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With the continuous development of deep learning, more and more huge deep learning models are developed by researchers,
which leads to an exponential increase of the parameters of models. 'erein, the convolutional recurrent network as a type of
widely used deep learningmethod is often employed to handle spatiotemporal data, e.g., traffic data. However, because of the large
number of parameters in the model, the convolutional recurrent network needs to consume a lot of computing resources and time
in the training process. To reduce the consumption of resources, we propose a sparse convolutional recurrent network with a
sparse gating mechanism that is able to reduce the complexity of the network by an improved gate unit while keeping the
performance of the model. We evaluate the performance of our proposed network on traffic flow datasets, and the experimental
results show that the parameters of the model are significantly reduced under the condition of similar prediction accuracy
compared with the traditional convolutional recurrent network.

1. Introduction

Deep learning [1] has achieved great success in various fields,
e.g., computer vision [2, 3] and natural language processing
[4], and it has also been introduced into the field of traffic
flow prediction by some scholars [5–7]. Meanwhile, with the
development of the economy, the transportation network in
recent years has also achieved rapid expansion. However,
traffic congestion is becoming an increasingly serious issue.
'e traffic flow prediction of different key points in the
transportation network is the basis for solving the issue. To
improve the accuracy of traffic flow prediction, various
complex deep networks are developed, which leads to an
overwhelming increase of parameters and resource con-
sumption. Convolutional long short-term memory
(ConvLSTM) network was proposed by Shi et al. [8] for
precipitation nowcasting, which introduced the convolu-
tional operation into the fully connected LSTM [9]. Ballas
et al. [10] proposed a convolutional gated recurrent unit
(ConvGRU) for video representation, which uses a

convolutional structure to capture spatial features. 'en,
they are applied to traffic flow prediction by many re-
searchers. For example, Zonoozi et al. [11] proposed a
ConvGRU method based on the periodic characteristics of
the traffic flow data, which employs ConvGRU to extract the
spatiotemporal representation of input data. Zang et al. [12]
developed a deep learning approach for traffic speed pre-
diction, which uses the ConvLSTM network to extract the
temporal and spatial dependence of historical traffic data.

Since convolutional recurrent network has great ad-
vantages in extracting temporal and spatial information
hidden in spatiotemporal data simultaneously, the method
has been naturally applied to solve the prediction problem of
traffic flow. However, the convolutional recurrent network
has a large number of parameters and requires more re-
sources in the training and testing process. 'erefore, it is
necessary to compress the convolutional recurrent network
by reducing the amount of its parameters while the model is
utilized to solve the prediction problem of traffic flow, es-
pecially on some resource-limited devices. In this paper, we
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propose a sparse convolutional recurrent network by using
the sparse gate in ConvLSTM and ConvGRU to reduce the
resource requirement. 'e contributions of this paper are
summarized as follows:

(i) Based on ConvLSTM and ConvGRU, we develop
four sparse convolutional recurrent networks:
SConvLSTM, SConvLSTM+, SConvGRU, and
SConvGRU+.'e numbers of the parameters of our
proposed networks are significantly reduced as
opposed to their original versions (ConvLSTM and
ConvGRU) on the basis of keeping the performance
of the algorithms.

(ii) In the original gating unit of ConvGRU and
ConvLSTM, we design a sparse gating mechanism,
which reduces the parameters of the networks
(ConvGRU and ConvLSTM) by reducing the input
data of the gating unit.

(iii) We evaluate our proposed network on three real
traffic flow datasets. Compared with the baseline
model, our proposed network reduces the resource
consumption and saves the training time under the
condition of competitive prediction accuracy.

'e outline of this paper is as follows: section 2 describes
the related work of traffic flow prediction and sparse neural
network. 'en, the notation and problem definition are
given in Section 3. Section 4 describes our proposed model
(sparse convolutional recurrent network) in detail. In ad-
dition, Section 5 gives specific parameter settings and ex-
perimental analysis based on three real traffic flow datasets.
Finally, in Section 6, we summarize the work of this paper
and make an outlook for future work.

2. Related Work

2.1. Traffic Flow Prediction. In essence, traffic flow predic-
tion is a time series forecasting problem, which predicts the
future traffic value based on historical observations. Gen-
erally speaking, traffic flow forecasting methods can be di-
vided into two categories: traditional prediction approaches
and deep learning-based prediction approaches.

'e first category is the traditional forecasting methods.
HA [13] is a classic traffic flow prediction method, which
uses the historical average as the prediction value of the next
time interval. However, it can only estimate the traffic data of
future time intervals and cannot capture the correlation
between different time intervals. ARMA [14] prediction is a
time series forecasting method for processing stationary
series data, which builds the model to predict future values
based on the autoregression (AR) model and the moving
average (MA) model. ARIMA [15] is a traditional time series
prediction approach used to deal with nonstationary series
data. Firstly, the input data is converted into stationary series
data by the kth order difference, and then the ARMAmethod
is used to build a prediction model. 'e disadvantage of
them is that they cannot capture the nonlinear character-
istics of traffic data. VAR [16] was proposed by Sims et al. in
1980 for time series prediction, which uses the form of

simultaneous equations to obtain the relationship between
different traffic flows. In addition, the variant methods
derived from them are SARIMA [17], SARIMAX [18],
VARMA [19], and so on. 'e limitation of all these tradi-
tional methods is that it is difficult to capture the complex
spatial and temporal features of traffic flow data because of
the limited capacity of the model.

'e second category is deep learning-based prediction
approaches. Deep learning-based methods have a strong
ability in dealing with nonlinear structural data and complex
spatiotemporal series data. 'erefore, these methods are
introduced into predicting traffic flow by many researchers.
Fu et al. [20] first employed the LSTM and GRU networks in
the field of traffic flow forecasting, and the experimental
results on the PeMS dataset prove that the prediction per-
formance is better than the ARIMA model. To capture the
hidden patterns of traffic flow data, Dai et al. [21] proposed a
DeepTrendmodel based on a fully connected neural network
and an LSTM network. Kang et al. [22] used the LSTM
network to analyze the impact of different forms of traffic
data on the prediction results, and the experimental results
show that more external information is helpful to improve
the performance of the model. Luo et al. [23] developed a
deep learningmethod based on K-Nearest Neighbors (KNN)
model [24] and the LSTM network.'e experimental results
on the real-time traffic flow dataset show that it achieves
better performance than the existing prediction model. To
capture the proximity, periodicity, and trend of traffic data,
Wang et al. [25] proposed a deep learning model based on a
convolutional recurrent network, which can effectively ex-
tract temporal dependence and spatial dependence. Chen
et al. [26] developed a deep learning method based on
Convolutional Neural Network (CNN) [27], LSTM network,
and a fully connected neural network. 'e results show that
the prediction accuracy is improved compared with LSTM
and its variants. To improve the accuracy of taxi demand
prediction, Li et al. [28] proposed a model based on deep
learning, which uses a ConvLSTM network to capture
spatiotemporal features.

2.2. Sparse Method of Neural Network. 'e deepening in the
number of layers of the neural network brings about an
increase in parameters and resource consumption. 'ere-
fore, it is necessary to compress the neural network under
the premise of no significant performance degradation.

To improve the training speed and generalization ability
of the network, Louizos et al. [29] developed a sparse method
using Lo regularization, which reduces the model complexity
by pruning parameters. Liu et al. [30] compressed the model
by reducing the number of redundant parameters. 'e
experimental results prove that the speed of the training is
effectively improved under the condition of minimizing the
loss of accuracy. To improve computational performance
and reduce the transmission of redundant data, Mukkara
et al. [31] proposed a sparse convolutional neural network,
which uses a strategy of pruning zero-valued weights to
compress parameters. Dettmers et al. [32] proposed a sparse
momentum to improve the training speed of deep neural

2 Mathematical Problems in Engineering



networks. 'e experimental results on MNIST, CIFAR-10,
and ImageNet datasets show that the sparse momentum
achieves themost advanced sparse performance. To solve the
problem that performance is limited by resources, Alford
et al. [33] developed a pruning-based sparse neural network,
which prunes the low weight of the trained densely con-
nected network. Luo et al. [34] proposed a compression
method for deep neural networks, which reduces the pa-
rameters of the network by pruning filters. In this paper, we
develop a sparse gating mechanism for convolutional re-
current neural networks, which compresses the model by
reducing the input data of the gating mechanism.

3. Notations and Problem Definition

3.1. Grid Map. As shown in Figure 1, we partition a city as
an M × N grid map based on longitude and latitude [35],
where a grid (i.j) indicates that this area is located in the ith

row and the jth column in the map.

3.2. Inflow/Outflow Matrix. Given the tth time interval, for
the region g(i, j), the inflow is defined as the sum of the
crowd flow from other regions to the region g(i, j) at the tth

time interval. 'e outflow is defined as the sum of the crowd
flow from the region g(i, j) to other regions at the tth time
interval. In this way, we can obtain the values of inflow and
outflow of the region g(i, j) at the tth time interval. 'en,
using the same method for all areas, the values of inflow and
outflow of the tth time interval can be obtained [33]. Figure 2
shows the inflow and outflow of all areas in a certain time
interval in Beijing. 'erefore, the inflow and outflow ma-
trices at any time interval can be expressed as a tensor.
X ∈ R2×m×n.

We use Γ to represent all the crowd trajectories at the tth

time interval [st, et), and each trajectory is represented by a
tuple. Tr〈Pstart, Pend, Tstart, Tend〉, which means that this
trajectory starts at the region Pstart at time interval Tstart, and
ends at the region Pend at time interval Tend. 'en, the
computing formula for inflow and outflow of the region
g(i, j) can be defined as follows:

x
in
t,ij � 􏽘

Tr∈Γ
Pstart ∉ g(i, j)∧Pend ∈ g(i, j)∧Tstart ∈ st, et􏼂 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

x
out
t,ij � 􏽘

Tr∈Γ
Pstart ∈ g(i, j)∧Pend ∈ g(i, j)∧Tstart ∉ st, et􏼂 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(1)

where Tr is a trajectory. xin
t,ij/x

out
t,ij denotes the inflow/outflow

in the region g(i, j) at the tth time interval. st represents the
start time of the tth time interval. et represents the end time
of the tth time interval, and | · | denotes the cardinality of a
set.

3.3. Inflow/Outflow Prediction Problem. As shown in Fig-
ure 3, traffic flow prediction is to predict the values of the
traffic flow of the next k time intervals based on a series of the
historical data of the previous l time intervals.'e formula is
as follows:

Xt−l+1, Xt−l, . . . , Xt􏼈 􏼉⟶
f

􏽢Xt+1,
􏽢Xt+2, . . . , 􏽢Xt+k􏽮 􏽯, (2)

where f denotes a flow prediction model, Xt−l+1, . . . , Xt􏼈 􏼉

represents the observation values of the previous l time
interval, and 􏽢Xt+1,

􏽢Xt+2, . . . , 􏽢Xt+k􏽮 􏽯 represents the predicted
values of k time intervals in the future.

4. Sparse Convolutional Recurrent
Neural Network

In this section, we introduce the details of the sparse con-
volutional recurrent neural network. 'ere are two popular
forms of convolutional recurrent neural networks: convolu-
tional long short-term memory network and convolutional
gated recurrent unit network. Based on the idea of eliminating
redundant parameters in the sparse neural network methods,
for convolutional long short-term memory network, we
develop the sparse convolutional LSTM network
(SConvLSTM) and SConvLSTM+. For the convolutional
gated recurrent unit network, we develop the sparse con-
volutional GRU network (SConvGRU) and SConvGRU+.

4.1. Inflow/Outflow Prediction Problem. Figure 4(a) is the
convolutional long short-termmemory unit proposed by Shi
et al. [8], which is composed of a main line part and some
gating units.'e input of the ConvLSTM unit is the cell state
Ct−1 and the hidden state Ht−1 of the previous time interval,
and the feature matrix xt of the current time interval. 'e
output is the cell state Ct and the hidden state Ht of the
current time interval. 'e main line part is mainly about the
update of the cell state and hidden state, and the specific
update equation is as follows:

􏽥c � g Wc ⊛xt + Uc ⊛ ht−1 + bc( 􏼁,

ct � ft ⊙ ct−1 + it ⊙ 􏽥c,

ht � ot ⊙ g ct( 􏼁,

(3)

where ⊙ represents the Hadamard product. ⊛ represents the
convolutional operation. ct is the updated equation about
the cell state. 􏽥c is the updated equation about the input state.

Figure 1: Grid-based map segmentation.
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ht is the updated equation about the hidden state. g rep-
resents the Tanh function. ft, it, ot represent the forget gate,
the input gate, the output gate, respectively. xt denotes the
input data of the tth time interval. Wc, Uc, bc are the learning
parameters.

'e gating unit is made of a forget gate, an input gate,
and an output gate. 'e forget gate determines the degree
of the forgetting of Ct−1. 'e input gate controls the degree
of the input state to the cell state, and the output gate
determines the degree of the cell state Ct to the output
state ht. 'e gating mechanism of the ConvLSTM unit

uses the hidden state ht−1 of the previous time interval, the
input xt of the current time interval, and the bias as input.
'en, the updated formula of the gating mechanism is as
follows:

it � σ Wi⊛xt + Ui⊛ht−1 + bi( 􏼁,

ft � σ Wf⊛xt + Uf⊛ht−1 + bf􏼐 􏼑,

ot � σ Wo⊛xt + Uo⊛ht−1 + bo( 􏼁,

(4)

where σ denotes the Sigmoid function. W, U, b represent the
learning parameter.
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Figure 4: (a) ConvLSTM unit. (b) SConvLSTM unit.
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Figure 2: Examples of inflow matrix (a) and outflow matrix (b) in Beijing.
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Figure 3: Traffic flow prediction.
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'e SConvLSTM unit is shown in Figure 4(b). We in-
troduce a sparse gating mechanism to cut out the redundant
parameters of the network. 'e main line part of the
SConvLSTM unit is consistent with the ConvLSTM unit.
'e input of the gating mechanism in the ConvLSTM unit
includes Ht−1, xt and the bias b, however, the input of the
gating mechanism in the SConvLSTM unit is Ht−1 and the
bias b. In this way, we can effectively reduce the complexity
of the model while ensuring that xt is propagated to sub-
sequent sequences in the input update formula (􏽥c).

In Section 5, our experimental results on three traffic
datasets verify this conclusion. 'e update formula of the
gating mechanism in the SConvLSTM unit is as follows:

it � σ Ui⊛ht−1 + bi( 􏼁,

ft � σ Uf⊛ht−1 + bf􏼐 􏼑,

ot � σ Uo⊛ht−1 + bo( 􏼁.

(5)

'e SConvLSTM+unit removes the bias b based on the
SConvLSTM unit. 'e amount of network parameters is
further reduced. 'e update formula of the gating mecha-
nism in the SConvLSTM+unit is as follows:

it � σ Ui⊛ht−1( 􏼁,

ft � σ Uf⊛ht−1􏼐 􏼑,

ot � σ Uo⊛ht−1( 􏼁.

(6)

4.2. Sparse Convolutional GRU (SConvGRU) Network. As
shown in Figure 5(a), the ConvGRU unit is proposed by
Ballas et al. [10] in 2016 to solve the problem of video
representation. It is also composed of a main line part and
gating units. Compared with ConvLSTM, it has fewer
gating mechanisms and parameters, and it reduces the
transmission of cell state in subsequent networks. 'e
input of the ConvGRU unit includes the input xt of the
current time interval and the hidden state ht−1 of the
previous time interval, and the output is the hidden state
ht of the current time interval. 'e main line part is about
the update of the hidden state. 'e updated formula is as
follows:

􏽥ht � g Wh⊛xt + Uh⊛ rt ⊙ ht−1( 􏼁 + bh( 􏼁,

ht � 1 − zt( 􏼁⊙ ht−1 + zt ⊙ 􏽥ht.
(7)

where zt, rt represent the updating gate and the reset gate,
respectively. ht is the updating the hidden state. 􏽥ht represents
the input update. W and b are the learning parameters.

'e gating units are composed of an update gate and a
reset gate. 'e reset gate determines the importance of the
hidden state ht−1 of the previous time interval to the input
update 􏽥ht, and the update gate determines the influence of
the current input state xt on ht. Like ConvLSTM, the input
of the gating mechanism of the ConvGRU unit includes the
input state xt of the current time interval, the hidden state
ht−1 of the previous time interval, and the bias $b$. 'e
specific update equation is as follows:

zt � σ Wz⊛xt + Uz⊛ht−1 + bz( 􏼁,

rt � σ Wr⊛xt + Ur⊛ht−1 + br( 􏼁,
(8)

where W, U, and b are the learning parameters.
'e SConvGRU unit is shown in Figure 5(b). Like the

SConvLSTM unit, we introduce a sparse gating mechanism
to reduce the parameters of the reset gate and the update
gate. 'e main line part of SConvGRU is consistent with
ConvGRU, and the input of the gating mechanism is
composed of the hidden state ht−1 of the previous time
interval and bias b. 'e current input state xt is brought into
the subsequent spatiotemporal sequence propagation by the
input update formula. Compared with ConvGRU, SConv-
GRU can help to effectively reduce the number of param-
eters and the training time of the network while keeping a
similar prediction accuracy. 'e updated equation of the
gating mechanism in the SConvGRU unit is as follows:

zt � σ Uz⊛ht−1 + bz( 􏼁,

rt � σ Ur⊛ht−1 + br( 􏼁,
(9)

where U and b are the learning parameters.
'e SConvGRU+unit is based on the SConvGRU unit,

and we further remove the bias b to reduce the amount of
network parameters. 'e updated formula of the gating
mechanism in the SConvGRU+unit is as follows:

zt � σ Uz⊛ht−1( 􏼁,

rt � σ Ur⊛ht−1( 􏼁,
(10)

where U is the learning parameter.

4.3.7e Overall Framework of Traffic Flow Prediction. In this
paper, we use the four algorithms: SConvLSTM, SConvLSTM+,
SConvGRU, and SConvGRU+ to forecast traffic flow. 'e
overall framework of traffic flowprediction is shown in Figure 6,
in which the input of the model is the historical traffic flow
matrix. Firstly, we use a multilayer convolutional neural net-
work to extract the spatial dependence of the traffic data.'en, a
multilayer network built by the above-mentioned units
(SConvLSTM unit, SConvLSTM+unit, SConvGRU unit, and
SConvGRU+unit) is used to capture the time dependence
while further extracting spatial features. In addition, amultilayer
deconvolutional neural network is employed to obtain a pre-
diction matrix with the same dimension as the input.

5. Experiment

In this section, we evaluate our proposed method based on
three real-world traffic flow datasets (TaxiBJ, BikeNYC, and
TaxiNYC). 'en, we describe our experimental process in
detail from the aspects of datasets description, model
comparison, evaluation metric, hyperparameter setting, and
experimental analysis.

5.1. Datasets Description. As shown in Table 1, 'e TaxiBJ
dataset is collected from Beijing taxi GPS data from 07/01/
2013 to 10/30/2013. Before the experiment, we, firstly, divide
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the city into 32 × 32 areas, set the time interval to 30minutes,
and count the traffic flow matrix within each 30 minutes.
Furthermore, the data are divided into three subsets: the
training sets is the data from 07/01/2013 to 10/20/2013, the
validation set is the data from 10/21/2013 to 10/25/2013, and
the test set is the data from 10/26/2013 to 10/30/2013.

'e TaxiNYC dataset comes from the New York Taxi
System from 01/01/2015 to 03/01/2015. For this dataset, we
divide the city into 10 × 20 areas and set the time interval to
0.5 hour. In the data, we set the data from 01/01/2015 to 02/
09/2015 and from 02/10/2015 to 02/19/2015 as the training

set and validation set in the experiment, respectively. 'e
rest of the data is used as the test set in the experiment.

'e BikeNYC dataset comes from the New York Citi
bike system from 01/01/2016 to 06/30/2016. For this dataset,
we, firstly, divide the city into 16 × 16 areas and set the time
interval to 1 hour. We set the training set, validation set, and
test set to the data from 01/01/2016 to 6/10/2016, from 06/11/
2016 to 06/20/2016, and from 06/21/2016 to 06/30/2016,
respectively.

5.2. Baseline. In this paper, we employ the subsequent
model to compare with our proposed model.

(i) HA [13]: HA is a classic time series forecasting
method, which predicts the traffic flow using his-
torical average

(ii) ARMA [14]: ARMA is a time series forecasting
method for stationary series data, which is based on
the AR model and MA model to predict future
traffic flow

(iii) VAR [6]: VAR uses the form of simultaneous
equations to obtain the linear relationship between
different traffic flows

(iv) ConvLSTM [8]: ConvLSTM is a deep learning
approach for spatiotemporal sequence prediction,
which introduces the convolutional structure into
the fully connected LSTM

(v) ConvGRU [10]: ConvGRU employs convolutional
operation to capture spatial features while pre-
serving the structure of the gated recurrent unit

5.3. Evaluation Metric. In the experiment, we predict the
traffic flow of the next time interval based on the previous
10-steps of historical traffic data. We use the root mean
square error (RMSE) as an evaluation metric to evaluate the
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performance of our proposed model. 'e formula is as
follows:

RMSE �

�����������������
1
N

􏽘
i

􏽘
j

xij − 􏽣xij􏼐 􏼑
2

􏽳

, (11)

where xij denotes the ground truth of the region g(i, j), 􏽣xij

represents the predicted value of the region g(i, j), and N

represents the number of prediction areas.

5.4. Experiment on TaxiBJ Dataset

5.4.1. Hyperparameter Setting. For the TaxiBJ dataset, a
Min-Max normalization is used to scale the data to [0, 1] at
first.'e overall framework of the model is shown in Section
4.3, and the detailed settings are as follows: a two-layer
convolutional neural network is employed to extract the
spatial features of the data. After each convolutional oper-
ation, we use batch normalization and the rectified linear
unit (ReLU). Furthermore, the number of layers of the units
(SConvLSTM unit, SConvLSTM+unit, SConvGRU unit,
and SConvGRU+unit) is set to 1. In addition, a two-layer
deconvolutional neural network is used to obtain the pre-
dicted value of the same dimension as the real value. 'e
detailed description of each module is shown in Table 2.

5.4.2. Convergence Analysis. Figures 7(a) and 7(b) are the
loss curves of the ConvGRU model, SConvGRU model, and
SConvGRU+model on the training set and validation set.
From the figure, we can see that with the increase of training
times, the RMSE on the training set and the validation set
gradually decreases, and finally converges. Furthermore, we
can see that the SConvGRU+model converges to a lower
RMSE on the validation set, compared to the ConvGRU
model and SConvGRU model. In addition, on the training
set, the three models maintain a consistent convergence
trend. In summary, the convergence speed and performance
of our proposed methods do not reduce under the condition
of compressing the original models.

Figures 7(c) and 7(d) are the loss curves of the ConvLSTM
model, SConvLSTMmodel, and SConvLSTM+model on the
training set and validation set. We can see from the figure that
the three models basically maintain consistent convergence
performance on the training set and validation set. Similarly,
the model achieves convergence on the validation set. In a
word, the convergence performance of our proposed models
does not reduce.

5.4.3. 7e Comparative Results of Different Models. Table 3
describes the RMSE comparison between the traditional model
and our proposed model on the test set. First of all, we can see
that the deep learning method is better than the traditional
predictive model, which shows that the deep learning method
can better capture the nonlinear characteristics of the data.
Compared with the ConvGRU model, the RMSE of the
SConvGRU+model increases by 1.8%. 'is result shows that
the parameters of the model are effectively reduced under the
condition of losing limited prediction accuracy. In addition,
compared with ConvLSTM, SConvLSTM+ improves the
prediction accuracy of the model by 4.5% while reducing the
number of model parameters. In general, SConvLSTM ach-
ieves the best performance on the TaxiBJ dataset. 'is result
shows the effectiveness of the sparse convolutional recurrent
network.

5.4.4. 7e Rate of Model Compression. Table 4 shows the
comparison of the rate of model’s compression. We use
ConvGRU and ConvLSTM as the baselines to calculate the
rate of parameter reduction of our proposed models.
Compared with ConvGRU, the rates of parameter reduction
of SConvGRU and SConvGRU+ are 13.3% and 13.5%, re-
spectively. Compared with ConvLSTM, the rates of the
parameter reduction of SConvLSTM and SConvLSTM+ are
15% and 15.1%, respectively. When the same hyper-
parameters in Table 2 are set, the number of the parameters
of ConvLSTM, SConvLSTM, and SConvLSTM+ are more
than ConvGRU, SConvGRU, and SConvGRU+, respec-
tively. 'e reason for this result is that ConvLSTM,
SConvLSTM, and SConvLSTM+have more gating mech-
anism than ConvGRU, SConvGRU, and SConvGRU+.

5.5. Experiment on TaxiNYC Dataset

5.5.1. Hyperparameter Setting. For the TaxiNYC dataset,
similarly, we first use the Min-Max normalization approach to
scale the original data to [0, 1]. 'e framework of the model is
shown in Section 4.3. Different to the setting on the TaxiBJ
dataset, the number of layers of the units (SConvLSTM unit,
SConvLSTM+unit, SConvGRU unit, and SConvGRU+unit)
are set to 2, and the hidden channels of ConvGRU unit,
SConvGRU unit, and SConvGRU+unit are set to 32 (first
layer) and 64 (second layer). Furthermore, the hidden channels
of ConvLSTM unit, SConvLSTM unit, and SConvLSTM+unit
are set to 32 (first layer) and 32 (second layer).'en, the detailed
settings are shown in Table 5. In addition, other hyperparameter

Table 1: 'e details of the datasets.

Dataset TaxiBJ TaxiNYC BikeNYC
Start time 7/1/2013 1/1/2015 1/1/2016
End time 10/30/2013 3/1/2015 6/30/2016
Training set 7/1/2013–10/20/2013 1/1/2015–2/9/2015 1/1/2016–6/10/2016
Validation set 10/21/2013–10/25/2013 2/10/2015–2/19/2015 6/11/2016–6/20/2016
Test set 10/26/2013–10/30/2013 2/20/2015–3/1/2015 6/21/2016–6/30/2016
Time interval 0.5 0.5 1 (hour)
Grid map size (32, 32) (10, 20) (16, 16)
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Figure 7: Continued.

Table 2: 'e details of module on TaxiBJ dataset.

Hyperparameter ConvGRU SConvGRU SConvGRU+ ConvLSTM SConvLSTM SConvLSTM+
CNN layers 2 2 2 2 2 2
Number of filters in CNN 8 (first layer), 16 (second layer)
Kernel size in CNN (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)
Stride in CNN 1 (first layer), 2 (second layer)
Unit layers 1 1 1 1 1 1
Hidden channels of unit 64 64 64 64 64 64
Kernel size in unit (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)
Input of gating mechanism ht−1, xt, b ht−1, b ht−1 ht−1, xt, b ht−1, b ht−1
DCNN layers 2 2 2 2 2 2
Number of filters in DCNN 8 (first layer), 2 (second layer)
Kernel size in DCNN (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)
Stride in DCNN 2 (first layer), 1 (second layer)
Batch size 16 16 16 16 16 16
Timestep 10 10 10 10 10 10
Epoch 300 300 300 300 300 300
Optimizer Adam [36] Adam Adam Adam Adam Adam
Learning rate 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
Strategy Early-stopping Early-stopping Early-stopping Early-stopping Early-stopping Early-stopping
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settings are shown in Table 2, which are the same as those of the
TaxiBJ dataset.

5.5.2. Convergence Analysis. Figures 8(a) and 8(b) are the
loss curves of the ConvGRU model, SConvGRU model, and
SConvGRU+model on the training set and validation set.
From the figure, it can be seen that the three models
maintain a consistent convergence curve. Furthermore,
RMSE gradually decreases with the increase of epoch on the
training set and validation set and finally converges.

Figures 8(c) and 8(d) are the loss curves of the ConvLSTM
model, SConvLSTMmodel, and SConvLSTM+model. Firstly,
the model achieves convergence on the validation set. 'en,
their convergence on the training set and validation set is
basically the same, and the baseline model on the validation set
converges to a lower value.

5.5.3. 7e Comparative Results of Different Models. From
Table 6, in the traditional model, VAR achieved a good result
of 14.306. Compared with ConvGRU, the RMSE of
SConvGRU+ is increased by 0.07. Similarly, compared with
ConvLSTM, the RMSE of SConvLSTM+ is increased by
0.029. 'is result shows that the parameters of the model are
effectively reduced under the condition of losing limited
prediction accuracy. On the whole, the prediction results of
the ConvLSTM model, SConvLSTM model, and
SConvLSTM+model are better than the ConvGRU model,
SConvGRU model, and SConvGRU+model. 'is result
shows that ConvLSTM and sparse ConvLSTM can better
capture the nonlinear structures on this dataset.

5.5.4. 7e Rate of Model Compression. 'e rate of com-
pression on different models are shown in Table 7 on the
TaxiNYC dataset. Because of the different number of hidden
channels, the number of parameters of ConvLSTM-based
models is less than that of ConvGRU-basedmodels. Compared
with the ConvGRU model, the compression rates of the
SConvGRUmodel and the SConvGRU+model are 22.2% and
22.3%, respectively. Compared with the ConvLSTMmodel, the
compression rates of the SConvLSTM model and the
SConvLSTM+model are 32.1% and 32.3%, respectively.
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Figure 7: 'e loss curve of the model on the TaxiBJ dataset. (a) ConvGRU, SConvGRU, and SConvGRU+on the training set. (b)
ConvGRU, SConvGRU, and SConvGRU+on the validation set. (c) ConvLSTM, SConvLSTM, and SConvLSTM+on the training set. (d)
ConvLSTM, SConvLSTM, and SConvLSTM+on the validation set.

Table 3: 'e comparative results of different models.

Model RMSE
HA 97.348
ARMA 21.324
VAR 22.945
ConvGRU 19.290
SConvGRU 19.484
SConvGRU+ 19.632
ConvLSTM 19.637
SConvLSTM 19.270
SConvLSTM+ 18.751
Bold represents the best results.

Table 4: 'e rate of model compression.

Model Parameter Rate of parameter reduction
ConvGRU 138432 0
SConvGRU 120000 13.3%
SConvGRU+ 119808 13.5%
ConvLSTM 184576 0
SConvLSTM 156928 15%
SConvLSTM+ 156672 15.1%
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Figure 8: 'e loss curve of the model on the TaxiNYC dataset. (a): ConvGRU, SConvGRU, and SConvGRU+ on the training set. (b)
ConvGRU, SConvGRU, and SConvGRU+on the validation set. (c) ConvLSTM, SConvLSTM, and SConvLSTM+on the training set. (d)
ConvLSTM, SConvLSTM, and SConvLSTM+on the validation set.

Table 5: 'e details of the module on the TaxiNYC dataset.

Hyperparameter ConvGRU SConvGRU SConvGRU+ ConvLSTM SConvLSTM SConvLSTM+
Kernel size in CNN (3, 5) (3, 5) (3, 5) (3, 5) (3, 5) (3, 5)
Stride in CNN 1 (first layer), 1 (second layer)
Unit layers 2 2 2 2 2 2
Hidden channels of unit 32 (first layer), 64 (second layer) 32 (first layer), 32 (second layer)
Kernel size in DCNN (3, 5) (3, 5) (3, 5) (3, 5) (3, 5) (3, 5)
Stride in DCNN 1 (first layer), 1 (second layer)
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5.6. Experiment on BikeNYC Dataset

5.6.1. Hyperparameter Setting. Similarly, the overall frame-
work of the model is shown in Section 4.3, which consists of
a two-layer convolutional neural network, a two-layer unit,
and a two-layer deconvolutional neural network. In addi-
tion, the specific details of the framework are shown in
Table 8. Other hyperparameter settings are shown in Table 2,
which are the same as those in the TaxiBJ dataset.

5.6.2. Convergence Analysis. Figures 9(a) and 9(b) are the loss
curves of the ConvGRU model, SConvGRU model, and
SConvGRU+model on the training set and validation set.
From Figure 9(a), we can see that the RMSE of the model
gradually decreases with the increase of epoch. Furthermore,
we can find that the baseline (ConvGRU) is reduced to a lower
RMSE compared to SConvGRU and SConvGRU+ in the
training process. However, ConvGRU has worse performance
in the validation set compared with our proposed models.
From Figure 9(b), we can see that the RMSE of the model
decreases first and then increases with the increase of the epoch.
'e reason for this result may be that the model is overfitting.
In addition, the SConvGRU model and the SConv-
GRU+model achieve better performance on the validation set,
which proves that the prediction accuracy is not reduced under
the condition of reducing the number of parameters.

Figures 9(c) and 9(d) are the loss curves of the ConvLSTM
model, SConvLSTM model, and SConvLSTM+model. Like
Figures 9(a) and 9(b), we can see that a lower RMSE on the
training set can be gained by ConvLSTM compared to
SConvLSTM and SConvLSTM+, however, ConvLSTM on the
validation set shows worse performance than SConvLSTM and
SConvLSTM+. 'e reason for this result may be that when
training epoches exceed a certain number, the model is

overfitting. On the validation set, the SConvLSTM model and
the SConvLSTM+model achieve a lower RMSE.

5.6.3. 7e Comparative Results of Different Models. In the
BikeNYC dataset, it can be seen from Table 9 that
SConvLSTM achieves the best performance. Compared with
the ConvGRU model, the SConvGRU model and the
SConvGRU+model achieve a lower RMSE. Similarly,
compared with the ConvLSTM model, the SConvLSTM
model and the SConvLSTM+model also achieve better
performance. 'is result proves that under the condition of
reducing the parameters of the model, the prediction effect
of the model is improved at the same time. 'e reason for
this result maybe that part of the parameters of the gating
mechanism in ConvLSTM and ConvGRU are redundant.
Furthermore, on the whole, compared with the ConvGRU
model, the SConvGRU model, and the SConvGRU+model,
the ConvLSTM model, the SConvLSTM model, and
SConvLSTM+model achieve better RMSE, which shows
that the ConvLSTM model and the sparse long short-term
memory network have a stronger ability to capture the
spatiotemporal information.

5.6.4. 7e Rate of Model Compression. Table 10 shows the
rate of compression on different models on the BikeNYC
dataset. 'e ConvGRU model and ConvLSTM model are
used as the benchmark tomeasure the rate of compression of
our proposed model. Compared with the ConvGRU model,
the compression rates of the SConvGRU model and the
SConvGRU+model are 25.6% and 25.7%, respectively.
Compared to the ConvLSTM model, the compression rates
of the SConvLSTM model and the SConvLSTM+model are
28.8% and 28.9%, respectively.

Table 6: 'e comparative results of different models.

Model RMSE
HA 39.764
ARMA 15.658
VAR 14.306
ConvGRU 12.851
SConvGRU 13.059
SConvGRU+ 12.921
ConvLSTM 12.373
SConvLSTM 12.554
SConvLSTM+ 12.402
Bold represents the best results.

Table 7: 'e rate of model compression.

Model Parameter Rate of parameter reduction
ConvGRU 207648 0
SConvGRU 161568 22.2%
SConvGRU+ 161280 22.3%
ConvLSTM 129280 0
SConvLSTM 87808 32.1%
SConvLSTM+ 87552 32.3%
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Table 8: 'e details of the module on the TaxiNYC dataset.

Parameter ConvGRU SConvGRU SConvGRU+ ConvLSTM SConvLSTM SConvLSTM+
Stride in CNN 1 (first layer), 1 (second layer)
Unit layers 2 2 2 2 2 2
Stride in DCNN 1 (first layer), 1 (second layer)
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Figure 9: 'e loss curve of the model on the training set and validation set on the BikeNYC dataset. (a, b) ConvGRU, SConvGRU, and
SConvGRU+. (c, d) ConvLSTM, SConvLSTM, and SConvLSTM+.
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6. Conclusion and Future Work

In this paper, we study how to compress the convolutional
recurrent networks while keeping the competitive results
with traditional algorithms. To solve this problem, we
propose a sparse convolutional recurrent network frame-
work, in which a sparse gating mechanism is developed. For
ConvGRU, we develop the SConvGRU unit and SConv-
GRU+unit. For ConvLSTM, we develop the SConvLSTM
unit and SConvLSTM+unit. Based on three real traffic flow
datasets, the experimental results prove that our proposed
methods are able to effectively reduce the number of model
parameters while keeping the prediction accuracy.
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