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%e steady increase in the world’s population has directly influenced global climate change, resulting in catastrophic envi-
ronmental consequences. %is has created an immediate need for scientists from interdisciplinary domains like clean technology
innovation in solar energy and computer science to join in the effort to save the world for future generations. As such, the United
Nations has set a goal to ensure global access to affordable, sustainable, and clean energy. As a leading influential G20 economy,
Saudi Arabia has recently established the Green Saudi initiative to align with the UN goal for enhancing the use of green energy.
However, research in this area is sparse and greater effort is still required. %is work is among the first to address the issue of
enhancing and expanding the use of clean energy by means of studying the data collected from solar plants around Saudi. We used
machine learning-based methods to assess the energy output performance of solar plants and employed the collected data to train
the models tomake early detection of faults. Ourmodels achieved the highest performance at an accuracy score of 98.85% and 0.98
weighted F-score using the J48model trained on a publicly available dataset of 874 instances collected from 26 different sites across
Saudi.We anticipate that the findings of this work to serve as testbed to facilitate further research in this area and enhance the early
fault detection in solar energy stations.

1. Introduction

%e growing demand for clean energy requires increased
utilization and improved efficiency of renewable technolo-
gies. Producing clean, sustainable, and efficient energy from
wind and solar resources has become a high priority for
ambitious countries like Saudi Arabia. To bring nations
together to face the challenges associated with the steady
increase in the world’s population, the UN has created
strategic goals to target the development and adaptation of
clean energy resources, such as solar and wind. UN country
members have created several initiatives to invest in de-
veloping energy-aware systems [1].

As a leading influential global economy among the G20
countries, Saudi Arabia has recently established the Green
Saudi initiative. %e initiative aims to minimise environ-
mental impacts and improve quality of life by increasing the
country’s utilization of clean energy. In this context, the
ambitious vision of the Kingdom is to make its cities smarter

by investing in intelligent infrastructure. Specifically, cities
will need to start utilising environment engineering tech-
niques and use energy intelligent means to manage in-
creasing populations while confronting the devastating
consequences of climate change. As an example, smart cities
supported by Internet of %ings (IoT) applications have the
potential to minimise the reliance on conventional infra-
structure (e.g., environment friendly and energy-efficient
bright lighting) [2, 3]. IoT is an emerging field in computer
science that can be successfully advanced by engaging with
other domains such as environmental engineering and
climate sciences. %is work aims to explore the extent to
which IoT-based sensors, tools, and applications are cur-
rently being utilised in Saudi cities. We will also investigate
the role of the existing rules and regulations in facilitating
the rapid adoption of IoT-based technology in Saudi cities.

Accurately determining the efficiency of solar energy
installations requires detailed analytics and information on
each solar panel and array such as voltage, current,
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temperature, and irradiance. Conventional approaches
involve monitoring utility-scale solar arrays which generate
electricity that is fed into the grid, producing varying
amounts of energy up to more than 50 megawatts. Recent
research has shown that monitoring utility-scale solar
arrays minimises the cost of maintenance and optimises the
performance of the photovoltaic (photovoltaic is a clean,
renewable source of energy that uses solar radiation to
produce electricity) arrays under various conditions [4].
However, the monitoring of large-scale solar plants for
human operators is not a trivial task. As such, there is
demand for utilising machine learning-based techniques
for automated performance monitoring. Specifically, ma-
chine learning algorithms have been successfully used in
previous work [5] to detect solar systems’ errors and faults
[6].

%ere are several essential metrics used to determine the
performance of solar systems. %ese metrics usually are
based on the calculation of the solar panels’ energy. In this
work, we utilise several essential and well-established met-
rics: Direct Normal Irradiance (DNI), Diffuse Horizontal
Irradiance (DHI), and Global Horizontal Irradiance (GHI).
DNI is defined as the amount of solar radiation received per
unit area by a surface that is always held perpendicular to the
rays that arrive in a straight line from the direction of the sun
at its current position in the sky [7]. DHI is defined as the
terrestrial irradiance received by a horizontal surface that
has been scattered or diffused by the atmosphere. GHI is
defined as the total solar radiation incident on a horizontal
surface. GHI is the sum of DNI, DHI, and ground-reflected
radiation as follows:

GHI � DHI + DNI∗ cos(z). (1)

As such, GHI is commonly used to compute the power
output of solar flat panels. In this work, we utilise DNI and
DHI as attributes, and we use GHI to calculate the classifying
attribute GHI class to identify early occurrences of faults
within solar systems based on the readings of these attri-
butes. Figure 1 shows the GHI map and associated solar
energy potential for Saudi from 1998 to 2018.

%e main contributions of this work are the following:
(1) utilisation for the first time of publicly available solar data
collected from 26 different sites across Saudi; (2) exploration
and analysis of the dataset and calculation of a class attribute
with three possibilities; (3) use of the data to train machine
learning classifiers to automatically detect early signs of the
need for solar systems monitoring and inspection to reduce
maintenance costs and prevent or minimise out-of-service
periods; and (4) use of the output of our trained models as an
input for another system or another element in the system
that can detect the existence and type of faults.

2. Related Work

%is section provides an overview of previous investigations
of the utility of machine learning (ML) models for fault
detection and/or performance improvement in solar sys-
tems, with a particular focus on Saudi.

Rao et al. [8] described a proposed Cyber-Physical
system approach to fault detection in photovoltaic arrays.
%e system used feed forward neural network algorithms for
fault detection frommonitoring devices that sense data from
a set of individual panels. %e authors reported that their
proposed system improved overall efficiency by detecting
and identifying eight different faults and conditions related
to power output in utility-scale photovoltaic arrays.

Fazai et al. [9] considered a ML approach with a sta-
tistical testing hypothesis for enhanced fault detection
performance in photovoltaic systems. %eir method makes
use of a ML-based Gaussian process regression technique as
a modelling framework in addition to a generalised likeli-
hood ratio test chart to detect photovoltaic system faults.%e
authors used both simulated and actual photovoltaic systems
data in their assessment. %ey monitored the key system
variables, namely, current, voltage, and power. In addition,
the authors reported the computation time, missed detection
rate, and false alarm rate to evaluate the fault detection
performance of the proposed approach. Overall, they re-
ported their best score of the goodness of fit rate at 98.24,
considering factors such as relative humidity, wind speed,
and rainfall.

Alajmi et al. [10] presented a study using ML with
voltage and current sensors to detect, locate, and classify
common faults. %e authors considered including open
circuit, short circuit, and hot-spot and reported a perfect
accuracy score of 100%. However, the authors used simu-
lated data as no real-life data were utilised in their proposed
approach.

Another work by Zubair et al. [11] reported their efforts
to optimise a parabolic trough (PT)-based concentrated
solar power system. %e study analysed solar energy data
collected from Saudi Arabia as well as some European and
Asian countries. Among the countries, different cities were
compared based on their peak load. %e purpose of their
analysis was to sell electricity generated locally to the

Figure 1: %e Global Horizontal Irradiation (GHI) map of Saudi
Arabia. Source: SolarGIS.
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customers during their peak load hours to reduce their load
factor and minimise the capital cost. However, the study did
not consider the investigation of fault detection factors and
causes.

Recent work by Benavides et al. [12] used ML to predict
the energy produced from three different photovoltaic
systems and the supervision of measurement sensors. %e
authors investigated the energy production in response to
changes in the climatic variables of the site under study.%ey
provided an implementation of several indicators in order to
allow the solar plant operators to actively manage the
electricity grid. %e authors also claimed that their system
can provide real-time predictions of photovoltaic systems
and measurement sensors.

In summary, the increasing demand for clean energy
requires increased utilisation and improved efficiency of
renewable technologies. %e task of monitoring solar sys-
tems is becoming more difficult due to this growth and the
continuous need for performance enhancement. As such,
there has been a recent spike in research in this field to
address the increasing demand with the limited number of
energy systems currently operating. More importantly, there
is a growing demand for solar data to be made available for
research purposes.

3. Experimental Framework

%is section presents the experimental setup and configu-
ration used in this work, including the dataset and the ML
models utilised.

3.1. Dataset. We use a publicly available dataset of solar
systems measured values. Specifically, we utilise a dataset
collected and owned by the King Abdullah City for Atomic
and Renewable Energy from 2013 to 2016. %e dataset was
made publicly available via the OpenData platform in 2020
and was further updated in 2021 (OpenData is a govern-
ment-based publicly accessible platform for open data. %e
data are available via OpenData at https://data.gov.sa/Data/
en/dataset/kacare%20andrratlas.energy.gov.sa. Accessed on
26/10/2021). %e dataset contains 874 data instances and 26
features as shown in Table 1. %e data were collected via 26
solar power facilities around Saudi (Specifically, the solar
stations were located at Makkah Umm Al-Qura University,
Shaqra University, Hagl SWCC, Farasan SWCC, Al Khafji
SWCC, Rania, Najran University, Riyadh King Saud Uni-
versity, Al Ahsa King Faisal University, %uwal King
Abdullah University for Science and Technology, Osfan,
Jeddah King Abdulaziz University, Hada Al Sham, Riyadh
K.A.CARE City T2, Riyadh—K.A.CARE HQ, Jazan Uni-
versity, Hail, Hafar Al Batin, Duba, Arar, AlWajh, Riyadh Al
Uyaynah, Al Qunfudhah, Al Hanakiyah, Al Dawadmi, and
Al Baha University). Figure 2 shows the data structure in
JSON files retrieved from OpenData and used in this work.

3.1.1. Data Preprocessing and Identifying the Class Attribute.
Unlike most other available solar energy datasets, this
dataset includes only raw readings from several solar

stations around Saudi. Other datasets typically include a
class attribute for fault categorisation, such as in the
PVWatts dataset used by Rao et al. [4]. An additional
attribute named GHI class was calculated with three
possible values. To obtain GHI class, we first normalised all
the GHI numerical values to be in range [−1, +1]. Nor-
malising a numerical attribute needed to address the
variation in amount of power produced between different
solar stations. Moreover, numerical attribute normalisation
is a particularly useful practise with ML models [13]. After
normalising the GHI values, three classes were assigned to
the GHI values such as Running when GHI values are
greater than +0.4, Monitoring when GHI values are greater
than or equal to −0.4 or less than or equal to +0.4, and
Inspecting when GHI values are between −0.4 and −1.0.
%e three classes cover three different possibilities for early
default detection in the solar station using the identified
threshold. Each class corresponds to one of three zones, the
green, orange, and red zones. %e first class, Running,
denotes the green zone when the system is operational,
demonstrated by the stable performance of the power
produced. %e second class, Monitoring, denotes the or-
ange zone when the system is not performing optimally,
indicating an early need for system monitoring. %e third
class, Inspecting, denotes the red zone when the perfor-
mance of the solar station is below the expected level and
requiring urgent inspection for the solar panels at the site,
as shown in Figure 3.

Figure 4 shows the class distribution in the dataset we
used across all the attributes. It can be seen that classes are
unbalanced, withMonitoring representing the majority class
with 399 instances. %e Inspecting class is the minority class
with 186 instances, while the Running class contains 289
instances. Although the classes are not balanced, for two
reasons, we opted not to employ any class balancing tech-
nique that primarily relies on creating artificial synthetic
instances to force class balancing. Firstly, we believe it is
essential to train the models with real-life datasets with their
actual distribution as this will reflect the trained model’s
more realistic performance. Secondly, the class distribution
in our solar dataset does not skew significantly towards a
specific class; therefore, we expect that it will not lead to
overfitting. %e processed dataset will be made publicly
available to reproduce the results and facilitate future
research.

3.2. Machine Learning Models. %is section presents the
ML models we utilise in this work, including several
models known to perform well on classification tasks [13].
We employ WEKA’s implementation of the ML models
we use in this work (WEKA is a well-known Java-based
open-source package that incorporates implementations
for a collection of machine learning algorithms for data
mining. WEKA is developed by the Machine Learning
Group at the University of Waikato; accessing and
downloading WEKA is available at: http://www.cs.
waikato.ac.nz/ml/weka/. In this work we use version
3.8.5 of WEKA).
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3.2.1. Majority Baseline ZeroR. We compare our results
against a majority baseline that always predict the most
frequent class in the dataset. ZeroR is a useful classifier to
provide a lower bound on the performance of the dataset
[14].

3.2.2. Random Forests. Random Forest (RF) is a ML-based
model that utilises an ensemble learning method for clas-
sification and regression. RF works by constructing many
decision trees using a given set of training data. For clas-
sification tasks, the output of the RF is the class selected by
most trees, i.e., the trained ensemble.

3.2.3. Decision Tree J48. J48 is often referred to as a statistical
classifier. %e J48 algorithm generates a decision tree Witten
et al. [14]. As a classification algorithm, J48 is used to
produce decision trees based on information theory.

3.2.4. LibLinear SVM. We use Support Vector Machines
(SVMs) as an ML scheme that is particularly successful for
classification problems [15]. %is is due to their ability to
handle many features in high dimensional feature space (i.e.,
text classification problems). A trained SVM will attempt to
classify a new instance to one of the predefined classes on

Figure 2: Screenshot of the JSON files of the solar systems dataset
used.

Table 1: Attributes of the solar energy dataset retrieved from OpenData platform.

Attribute name Attribute
type Description

Site Nominal Total of 26 distinct sites around Saudi
Latitude Numeric Geographical latitude of a specific solar system site
Altitude Numeric Geographical altitude of a specific solar system site
Date Date %e time and date at which data was collected
Air temperature (C) Numeric Air temperature at the site
Air temperature uncertainty (C) Numeric Uncertainty window
Wind direction at 3m (N) Numeric Wind direction
Wind direction at 3m uncertainty (N) Numeric Uncertainty window
Wind speed at 3m (m/s) Numeric Wind speed
Wind speed at 3m uncertainty (m/s) Numeric Uncertainty window
Wind speed at 3m (std dev) (m/s) Numeric Wind speed standard deviation
DHI (Wh/m2) Numeric Diffuse horizontal irradiance
DHI uncertainty (Wh/m2) Numeric Uncertainty window
Standard deviation DHI (Wh/m2) Numeric DHI SD
DNI (Wh/m2) Numeric Direct normal irradiance
DNI uncertainty (Wh/m2) Numeric Uncertainty window
Standard deviation DNI (Wh/m2) Numeric DNI SD
GHI (Wh/m2) Numeric Global horizontal irradiance
GHI uncertainty (Wh/m2) Numeric Uncertainty window
Standard deviation GHI (Wh/m2) Numeric GHI SD
Peak wind speed at 3m (m/s) Numeric Peak wind speed at site
Peak wind speed at 3m uncertainty (m/s) Numeric Uncertainty window
Relative humidity (%) Numeric Humidity level at site
Relative humidity uncertainty (%) Numeric Uncertainty window
Barometric pressure (mB (hPa equiv)) Numeric Pressure at site
Barometric pressure uncertainty (mB (hPa
equiv)) Numeric Uncertainty window

GHI class Nominal Calculated attribute with three possible values: running, monitoring,
inspecting

4 Mathematical Problems in Engineering



which the model is initially trained by finding a hyperplane or
a decision-surface that separates the instances of classes [14].
Two more hyperplanes parallel to the separating hyperplane

are created, called support hyperplanes, as shown in Figure 5.
%e support hyperplanes cut through the closest training
instances, called support vectors, on either side.
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Figure 4: Distribution of all attributes with respect to the classifying class GHI. %e colours that denote the three classes are dark blue for
Monitoring class, red for Inspecting class, and light blue for the Running class.

Classifying input instances
collected form solar systems

Class 1 running
1 < Norm GHI > 0.4
Total instances = 289

Class 2 monitoring
0.4 < Norm GHI > −0.4

Total instances = 399

Class 3 inspecting
−0.4 < Norm GHI > −1
Total instances = 186

Figure 3: Class distribution in the solar dataset.
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3.2.5. Naı̈ve Bayes (NB). Näıve Bayes is a classification al-
gorithm based on Bayes’ theorem, assuming independence
among predictors. In simple terms, an NB classifier assumes
that the presence of a particular feature in a class is unrelated
to the presence of any other feature.

3.2.6. Logistic Regression (Simple Logistic). Logistic Regres-
sion (LR) is a classification algorithm that predicts a cate-
gorical output. It is used to model the relationship between
two variables by fitting a linear equation to observed data.

3.2.7. Deep Learning (DL) with Convolutional Neural Net-
work (CNN). CNN is a class of deep neural networks that
uses a special technique called convolution, which is a
mathematical operation on two functions that produces a
third function that expresses how the shape of one is
modified by the other [16]. We use the following parameters
in the model: CNN with five epochs, network configuration
as dropout� disabled, Adam optimiser, learning rate-
� 0.001, epsilon� 1.0E− 8, optimisation Algo� Stochastic
Gradient Descent (SGD), gradient normalisation thresh-
old� 1.0, and total trainable parameters� 29 with zero
frozen parameters. %e time required to build and train the
model was 14.9 seconds.

3.3. Evaluation Metrics. In classification problems, the
overall performance is typically measured by the success
rate, which is the proportion of the correctly classified in-
stances over the entire set of instances. Here, we report the
results using two metrics: weighted F-score and accuracy
[13]. %e weighted F-score is the average of all F-scores
attained for each class (i.e., F-running, F-monitor, and F-
inspect). Each F-score is weighted according to the number
of instances with that particular class.

Accuracy is one of the most widely reported metrics in
the literature and is calculated as follows:

accuracy �
number of correctly classified instances

total number of instances
. (2)

%e F-score is defined as the harmonic average of pre-
cision and recall (A control parameter β can be used to
decide howmuch emphasis to put on precision vs. recall. F1,
or by convention F, is where β′s value is 1 denoting an equal/
balanced emphasis on both metrics) and is calculated as
follows:

F1 � 2 ×
precision × recall
precision + recall

, (3)

where precision is calculated as follows:

precision �
A

A + C
, (4)

where A is the number of correct/relevant instances clas-
sified/retrieved and C is the number of incorrect/irrelevant
instances classified/retrieved Moreover, recall is calculated
as follows:

recall �
A

A + B
, (5)

where B is the number of correct/relevant instances not
classified/retrieved.

3.4. Evaluation Methods. Assessing the success rate of a
classifier on previously unseen instances that have played no
role in building the classifier should provide a reliable in-
dicator of the classifiers’ future performance [14]. We use
cross-validation (CV) for evaluating the trained models. CV
uses a fixed number of data proportions, namely, folds to
split the data into test and training sets. %e dataset is
randomly reordered before being split into n folds of equal
size. In each fold, every class is represented by approximately
the same fraction as the entire dataset, also called stratified
CV. Previous work has shown that 10 is the number of folds
for obtaining the best estimate of error [14]. Each fold is then
held-out to be used in turn for testing. %is results in the
learning process being run 10 times on different combi-
nations of the training set. In the end, the resultant 10 error
rates are averaged to yield the overall score. As an en-
hancement for the reliability of the results and as suggested
by Witten et al. [14], we ran 10 experiments for different 10-
fold CV for each dataset, resulting in 100 invokes of each
learning algorithm on each dataset with scores averaged over
10 repetitions.

3.5. Problem Formulation. We experiment with single-level
problem formulations for fault detection and classification
in solar systems flat three-way classification. Figure 3 shows
the structure of the classification problem we use.

Figure 6 shows the process flow of our investigations.
%e first step in the process is the readings of the solar panels
being collected and made publicly available via OpenData.
%e next step is to use the dataset to train ML models to
classify the performance of the solar system based on the
amount of energy produced. %e output of classified in-
stances can then be used as an input for another system or by
domain experts for further inspections.

Optimal
Hyperplane

Hyperplane

X1

X2
H1

H2

W.X+b=0

Margin

||W||
2 Support Vector

class A sample
class B sample

Figure 5: Hyperplanes in SVM.
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4. Results

We ran a series of experiments with the configurations
discussed previously.

In this section, we present and discuss the main findings
of our experimental work. Table 2 presents a summary of the
results.

As can be seen in Table 2, all models significantly out-
performed a simple majority baseline at an accuracy score of
45.65% (%e majority class is Inspecting with a total of 399
instances. A T-test (χ2) is conducted on accuracy and F-
scores and at a confidence interval of 95% (p< 0.05) [14]).
Interestingly, the tree-based models, i.e., RF and J48,
achieved the highest performance. Specifically, J48 out-
performed all models with an accuracy score of 98.85% and
weighted F-score at 0.978, which is very similar to the
performance achieved by the RF model. In other studies, J48
has been reported to perform well on classification tasks
[17], especially with small-to-medium size datasets (e.g.,
nearly 1k instances). Here, the size of the tree (pruning) is
only five, with the time required to construct the model
being nearly one second. %e next best performance was
achieved by the linear regression model at an accuracy score
of 97.25% and weighted F-score of 0.973. %is performance
is very close to the tree-based models, J48 and RF.

With respect to LibLinear (SVM), we can see that the
highest accuracy score is 82.95% and weighted F-score is
0.801; this is considered to be reasonable performance for a
three-way classification task. However, LibLinear’s perfor-
mance is significantly lower than the scores attained by J48.
%is is possible because the size of the dataset as LibLinear
might require more training examples to be able to capture
more distinctive patterns between the three classes. %e

confusion matrix of the model shows that 17% of the
Inspecting class was wrongly classified as Monitoring. In
comparison, 25% of the Monitoring class was mistakenly
classified by the model as either Running or Inspecting.

We can see that both the NB and CNN models achieved
nearly identical performance of approximately 91% accu-
racy. It is somewhat surprising to see good performance with
a deep learning-basedmodel like CNNwith a relatively small
dataset (i.e., less than 1k instances). A possible explanation
for this is the quality of the dataset used with no outliers or
noise. It has been argued that despite the well-known belief
that deep learning models require large sets of training data
containing millions or even billions of features, the quality of
the data is a key factor [18]. As such, we believe that the
quality of the dataset used allowed the model to capture
valuable distinctive features. However, considering the
computational power and model training time required, we
believe that a decision tree model is more efficient and able
to outperform other models.

To gain a better understanding of the informative nature
of the attributes in our dataset, Table 3 lists the most in-
formative attributes ranked according to their chi-squared
(χ2) values. χ2 evaluates features by computing the chi-
square value with respect to the class [14]. As a result, we
used chi-square to obtain ranked lists of the most infor-
mative features for error analysis purposes and to gain in-
sight into the subset of attributes that are beneficial and
discriminative. It is interesting that attributes like humidity,
wind speed, and barometric pressure are considered in-
formative for the ML models in detecting one of the three
classes that we use to determine signs of diminished per-
formance of the solar systems’ power production. %ese
attributes have been shown to be essential factors in

Data exploration & pre-
processing: merging,

normalizing and cleansing

ML model training:
LibLinear, J48, RF, logistic
regression, NB and CNN

Classification: running vs.
monitoring vs. inspecting

Performance evaluation:
F-score and accuracy

Early fault detection:
Examining instances under the

third class “inspecting”

Input data instances
from OpenData

Total instances = 874

Figure 6: Process flow for fault detection and classification in solar systems.
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significantly influencing the overall performance of solar
panels and systems [8].

5. Conclusions and Future Work

Solar systems provide a reliable source of clean and sus-
tainable energy that can enable smart cities to participate in
the international efforts to reduce emissions and enhance
quality of life. Saudi Arabia recently introduced the Green
Saudi initiative, which aims to increase the use of clean
energy technologies (e.g., solar and wind). However, re-
search on the current solar systems in Saudi for addressing
existing issues (e.g., early fault detection) is limited. An in-
depth investigation is required to enable the automatic
detection and classification of solar systems’ issues, with the
goal of realising valuable benefits such as reduced mainte-
nance costs and improved risk detection. Given the size and
diversity of Saudi’s geographical regions, early and auto-
matic fault detection using ML-based methods and data
obtained from distributed solar systems is crucial (e.g., to
prevent permanent panel damage resulting from dust
storms).

%is work involves the analysis of performance mea-
surements from solar systems installed in different geo-
graphical locations around Saudi. Specifically, we utilised a
publicly available dataset collected from solar systems in-
stalled in 26 different locations. We trained multiple ML
models, including Random Forest, LibLinear, Naive Bayes,

linear regression, and CNN. We found that the tree-based
models, J48 and RF, and linear regression models were able
to outperform other models. J48 achieved the best perfor-
mance at an accuracy score of 98.85% and weighted average
F-score of 0.988. To the best of our knowledge, this is the first
work to address the issue of early fault detection in solar
systems in Saudi. As such, we believe our findings will
benefit the research community by serving as a testbed and
facilitating future research.

Opportunities for future research include expanding the
proposed work pipeline by adding elements that can benefit
from the output of the trained models. For example, domain
experts can annotate sample datasets for types of faults (e.g.,
caused by dust, outdated units, and humidity). %ese
datasets can also be used to train ML models to not only
detect the early existence of faults but also to distinguish
between the different types of faults. Future work can also
involve obtaining larger and more diverse datasets spanning
an extended period so that the model can predict possible
issues that might occur within an extensive network of solar
panels.

Data Availability

Data used in the research are obtained from the OpenData.
OpenData is a government-based publicly accessible
platform for open data.%e data are available via OpenData
at: https://data.gov.sa/Data/en/dataset/kacare andrratlas.
energy.gov.sa. accessed on 26/10/2021.
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