0
.5)

(0.8,-0.3)

(0.6,-0.4)

(0
.5,
-0
.5)

(0
.5
,-0

.5
)

(0
.5,
-0
.5)

(0.5,-0.4)

(0.8,-0.1)
(0.9

,-0.1
)

(0.9,-0.1)

(0
.9,
-0
.2)

(0.7
,-0.4

)
(0.8,-0.3)

(0.5,-0.4)

(0.5,-0.6)

(0
.5
,-0

.6
)

(1
,-0

.1
)

Figure 4: Campus topology graph.

Table 1: Correspondence between vertices and institutions in
campus.

Vertex ,e corresponding institutions
v1 Library
v2 Administration building
v3 Stadium
v4 Logistics office and university hospital
v5 School of Art
v6 School of Foreign Languages and Literature
v7 School of Economics and Management
v8 School of History and Administration
v9 Student activity center
v10 Student apartments and cafeterias (west area)
v11 School of Physics and Electronic Information
v12 School of Chemical Engineering and Materials
v13 School of Life Science
v14 School of Energy and Environment Science
v15 School of Mathematics and Computer Science
v16 School of Geography
v17 Student apartments and cafeterias (east area)
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Table 2: Computing the values of connectivities for each pair of vertices.

Vertex pair (CONNP
G,CONNN

G ) Vertex pair (CONNP
G,CONNN

G )

(v1, v2) (1, − 0.1) (v1, v3) (0.5, − 0.1)

(v1, v4) (0.5, − 0.1) (v1, v5) (0.6, − 0.1)

(v1, v6) (0.6, − 0.1) (v1, v7) (0.5, − 0.1)

(v1, v8) (0.5, − 0.1) (v1, v9) (0.5, − 0.1)

(v1, v10) (0.5, − 0.1) (v1, v11) (0.9, − 0.1)

(v1, v12) (0.9, − 0.1) (v1, v13) (0.8, − 0.1)

(v1, v14) (0.9, − 0.1) (v1, v15) (0.7, − 0.1)

(v1, v16) (0.8, − 0.1) (v1, v17) (0.5, − 0.1)

(v2, v3) (0.5, − 0.6) (v2, v4) (0.5, − 0.5)

(v2, v5) (0.6, − 0.5) (v2, v6) (0.6, − 0.4)

(v2, v7) (0.5, − 0.5) (v2, v8) (0.5, − 0.4)

(v2, v9) (0.5, − 0.4) (v2, v10) (0.5, − 0.3)

(v2, v11) (0.9, − 0.1) (v2, v12) (0.9, − 0.2)

(v2, v13) (0.8, − 0.1) (v2, v14) (0.9, − 0.1)

(v2, v15) (0.7, − 0.1) (v2, v16) (0.8, − 0.1)

(v2, v17) (0.5, − 0.1) (v3, v4) (0.5, − 0.5)

(v3, v5) (0.5, − 0.5) (v3, v6) (0.5, − 0.4)

(v3, v7) (0.5, − 0.5) (v3, v8) (0.5, − 0.4)

(v3, v9) (0.5, − 0.4) (v3, v10) (0.5, − 0.3)

(v3, v11) (0.5, − 0.1) (v3, v12) (0.5, − 0.2)

(v3, v13) (0.5, − 0.1) (v3, v14) (0.5, − 0.1)

(v3, v15) (0.5, − 0.1) (v3, v16) (0.5, − 0.1)

(v3, v17) (0.5, − 0.1) (v4, v5) (0.5, − 0.5)

(v4, v6) (0.5, − 0.4) (v4, v7) (0.5, − 0.5)

(v4, v8) (0.5, − 0.4) (v4, v9) (0.5, − 0.4)

(v4, v10) (0.5, − 0.3) (v4, v11) (0.5, − 0.1)

(v4, v12) (0.5, − 0.2) (v4, v13) (0.5, − 0.1)

(v4, v14) (0.5, − 0.1) (v4, v15) (0.5, − 0.1)

(v4, v16) (0.5, − 0.1) (v4, v17) (0.5, − 0.1)

(v5, v6) (0.6, − 0.4) (v5, v7) (0.5, − 0.5)

(v5, v8) (0.5, − 0.4) (v5, v9) (0.5, − 0.4)

(v5, v10) (0.5, − 0.3) (v5, v11) (0.6, − 0.1)

(v5, v12) (0.6, − 0.2) (v5, v13) (0.6, − 0.1)

(v5, v14) (0.6, − 0.1) (v5, v15) (0.6, − 0.1)

(v5, v16) (0.6, − 0.1) (v5, v17) (0.5, − 0.1)

(v6, v7) (0.5, − 0.4) (v6, v8) (0.5, − 0.6)

(v6, v9) (0.5, − 0.5) (v6, v10) (0.5, − 0.3)

(v6, v11) (0.6, − 0.1) (v6, v12) (0.6, − 0.2)

(v6, v13) (0.6, − 0.1) (v6, v14) (0.6, − 0.1)

(v6, v15) (0.6, − 0.1) (v6, v16) (0.6, − 0.1)

(v6, v17) (0.5, − 0.1) (v7, v8) (0.5, − 0.4)

(v7, v9) (0.5, − 0.4) (v7, v10) (0.5, − 0.3)

(v7, v11) (0.5, − 0.1) (v7, v12) (0.5, − 0.2)

(v7, v13) (0.5, − 0.1) (v7, v14) (0.5, − 0.1)

(v7, v15) (0.5, − 0.1) (v7, v16) (0.5, − 0.1)

(v7, v17) (0.5, − 0.1) (v8, v9) (0.5, − 0.5)

(v8, v10) (0.5, − 0.3) (v8, v11) (0.5, − 0.1)

(v8, v12) (0.5, − 0.2) (v8, v13) (0.5, − 0.1)

(v8, v14) (0.5, − 0.1) (v8, v15) (0.5, − 0.1)

(v8, v16) (0.5, − 0.1) (v8, v17) (0.5, − 0.1)

(v9, v10) (0.8, − 0.3) (v9, v11) (0.5, − 0.1)

(v9, v12) (0.5, − 0.2) (v9, v13) (0.5, − 0.1)

(v9, v14) (0.5, − 0.1) (v9, v15) (0.5, − 0.1)

(v9, v16) (0.5, − 0.1) (v9, v17) (0.5, − 0.1)

(v10, v11) (0.5, − 0.1) (v10, v12) (0.5, − 0.2)

(v10, v13) (0.5, − 0.1) (v10, v14) (0.5, − 0.1)

(v10, v15) (0.5, − 0.1) (v10, v16) (0.5, − 0.1)

(v10, v17) (0.5, − 0.1) (v11, v12) (0.9, − 0.1)

(v11, v13) (0.8, − 0.3) (v11, v14) (0.9, − 0.1)

(v11, v15) (0.7, − 0.3) (v11, v16) (0.8, − 0.3)
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Assume that μP
A(v) � 1 and μN

A (v) � − 1 for all vertices in
this example. Considering the network cable layout of the
channel between the vertices, router settings, uplink capacity
and downlink capacity, link delay time, arrangement time,
and other positive and negative elements, the membership
function values of each edge are shown in Figure 4. ,e
connectivities of all pairs of vertices are listed in Table 2.

In light of Table 2, the connectivity status of vertices is
determined in Table 3.

For the bandwidth allocation problem, the average
minimum connectivity in the entire network is required so
that the connectivity of each vertex is not lower than this
minimum threshold. Assuming that the vertex where the
college is located also represents the router set by the de-
partment, the edge weight represents the corresponding
route and the threshold is set to (0.5, − 9/32). ,at is to say, it
requires CSP

G(v)> 0.5 and CSN
G (v)> − 9/32. Note that the

vertices v3, v4, v7, and v17 do not satisfy CSP
G(v)> 0.5, and the

vertices v2 and v3 do not satisfying CSN
G (v)> − 9/32.

,erefore, we must focus on these three vertices to enhance
their connected state value to achieve the minimum con-
nection constraint. ,e connected state analysis of the
vertices can be used to obtain the correct direction for
designing a balanced network.

5. Conclusion

In computer networks, there are many negative uncertain
factors, such as the delay of the network apex, the capacity
limitation of the uplink and the downlink, the status of the
queuing sequence, and so on. Since bipolar fuzzy graphs
have negative membership functions that specifically de-
scribe these negative uncertain factors, bipolar fuzzy graphs
are more flexible in specific network applications than
general fuzzy graphs.

In this paper, we introduce the connectivity status in the
bipolar fuzzy graph which reflects the positive and negative
connectedness in a connected network for each vertex, as
well as the whole network. Its main function is to help us
analyze the connectivity strength of each vertex in the bi-
polar network and find the weakest link in the entire net-
work through the comparison between the vertices to
identify security risks, strengthen network disadvantages in
time, and prevent possible attacks against network
weaknesses.

,e following contents can be a topic for continued
research:

(1) ,e connectivity status should be further considered
in special bipolar graph settings, for instance, bipolar
fuzzy incidence graph, bipolar intuitionistic fuzzy
graph, and bipolar Pythagoras fuzzy graph

(2) ,e bipolar connectivity status in specific graph
structures should be discussed, such as bipolar
planar graph and bipolar cube graph
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Table 3: Calculation the connectivity status of vertices.
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G(v), CSN

G (v)) Vertex (CSP
G(v), CSN
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China (No. 2020A1515010784), and Guangdong University
of Science and Technology University Major Scientific Re-
search Achievement Cultivation Program Project (No.
GKY-2020CQPY-2).
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